Increased Regions of Stability for a Two－Delay Differential Equation UBC－IAM Seminar

Joseph M．Mahaffy〈jmahaffy＠mail．sdsu．edu〉

> Department of Mathematics and Statistics
> Dynamical Systems Group
> Computational Sciences Research Center
> San Diego State University
> http://www-rohan.sdsu.edu/~jmahaffy

Fall 2013

Outline

(1) Introduction

- Example
- One Delay Differential Equation
(2) Linear Two-Delay Differential Equation
- Minimum Region of Stability
- Definitions for Stability Changes
- Stability Surface Evolution
- Asymptotic Shape of Stability Region
(3) Return to Example
(4) Discussion

Outline

(1) Introduction

- Example
- One Delay Differential Equation
(2) Linear Two-Delay Differential Equation
- Minimum Region of Stability
- Definitions for Stability Changes
- Stability Surface Evolution
- Asymptotic Shape of Stability Region
(3) Return to Example
(4) Discussion
- Collaborators
- Paul Zak (CGU), NSF REU undergraduate at SDSU
- Timothy Buskin, Master's thesis at SDSU

Introduction

Two-Delay Differential Equation

$$
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0
$$

Introduction

Two-Delay Differential Equation

$$
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0
$$

- Long interest in stability of delay differential equations
- Delay equations are important in modeling

Introduction

Two－Delay Differential Equation

$$
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0
$$

－Long interest in stability of delay differential equations
－Delay equations are important in modeling
－Two－delay problem
－E．F．Infante noted an odd stability property observed in a two delay economic model

Introduction

Two-Delay Differential Equation

$$
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0
$$

- Long interest in stability of delay differential equations
- Delay equations are important in modeling
- Two-delay problem
- E. F. Infante noted an odd stability property observed in a two delay economic model
- Multiple delays are important for biological models

Introduction

Two-Delay Differential Equation

$$
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0
$$

- Long interest in stability of delay differential equations
- Delay equations are important in modeling
- Two-delay problem
- E. F. Infante noted an odd stability property observed in a two delay economic model
- Multiple delays are important for biological models
- Developed special geometric techniques for analysis of delay equations

Platelet Model

Two-delay Model for Platelets (Bélair and Mackey, 1987)
Thrombopoietin $\quad \beta(P)$

$$
\frac{d P}{d t}=-\gamma P(t)+\beta\left(P\left(t-T_{m}\right)\right)-\beta\left(P\left(t-T_{m}-T_{s}\right)\right) e^{-\gamma T_{s}}
$$

Platelet Model

Two-delay Model for Platelets (Bélair and Mackey, 1987)
Thrombopoietin $\quad \beta(P)$

$\frac{d P}{d t}=-\gamma P(t)+\beta\left(P\left(t-T_{m}\right)\right)-\beta\left(P\left(t-T_{m}-T_{s}\right)\right) e^{-\gamma T_{s}}$
Production of platelets $(\beta(P))$

Platelet Model

Two-delay Model for Platelets (Bélair and Mackey, 1987)
Thrombopoietin $\quad \beta(P)$

Platelet Model

Two-delay Model for Platelets (Bélair and Mackey, 1987)
Thrombopoietin $\quad \beta(P)$

$\frac{d P}{d t}=-\gamma P(t)+\beta\left(P\left(t-T_{m}\right)\right)-\beta\left(P\left(t-T_{m}-T_{s}\right)\right) e^{-\gamma T_{s}}$
duction of platelets $(\beta(P))$
counted destruction of platelets $\left(\beta(P) e^{-\gamma T_{s}}\right)$

Platelet Model

Two－delay Model for Platelets（Bélair and Mackey，1987）
Thrombopoietin $\quad \beta(P)$

$\frac{d P}{d t}=-\gamma P(t)+\beta\left(P\left(t-T_{m}\right)\right)-\beta\left(P\left(t-T_{m}-T_{s}\right)\right) e^{-\gamma T_{s}}$
duction of platelets $(\beta(P))$
ear loss of platelets，(γP)
counted destruction of platelets $\left(\beta(P) e^{-\gamma T_{s}}\right)$
ne delays for maturation $\left(T_{m}\right)$ and life expectancy $\left(T_{s}\right)$

Platelet Model

Two－delay Model for Platelets（Bélair and Mackey，1987）
Thrombopoietin $\quad \beta(P)$

$\frac{d P}{d t}=-\gamma P(t)+\beta\left(P\left(t-T_{m}\right)\right)-\beta\left(P\left(t-T_{m}-T_{s}\right)\right) e^{-\gamma T_{s}}$
Production of platelets $(\beta(P))$
Linear loss of platelets，(γP)
Discounted destruction of platelets $\left(\beta(P) e^{-\gamma T_{s}}\right)$
Time delays for maturation $\left(T_{m}\right)$ and life expectancy $\left(T_{s}\right)$

Modified Platelet Model

Modified Platelet Model

- Examine a modified form:

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta^{n} P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta^{n} P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

Modified Platelet Model

Modified Platelet Model

- Examine a modified form:

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta^{n} P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta^{n} P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

- Scaled time to normalize the larger delay

Modified Platelet Model

Modified Platelet Model

- Examine a modified form:

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta^{n} P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta^{n} P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

- Scaled time to normalize the larger delay
- Chose parameters similar to Bélair and Mackey after scaling

Modified Platelet Model

Modified Platelet Model

- Examine a modified form:

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta^{n} P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta^{n} P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

- Scaled time to normalize the larger delay
- Chose parameters similar to Bélair and Mackey after scaling
- Introduced parameter f, which is different
- Wanted a scaling factor, instead of time delay varying discount

Modified Platelet Model

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

Model with Delays near 1/2

Figure shows stability at $R=\frac{1}{2}$, but irregular oscillations for delays nearby

Modified Platelet Model

$$
\frac{d P}{d t}=-\gamma P(t)+\frac{\beta_{0} \theta P(t-R)}{\theta^{n}+P^{n}(t-R)}-f \cdot \frac{\beta_{0} \theta P(t-1)}{\theta^{n}+P^{n}(t-1)}
$$

Model with Delays near $1 / 3$

Figure shows stability at $R=\frac{1}{3}$, but irregular oscillations for delays nearby (Same parameters as $R=\frac{1}{2}$)

DDE with One Delay

Consider

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

This is an ∞-dimensional problem (time history)

DDE with One Delay

Consider

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

This is an ∞-dimensional problem (time history)
Characteristic Equation

$$
\lambda-a=b e^{-\lambda r}
$$

DDE with One Delay

Consider

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

This is an ∞-dimensional problem (time history)
Characteristic Equation

$$
\lambda-a=b e^{-\lambda r}
$$

For $\lambda=i \omega$, parametric equations from real and imaginary parts

$$
\begin{aligned}
a(\omega) & =\omega \cot (\omega r) \\
b(\omega) & =-\frac{\omega}{\sin (\omega r)}
\end{aligned}
$$

DDE with One Delay

Consider

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

This is an ∞-dimensional problem (time history)
Characteristic Equation

$$
\lambda-a=b e^{-\lambda r}
$$

For $\lambda=i \omega$, parametric equations from real and imaginary parts

$$
\begin{aligned}
a(\omega) & =\omega \cot (\omega r) \\
b(\omega) & =-\frac{\omega}{\sin (\omega r)}
\end{aligned}
$$

Create distinct curves $\omega \in\left(\frac{(n-1) \pi}{r}, \frac{n \pi}{r}\right)$ for $n=1,2, \ldots$

Stability Region - DDE with One Delay

Stability Region - DDE with One Delay

- Real root crossing solid blue line $(a+b=0)$

Stability Region - DDE with One Delay

- Real root crossing solid blue line $(a+b=0)$
- Hopf bifurcation crossing solid red line

Comments DDE with One Delay

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

Comments DDE with One Delay

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

- Region with $a<0$ and $|b|<|a|$ is stable independent of the delay

Comments DDE with One Delay

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

- Region with $a<0$ and $|b|<|a|$ is stable independent of the delay
- As $r \rightarrow 0$, the DDE approaches the ODE with stability region $a+b<0$

Comments DDE with One Delay

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

- Region with $a<0$ and $|b|<|a|$ is stable independent of the delay
- As $r \rightarrow 0$, the DDE approaches the ODE with stability region $a+b<0$
- Stability region comes to a point at $\left(\frac{1}{r},-\frac{1}{r}\right)$

Comments DDE with One Delay

$$
\dot{y}(t)=a y(t)+b y(t-r)
$$

- Region with $a<0$ and $|b|<|a|$ is stable independent of the delay
- As $r \rightarrow 0$, the DDE approaches the ODE with stability region $a+b<0$
- Stability region comes to a point at $\left(\frac{1}{r},-\frac{1}{r}\right)$
- Imaginary root crossings are distinct, non-intersecting curves

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Linear Two-Delay Differential Equation

Scalar Linear Two-Delay Differential Equation

$$
\begin{equation*}
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0 \tag{1}
\end{equation*}
$$

Linear Two-Delay Differential Equation

Scalar Linear Two-Delay Differential Equation

$$
\begin{equation*}
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0 \tag{1}
\end{equation*}
$$

- Scale time so that first delay is 1 and second delay is $0<R<1$

Linear Two-Delay Differential Equation

Scalar Linear Two-Delay Differential Equation

$$
\begin{equation*}
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0 \tag{1}
\end{equation*}
$$

- Scale time so that first delay is 1 and second delay is $0<R<1$
- Examine stability region in $A B C$-parameter space as R varies

Linear Two-Delay Differential Equation

Scalar Linear Two-Delay Differential Equation

$$
\begin{equation*}
\dot{y}(t)+A y(t)+B y(t-1)+C y(t-R)=0 \tag{1}
\end{equation*}
$$

- Scale time so that first delay is 1 and second delay is $0<R<1$
- Examine stability region in $A B C$-parameter space as R varies

Characteristic Equation

$$
\lambda+A+B e^{-\lambda}+C e^{-\lambda R}=0
$$

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Minimum Region of Stability

Theorem（Minimum Region of Stability（MRS））
 For $A>|B|+|C|$ ，all solutions λ to the characteristic equation have $\operatorname{Re}(\lambda)<0$ ．

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Minimum Region of Stability

> Theorem (Minimum Region of Stability (MRS))
> For $A>|B|+|C|$, all solutions λ to the characteristic equation have $\operatorname{Re}(\lambda)<0$.

- This is a pyramidal shaped region centered along the positive A-axis

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Minimum Region of Stability

> Theorem (Minimum Region of Stability (MRS))
> For $A>|B|+|C|$, all solutions λ to the characteristic equation have $\operatorname{Re}(\lambda)<0$.

- This is a pyramidal shaped region centered along the positive A-axis
- Zaron (1987) proved this at HMC (Technical Report) under the direction of Stavros Busenberg and Ken Cooke

Minimum Region of Stability

Theorem（Minimum Region of Stability（MRS））

For $A>|B|+|C|$ ，all solutions λ to the characteristic equation have $\operatorname{Re}(\lambda)<0$ ．
－This is a pyramidal shaped region centered along the positive A－axis
－Zaron（1987）proved this at HMC（Technical Report） under the direction of Stavros Busenberg and Ken Cooke
－We examine the stability region in $B C$－plane for fixed A relative to the MRS

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Bifurcation Curves and Surfaces

Study the Characteristic Equation at $\lambda=i \omega$ or

$$
i \omega+A+B e^{-i \omega}+C e^{-i \omega R}=0
$$

Bifurcation Curves and Surfaces

Study the Characteristic Equation at $\lambda=i \omega$ or

$$
i \omega+A+B e^{-i \omega}+C e^{-i \omega R}=0
$$

Definition（Bifurcation Curves and Surfaces）

Bifurcation Surface $\boldsymbol{j}, \Lambda_{j}$ ，（Bifurcation Curve $\left.\boldsymbol{j}, \Gamma_{j}\right)$ is determined by：

$$
\begin{aligned}
& B(\omega)=\frac{A \sin (\omega R)+\omega \cos (\omega R)}{\sin (\omega(1-R))} \\
& C(\omega)=-\frac{A \sin (\omega)+\omega \cos (\omega)}{\sin (\omega(1-R))}
\end{aligned}
$$

defined for $\frac{(j-1) \pi}{1-R}<\omega<\frac{j \pi}{1-R}, A$ ，and each positive integer，j ．

Bifurcation Curves and Surfaces

Study the Characteristic Equation at $\lambda=i \omega$ or

$$
i \omega+A+B e^{-i \omega}+C e^{-i \omega R}=0
$$

Definition（Bifurcation Curves and Surfaces）

Bifurcation Surface $\boldsymbol{j}, \Lambda_{j}$ ，（Bifurcation Curve $\left.\boldsymbol{j}, \Gamma_{j}\right)$ is determined by：

$$
\begin{aligned}
& B(\omega)=\frac{A \sin (\omega R)+\omega \cos (\omega R)}{\sin (\omega(1-R))} \\
& C(\omega)=-\frac{A \sin (\omega)+\omega \cos (\omega)}{\sin (\omega(1-R))}
\end{aligned}
$$

defined for $\frac{(j-1) \pi}{1-R}<\omega<\frac{j \pi}{1-R}, A$ ，and each positive integer，j ．
－The bifurcation curves for the 1－delay DE were non－intersecting SDSO

Real Root Crossing

The Characteristic Equation gives a real root crossing at $\lambda=0$ ，so $A+B+C=0$

Define this surface（curve），$\Lambda_{0}\left(\Gamma_{0}\right)$

Real Root Crossing

The Characteristic Equation gives a real root crossing at $\lambda=0$, so $A+B+C=0$

Define this surface (curve), $\Lambda_{0}\left(\Gamma_{0}\right)$

- This plane is always part of the boundary of the stability surface

Real Root Crossing

The Characteristic Equation gives a real root crossing at
$\lambda=0$, so $A+B+C=0$
Define this surface (curve), $\Lambda_{0}\left(\Gamma_{0}\right)$

- This plane is always part of the boundary of the stability surface
- This plane lies along one edge of the MRS

Real Root Crossing

The Characteristic Equation gives a real root crossing at
$\lambda=0$, so $A+B+C=0$
Define this surface (curve), $\Lambda_{0}\left(\Gamma_{0}\right)$

- This plane is always part of the boundary of the stability surface
- This plane lies along one edge of the MRS
- Degenerate equilibrium solutions, $y_{e}(t)=k$, are along this surface

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

First Bifurcation Curve, Γ_{1}

Our geometric approach begins with small values of A The $1^{\text {st }}$ Bifurcation Curve, Γ_{1} starts as $\lambda=i \omega \rightarrow 0$ intersecting Λ_{0} along the line

$$
\frac{A+1}{1-R}=\frac{B-1}{R}=-C
$$

First Bifurcation Curve, Γ_{1}

Our geometric approach begins with small values of A The $1^{\text {st }}$ Bifurcation Curve, Γ_{1} starts as $\lambda=i \omega \rightarrow 0$ intersecting Λ_{0} along the line

$$
\frac{A+1}{1-R}=\frac{B-1}{R}=-C
$$

Theorem (Starting Point - Mahaffy, Joiner, Zak)
If $R>R_{0} \approx 0.0117$, then the stability surface comes to a point at $\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)$, and the $D D E$ (1) is unstable for $A<A_{0}$.

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Early Bifurcation Surface

- The bifurcation surface begins at the starting point (for $R>R_{0}$)

$$
\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)
$$

Early Bifurcation Surface

- The bifurcation surface begins at the starting point (for $R>R_{0}$)

$$
\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)
$$

- Following $\left(A_{0}, B_{0}, C_{0}\right)$, the $1^{\text {st }}$ Bifurcation surface, Λ_{1}, intersects Λ_{0} twice to enclose the stability region for a range of A values

Early Bifurcation Surface

－The bifurcation surface begins at the starting point（for $R>R_{0}$ ）

$$
\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)
$$

－Following $\left(A_{0}, B_{0}, C_{0}\right)$ ，the $1^{\text {st }}$ Bifurcation surface，Λ_{1} ，intersects Λ_{0} twice to enclose the stability region for a range of A values
－The $2^{\text {nd }}$ Bifurcation surface，Λ_{2} ，self－intersects for some $A_{2}^{p}>A_{0}$ ，creating a region of stability

Early Bifurcation Surface

－The bifurcation surface begins at the starting point（for $R>R_{0}$ ）

$$
\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)
$$

－Following $\left(A_{0}, B_{0}, C_{0}\right)$ ，the $1^{\text {st }}$ Bifurcation surface，Λ_{1} ，intersects Λ_{0} twice to enclose the stability region for a range of A values
－The $2^{\text {nd }}$ Bifurcation surface，Λ_{2} ，self－intersects for some $A_{2}^{p}>A_{0}$ ，creating a region of stability
－Λ_{2} self－intersects for $A \in\left[A_{2}^{p}, A_{1}^{*}\right]$ ，where A_{1}^{*} is the A－value that this Stable Spur joins the main stability surface

Early Bifurcation Surface

- The bifurcation surface begins at the starting point (for $R>R_{0}$)

$$
\left(A_{0}, B_{0}, C_{0}\right)=\left(-\frac{R+1}{R}, \frac{R}{R-1}, \frac{1}{R(1-R)}\right)
$$

- Following $\left(A_{0}, B_{0}, C_{0}\right)$, the $1^{\text {st }}$ Bifurcation surface, Λ_{1}, intersects Λ_{0} twice to enclose the stability region for a range of A values
- The $2^{\text {nd }}$ Bifurcation surface, Λ_{2}, self-intersects for some $A_{2}^{p}>A_{0}$, creating a region of stability
- Λ_{2} self-intersects for $A \in\left[A_{2}^{p}, A_{1}^{*}\right]$, where A_{1}^{*} is the A-value that this Stable Spur joins the main stability surface
- These stable spurs and transition values are key to understanding the asymptotic structure of the stability region

Early Bifurcation Surface

Definition（Stability Spur）

If Bifurcation Surface $j+1$ self－intersects above the zero－root crossing plane as A increases，with the Cusp Point of Spur \mathbf{j} denoted A_{j}^{p} ， then the quasi－cone－shaped stability spur has its cross－sectional area monotonically increase with A until A reaches a transitional value， A_{j}^{*} ．The one－dimensional distance $A_{j}^{*}-A_{j}^{p}$ is the Spur j＇s length．

Early Bifurcation Surface

Definition（Stability Spur）

If Bifurcation Surface $j+1$ self－intersects above the zero－root crossing plane as A increases，with the Cusp Point of Spur \mathbf{j} denoted A_{j}^{p} ， then the quasi－cone－shaped stability spur has its cross－sectional area monotonically increase with A until A reaches a transitional value， A_{j}^{*} ．The one－dimensional distance $A_{j}^{*}-A_{j}^{p}$ is the Spur \mathbf{j}＇s length．
－In $B C$ cross－sectional regions，the $\mathbf{S t a b i l i t y ~ S p u r s ~ p r o d u c e ~}$ disconnected regions of stability

Early Bifurcation Surface

Definition（Stability Spur）

If Bifurcation Surface $j+1$ self－intersects above the zero－root crossing plane as A increases，with the Cusp Point of Spur \mathbf{j} denoted A_{j}^{p} ， then the quasi－cone－shaped stability spur has its cross－sectional area monotonically increase with A until A reaches a transitional value， A_{j}^{*} ．The one－dimensional distance $A_{j}^{*}-A_{j}^{p}$ is the Spur j＇s length．
－In $B C$ cross－sectional regions，the Stability Spurs produce disconnected regions of stability
－The complete $A B C$ 3D stability surface has been proven to be connected

Early Bifurcation Surface

Definition (Stability Spur)

If Bifurcation Surface $j+1$ self-intersects above the zero-root crossing plane as A increases, with the Cusp Point of Spur \mathbf{j} denoted A_{j}^{p}, then the quasi-cone-shaped stability spur has its cross-sectional area monotonically increase with A until A reaches a transitional value, A_{j}^{*}. The one-dimensional distance $A_{j}^{*}-A_{j}^{p}$ is the Spur j's length.

- In $B C$ cross-sectional regions, the Stability Spurs produce disconnected regions of stability
- The complete $A B C$ 3D stability surface has been proven to be connected
- Significantly, a Stability Spur can draw the stability region away from the main stability surface before attaching

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Early Bifurcation Surface

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Early Bifurcation Surface

- This shows complexity of the disconnected stability region with multiple spurs

Early Bifurcation Surface

- This shows complexity of the disconnected stability region with multiple spurs
- $R=0.0015$ is very small and is below our primary area of study

Early Bifurcation Surface

Definition (Transition)

There are critical values of A corresponding to where $B(\omega)$ and $C(\omega)$ become indeterminate at $\omega=\frac{j \pi}{1-R}$. These transitional values of A, denoted by A_{j}^{*}, satisfy

$$
A_{j}^{*}=-\left(\frac{j \pi}{1-R}\right) \cot \left(\frac{j R \pi}{1-R}\right), j=1,2, \ldots .
$$

Early Bifurcation Surface

Definition（Transition）

There are critical values of A corresponding to where $B(\omega)$ and $C(\omega)$ become indeterminate at $\omega=\frac{j \pi}{1-R}$ ．These transitional values of A ， denoted by A_{j}^{*} ，satisfy

$$
A_{j}^{*}=-\left(\frac{j \pi}{1-R}\right) \cot \left(\frac{j R \pi}{1-R}\right), j=1,2, \ldots
$$

－Transitions are where Stability Spurs join the main region of stability

Early Bifurcation Surface

Definition（Transition）

There are critical values of A corresponding to where $B(\omega)$ and $C(\omega)$ become indeterminate at $\omega=\frac{j \pi}{1-R}$ ．These transitional values of A ， denoted by A_{j}^{*} ，satisfy

$$
A_{j}^{*}=-\left(\frac{j \pi}{1-R}\right) \cot \left(\frac{j R \pi}{1-R}\right), j=1,2, \ldots .
$$

－Transitions are where Stability Spurs join the main region of stability
－These Transitions significantly enlarge the stability region

Early Bifurcation Surface

Definition（Transition）

There are critical values of A corresponding to where $B(\omega)$ and $C(\omega)$ become indeterminate at $\omega=\frac{j \pi}{1-R}$ ．These transitional values of A ， denoted by A_{j}^{*} ，satisfy

$$
A_{j}^{*}=-\left(\frac{j \pi}{1-R}\right) \cot \left(\frac{j R \pi}{1-R}\right), j=1,2, \ldots .
$$

－Transitions are where Stability Spurs join the main region of stability
－These Transitions significantly enlarge the stability region
－When R rational，$A_{j}^{*} \rightarrow+\infty$ for some j

Early Bifurcation Surface

- At a transition, Γ_{j} and Γ_{j+1} coincide at the specific point $\left(B_{j}^{*}, C_{j}^{*}\right)$, where

$$
\begin{aligned}
& B_{j}^{*}=(-1)^{j} \frac{(1-R) \cos \left(\frac{j R \pi}{1-R}\right)-j R \pi \csc \left(\frac{j R \pi}{1-R}\right)}{(1-R)^{2}} \\
& C_{j}^{*}=-(-1)^{j} \frac{(1-R) \cos \left(\frac{j \pi}{1-R}\right)-j \pi \csc \left(\frac{j \pi}{1-R}\right)}{(1-R)^{2}}
\end{aligned}
$$

Early Bifurcation Surface

- At a transition, Γ_{j} and Γ_{j+1} coincide at the specific point $\left(B_{j}^{*}, C_{j}^{*}\right)$, where

$$
\begin{aligned}
& B_{j}^{*}=(-1)^{j} \frac{(1-R) \cos \left(\frac{j R \pi}{1-R}\right)-j R \pi \csc \left(\frac{j R \pi}{1-R}\right)}{(1-R)^{2}} \\
& C_{j}^{*}=-(-1)^{j} \frac{(1-R) \cos \left(\frac{j \pi}{1-R}\right)-j \pi \csc \left(\frac{j \pi}{1-R}\right)}{(1-R)^{2}}
\end{aligned}
$$

- Transitions create a Degeneracy Line, defined Δ_{j}, that parallels one of the boundaries of the MRS

Early Bifurcation Surface

- At a transition, Γ_{j} and Γ_{j+1} coincide at the specific point $\left(B_{j}^{*}, C_{j}^{*}\right)$, where

$$
\begin{aligned}
& B_{j}^{*}=(-1)^{j} \frac{(1-R) \cos \left(\frac{j R \pi}{1-R}\right)-j R \pi \csc \left(\frac{j R \pi}{1-R}\right)}{(1-R)^{2}} \\
& C_{j}^{*}=-(-1)^{j} \frac{(1-R) \cos \left(\frac{j \pi}{1-R}\right)-j \pi \csc \left(\frac{j \pi}{1-R}\right)}{(1-R)^{2}}
\end{aligned}
$$

- Transitions create a Degeneracy Line, defined Δ_{j}, that parallels one of the boundaries of the MRS
- All along the Degeneracy Line, Δ_{j},

$$
\left(B-B_{j}^{*}\right)+(-1)^{j}\left(C-C_{j}^{*}\right)=0, \quad A_{j}^{*}
$$

there are two roots of the characteristic equation on the imaginary axis with $\lambda=\frac{j \pi}{1-R} i$

Early Bifurcation Surface

－At a transition，Γ_{j} and Γ_{j+1} coincide at the specific point $\left(B_{j}^{*}, C_{j}^{*}\right)$ ，where

$$
\begin{aligned}
& B_{j}^{*}=(-1)^{j} \frac{(1-R) \cos \left(\frac{j R \pi}{1-R}\right)-j R \pi \csc \left(\frac{j R \pi}{1-R}\right)}{(1-R)^{2}} \\
& C_{j}^{*}=-(-1)^{j} \frac{(1-R) \cos \left(\frac{j \pi}{1-R}\right)-j \pi \csc \left(\frac{j \pi}{1-R}\right)}{(1-R)^{2}}
\end{aligned}
$$

－Transitions create a Degeneracy Line，defined Δ_{j} ，that parallels one of the boundaries of the MRS
－All along the Degeneracy Line，Δ_{j} ，

$$
\left(B-B_{j}^{*}\right)+(-1)^{j}\left(C-C_{j}^{*}\right)=0, \quad A_{j}^{*}
$$

there are two roots of the characteristic equation on the imaginary axis with $\lambda=\frac{j \pi}{1-R} i$
－The next slides show an animation of the early stability surface as A increases from A_{0} to A_{1}^{*} for $R=\frac{1}{4}$

Introduction

Early Stability Surface

Introduction Linear Two-Delay Differential Equation Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

3D View - Early Stability Surface for $R=\frac{1}{4}$

Introduction

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

3D View－Early Stability Surface for $R=\frac{1}{5}$

Stability surface comprised of $A \in[-6,21]$ for $R=\frac{1}{5}$

Transferral and Reverse Transferral

Definition (Transferral and Reverse Transferral)

The transferral value of $A=A_{i, j}^{z}$ is the value of A corresponding to the intersection of Λ_{j} (or Γ_{j}) with Λ_{i} (or Γ_{i}) at $\Lambda_{0} . \Lambda_{j}$ (or Γ_{j}) enters the boundary of the stability region for $A>A_{i, j}^{z}$. For some values of R the stability surface can undergo a reverse transferral, $\tilde{A}_{j, i}^{z}$, which is a transferral characterized by Λ_{j} (or Γ_{j}) leaving the boundary, or a transferring back over to Λ_{i} (or Γ_{i}) the portion of the boundary originally taken by $\Lambda_{j}\left(\right.$ or $\left.\Gamma_{j}\right)$ at $A_{i, j}^{z}\left(<\tilde{A}_{j, i}^{z}\right)$.

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Introduction

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Transferral and Reverse Transferral

Tangency and Reverse Tangency

Definition (Tangency and Reverse Tangency)

The value of A corresponding to the tangency of two surfaces i and j is denoted $A_{i, j}^{t} . \Lambda_{j}$ (or Γ_{j}) becomes tangent to $\Lambda_{i}\left(\right.$ or $\left.\Gamma_{i}\right)$, where Λ_{i} (or Γ_{i}) is a part of the stability boundary prior to $A=A_{i, j}^{t}$. As A increases from $A_{i, j}^{t}, \Lambda_{j}$ (or Γ_{j}) becomes part of the boundary of the stability region, separating segments of the bifurcation surface to which it was tangent. However, many times as A is increased Λ_{j} (or Γ_{j}), the same surface (curve) which entered the boundary through tangency $A_{i, j}^{t}$, can be seen leaving the stability boundary via a reverse tangency, denoted $\tilde{A}_{j, i}^{t}$.

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example
Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example
Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example
Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example
Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example
Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two－Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Tangency and Reverse Tangency

Minimum Region of Stability Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Stability Region for $R=0.31$ and $R=1 / 3$

Stability regions for $A \leq 100$ with $R=0.31$ (left) and $R=1 / 3$ (right)

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Asymptotic Stability Region for $R=\frac{1}{4}$

- Use definitions to describe stability surface as A increases

Asymptotic Stability Region for $R=\frac{1}{4}$

- Use definitions to describe stability surface as A increases
- Show evolution of surface near $R=\frac{1}{4}$

Asymptotic Stability Region for $R=\frac{1}{4}$

- Use definitions to describe stability surface as A increases
- Show evolution of surface near $R=\frac{1}{4}$
- Detail example of $R=0.249$

Asymptotic Stability Region for $R=\frac{1}{4}$

- Use definitions to describe stability surface as A increases
- Show evolution of surface near $R=\frac{1}{4}$
- Detail example of $R=0.249$
- Appeal to continuity of characteristic equation

Asymptotic Stability Region for $R=\frac{1}{4}$

－Use definitions to describe stability surface as A increases
－Show evolution of surface near $R=\frac{1}{4}$
－Detail example of $R=0.249$
－Appeal to continuity of characteristic equation
－Describe family structure of bifurcation curves for $R=\frac{1}{n}$ when n small

Introduction

Diagram for Transitions，Transferrals，and Tangencies

The A_{0} ，transitions，transferrals，and tangencies for $R \in[0.20,0.26]$ and $A \leq 200$

Introduction

Diagram focused near $R=\frac{1}{4}$

The A_{0}, transitions, transferrals, and tangencies for $R \in[0.247,0.251]$ and $A \in\left[A_{0}, 1000\right]$

Introduction
Linear Two-Delay Differential Equation Return to Example Discussion

Table for Changes for $R=0.249$

A_{0}	-5.02	tangency	$A_{33,39}^{t} \approx 462.1$
spur 1	$\left[A_{1}^{p}, A_{1}^{*}\right] \approx[-2.73,-2.45]$	reverse tangency	$\tilde{A}_{39,33}^{t} \approx 559.2$
spur 2	$\left[A_{2,}^{p}, A_{2}^{*}\right] \approx[4.71,4.71]$	reverse tangency	$\tilde{A}_{36,30}^{t} \approx 622.3$
transferral	$A_{1,6}^{z} \approx 13.3$	reverse tangency	$\tilde{A}_{33,27}^{t} \approx 655.4$
tangency	$A_{3,9}^{t} \approx 49.4$	reverse tangency	$\tilde{A}_{30,24}^{t} \approx 678.8$
tangency	$A_{6,12}^{t} \approx 80.2$	reverse tangency	$\tilde{A}_{22,21}^{t} \approx 696.7$
tangency	$A_{9,15}^{t} \approx 108.4$	reverse tangency	$\tilde{A}_{24,18}^{t} \approx 710.9$
tangency	$A_{12,18}^{t} \approx 142.5$	reverse tangency	$\tilde{A}_{21,15}^{t} \approx 722.2$
tangency	$A_{15,21}^{t} \approx 174.9$	reverse tangency	$\tilde{A}_{18,12}^{t} \approx 731.2$
tangency	$A_{18,24}^{t} \approx 208.8$	reverse tangency	$\tilde{A}_{15,9}^{t} \approx 738.2$
tangency	$A_{21,27}^{t} \approx 244.7$	reverse tangency	$\tilde{A}_{12,6}^{t} \approx 743.50$
tangency	$A_{24,30}^{t} \approx 283.6$	reverse tangency	$\tilde{A}_{9,3}^{t} \approx 747.1$
tangency	$A_{27,33}^{t} \approx 327.3$	reverse transferral	$\tilde{A}_{6,1}^{z} \approx 749.4$
tangency	$A_{30,36}^{t} \approx 380.0$	spur 3	$A_{3}^{*} \approx 749.93$

๑) $Q \curvearrowright$

Introduction

Stability Region for $R=0.249$ at $A_{3}^{*}=749.93$

Five curves on the boundary of the stability region, $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, and $\Delta_{3} \operatorname{SOSO}$

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Stability Region for $R \rightarrow \frac{1}{4}^{-}$at A_{3}^{*}

－At $A_{3}^{*}(R)$ for $R \rightarrow \frac{1}{4}^{-}$，stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{3}$ ，and Δ_{3}

Stability Region for $R \rightarrow \frac{1}{4}^{-}$at A_{3}^{*}

－At $A_{3}^{*}(R)$ for $R \rightarrow \frac{1}{4}^{-}$，stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{3}$ ，and Δ_{3}
－Transitions $A_{6}^{*}, A_{9}^{*}, A_{12}^{*}, \ldots$ pull other bifurcation curves outside the stability region（via reverse tangencies）

Minimum Region of Stability

Stability Region for $R \rightarrow \frac{1}{4}^{-}$at A_{3}^{*}

－At $A_{3}^{*}(R)$ for $R \rightarrow \frac{1}{4}^{-}$，stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{3}$ ，and Δ_{3}
－Transitions $A_{6}^{*}, A_{9}^{*}, A_{12}^{*}, \ldots$ pull other bifurcation curves outside the stability region（via reverse tangencies）
－$\Delta_{3} \rightarrow$ MRS as $R \rightarrow \frac{1}{4}^{-}$with the portion of the stability region with Γ_{2} increasingly less significant

Minimum Region of Stability

Stability Region for $R \rightarrow \frac{1}{4}^{-}$at A_{3}^{*}

- At $A_{3}^{*}(R)$ for $R \rightarrow \frac{1}{4}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{3}$, and Δ_{3}
- Transitions $A_{6}^{*}, A_{9}^{*}, A_{12}^{*}, \ldots$ pull other bifurcation curves outside the stability region (via reverse tangencies)
- $\Delta_{3} \rightarrow$ MRS as $R \rightarrow \frac{1}{4}^{-}$with the portion of the stability region with Γ_{2} increasingly less significant
- The intersection of Γ_{0} and Γ_{1}, as well as Γ_{3} and Δ_{3}, extend $\frac{1}{3}$ of the length of a side of the MRS, increasing the stability region
- As $R \rightarrow \frac{1}{4}^{-}$, the stability region at $A_{3}^{*}(R)$ is approximately $1.2686 \times$ Area of MRS

Minimum Region of Stability

Stability Region for $R \rightarrow \frac{1}{4}^{-}$at A_{3}^{*}

- At $A_{3}^{*}(R)$ for $R \rightarrow \frac{1}{4}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{3}$, and Δ_{3}
- Transitions $A_{6}^{*}, A_{9}^{*}, A_{12}^{*}, \ldots$ pull other bifurcation curves outside the stability region (via reverse tangencies)
- $\Delta_{3} \rightarrow$ MRS as $R \rightarrow \frac{1}{4}^{-}$with the portion of the stability region with Γ_{2} increasingly less significant
- The intersection of Γ_{0} and Γ_{1}, as well as Γ_{3} and Δ_{3}, extend $\frac{1}{3}$ of the length of a side of the MRS, increasing the stability region
- As $R \rightarrow \frac{1}{4}^{-}$, the stability region at $A_{3}^{*}(R)$ is approximately $1.2686 \times$ Area of MRS
- Showed the typical shape for $R \rightarrow \frac{1}{2 n}^{-}$

Minimum Region of Stability
Definitions for Stability Changes
Stability Surface Evolution
Asymptotic Shape of Stability Region

Process for Reverse Tangency－Transition

Process for Reverse Tangency - Transition

- Showing about 10 bifurcation curves for the $3^{\text {rd }}$ and $4^{\text {th }}$ families with Δ_{15} for $R=0.249$ at $A_{15}^{*}=748.25$

Process for Reverse Tangency－Transition

－Showing about 10 bifurcation curves for the $3^{r d}$ and $4^{t h}$ families with Δ_{15} for $R=0.249$ at $A_{15}^{*}=748.25$
－Γ_{3} and Γ_{9} remain close to the boundary of the stability region
－$\tilde{A}_{9,3}^{t} \approx 747.134$ has recently occurred，removing Γ_{9} from the boundary of the stability region

Introduction

Stability Region for $R=0.199$ at $A_{4}^{*}=799.9$

Six curves on the boundary of the stability region, $\Gamma_{0}, \Gamma_{1}, \Gamma_{4}$, and Δ_{4} with small segments of Γ_{2} and Γ_{3}

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution Asymptotic Shape of Stability Region

Stability Region for $R \rightarrow \frac{1}{5}^{-}$at A_{4}^{*}

- At $A_{4}^{*}(R)$ for $R \rightarrow \frac{1}{5}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{4}$, and Δ_{4}

Stability Region for $R \rightarrow \frac{1}{5}^{-}$at A_{4}^{*}

- At $A_{4}^{*}(R)$ for $R \rightarrow \frac{1}{5}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{4}$, and Δ_{4}
- $\Delta_{4} \rightarrow \mathrm{MRS}$ as $R \rightarrow \frac{1}{5}^{-}$

Minimum Region of Stability

Stability Region for $R \rightarrow \frac{1}{5}^{-}$at A_{4}^{*}

- At $A_{4}^{*}(R)$ for $R \rightarrow \frac{1}{5}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{4}$, and Δ_{4}
- $\Delta_{4} \rightarrow \mathrm{MRS}$ as $R \rightarrow \frac{1}{5}^{-}$
- The intersection of Γ_{0} and Γ_{1}, as well as Γ_{4} and Δ_{4}, extend $\frac{1}{4}$ of the length of a side of the MRS, increasing the stability region
- As $R \rightarrow \frac{1}{5}^{-}$, the stability region at $A_{4}^{*}(R)$ is approximately $1.1859 \times$ Area of MRS

Minimum Region of Stability

Stability Region for $R \rightarrow \frac{1}{5}^{-}$at A_{4}^{*}

- At $A_{4}^{*}(R)$ for $R \rightarrow \frac{1}{5}^{-}$, stability region primarily bounded by $\Gamma_{0}, \Gamma_{1}, \Gamma_{4}$, and Δ_{4}
- $\Delta_{4} \rightarrow \mathrm{MRS}$ as $R \rightarrow \frac{1}{5}^{-}$
- The intersection of Γ_{0} and Γ_{1}, as well as Γ_{4} and Δ_{4}, extend $\frac{1}{4}$ of the length of a side of the MRS, increasing the stability region
- As $R \rightarrow \frac{1}{5}^{-}$, the stability region at $A_{4}^{*}(R)$ is approximately $1.1859 \times$ Area of MRS
- Showed the typical shape for $R \rightarrow \frac{1}{2 n+1}^{-}$

Area Increase of Stability Region for various R

R	Area Ratio	Linear Extension
$\frac{1}{2}$	2.0000	1.0000
$\frac{1}{3}$	1.4431	0.5000
$\frac{1}{4}$	1.2686	0.3333
$\frac{1}{5}$	1.1859	0.2500
$\frac{1}{6}$	1.1386	0.2000
$\frac{1}{7}$	1.1084	0.1667
$\frac{1}{8}$	1.0878	0.1429
$\frac{1}{9}$	1.0729	0.1250
$\frac{1}{10}$	1.0617	0.1111

Families of Curves

Definition (Families of Curves)

For A fixed, take $R=\frac{k}{n}$ and $j=n-k$. From $B(\omega)$ and $C(\omega)$, one can see that the singularities occur at $\frac{n i \pi}{j}, i=0,1, \ldots$. The bifurcation curve i, Γ_{i}, with $\frac{n(i-1) \pi}{j}<\omega<\frac{n i \pi}{j}$ satisfies:

$$
B_{i}(\omega)=\frac{A \sin \left(\frac{k \omega}{n}\right)+\omega \cos \left(\frac{k \omega}{n}\right)}{\sin \left(\frac{j \omega}{n}\right)}, \quad C_{i}(\omega)=-\frac{A \sin (\omega)+\omega \cos (\omega)}{\sin \left(\frac{j \omega}{n}\right)}
$$

Now consider $\Gamma_{i+2 j}$ with $\mu=\omega+2 n \pi$, then

$$
\begin{aligned}
& B_{i+2 j}(\mu)=\frac{A \sin \left(\frac{k \mu}{n}\right)+\mu \cos \left(\frac{k \mu}{n}\right)}{\sin \left(\frac{j \mu}{n}\right)}=\frac{A \sin \left(\frac{k \omega}{n}\right)+(\omega+2 n \pi) \cos \left(\frac{k \omega}{n}\right)}{\sin \left(\frac{j \omega}{n}\right)} \\
& C_{i+2 j}(\mu)=-\frac{A \sin (\omega)+(\omega+2 n \pi) \cos (\omega)}{\sin \left(\frac{j \omega}{n}\right)}
\end{aligned}
$$

Families of Curves（cont）

Definition（Families of Curves－continued）

These equations show that $B_{i+2 j}(\mu)$ follows the same trajectory as $B_{i}(\omega)$ with a shift of $2 n \pi \cos \left(\frac{k \omega}{n}\right) / \sin \left(\frac{j \omega}{n}\right)$ for $\omega \in\left(\frac{(j-1) \pi}{1-R}, \frac{j \pi}{1-R}\right)$ ，while $C_{i+2 j}(\mu)$ follows the same trajectory as $C_{i}(\omega)$ with a shift of $2 n \pi \cos (\omega) / \sin \left(\frac{j \omega}{n}\right)$ over the same values of ω ．This related behavior of bifurcation curves separated by $\omega=2 n \pi$ creates $2 j$ families of curves in the $B C$ plane for fixed A ．Thus，there is a quasi－periodicity among the bifurcation curves when R is rational．

This definition shows that $R=\frac{1}{2}$ has only 2 families，$R=\frac{1}{3}$ has only 4 families， and $R=\frac{1}{4}$ has only 6 families

Introduction
Linear Two-Delay Differential Equation
Return to Example Discussion

Minimum Region of Stability Definitions for Stability Changes Stability Surface Evolution
Asymptotic Shape of Stability Region

Families of Curves for $R=0.249$ at $A_{3}^{*}=749.93$

Ten bifurcation curves for each of the six families for $R=0.249$ at $A_{3}^{*}=749.93$ with close-ups at the corners of the MRS

Limited Families of Curves

- Result of limited families is a type of resonance
- Parallel trajectories limit ability to approach the MRS
- Shows first 100 parametric curves for $A=1000$

$R=\frac{1}{3}$

$R=0.45$

$$
R=\frac{1}{2}
$$

Introduction

Modified Platelet Model

- The coefficients of the linearized model are approximately $(A, B, C)=(100,35,-100)$
- Our bifurcation curves for $R=\frac{1}{3}$ are below

Introduction

Modified Platelet Model

－The coefficients of the linearized model are approximately $(A, B, C)=(100,35,-100)$
－Our bifurcation curves for $R=0.318$ are below

Modified Platelet Model

Linear Analysis

－When $R=0.318$ ，the model＇s equilibrium is outside the bifurcation curves，Γ_{9}, Γ_{13} ，and Γ_{17}

Modified Platelet Model

Linear Analysis

- When $R=0.318$, the model's equilibrium is outside the bifurcation curves, Γ_{9}, Γ_{13}, and Γ_{17}
- There are $\mathbf{3}$ pairs of eigenvalues with positive real part:

$$
\lambda_{1}=0.1056 \pm 58.36 i \quad \lambda_{2}=0.06238 \pm 77.43 i \quad \lambda_{3}=0.04914 \pm 39.32 i
$$

Modified Platelet Model

Linear Analysis

－When $R=0.318$ ，the model＇s equilibrium is outside the bifurcation curves，Γ_{9}, Γ_{13} ，and Γ_{17}
－There are $\mathbf{3}$ pairs of eigenvalues with positive real part：

$$
\lambda_{1}=0.1056 \pm 58.36 i \quad \lambda_{2}=0.06238 \pm 77.43 i \quad \lambda_{3}=0.04914 \pm 39.32 i
$$

－These are associated with Γ_{13}, Γ_{17} ，and Γ_{9} ，respectively
－The dominant eigenvalue from Γ_{13} ，which borders the stability region，is furthest from the equilibrium point

Modified Platelet Model

Linear Analysis

－When $R=0.318$ ，the model＇s equilibrium is outside the bifurcation curves，Γ_{9}, Γ_{13} ，and Γ_{17}
－There are $\mathbf{3}$ pairs of eigenvalues with positive real part：

$$
\lambda_{1}=0.1056 \pm 58.36 i \quad \lambda_{2}=0.06238 \pm 77.43 i \quad \lambda_{3}=0.04914 \pm 39.32 i
$$

－These are associated with Γ_{13}, Γ_{17} ，and Γ_{9} ，respectively
－The dominant eigenvalue from Γ_{13} ，which borders the stability region，is furthest from the equilibrium point
－The frequency of λ_{1} is 58.36
－The period is

$$
\frac{2 \pi}{58.36} \approx 0.108
$$

which agrees with the period in the simulation

Discussion

- Have proved several Lemmas confirming the simple shape
- At $A_{2 n-1}^{*}(R)$ as $R \rightarrow \frac{1}{2 n}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n-1}$, and $\Delta_{2 n-1}$
- At $A_{2 n}^{*}(R)$ as $R \rightarrow \frac{1}{2 n+1}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n}$, and $\Delta_{2 n}$

Discussion

- Have proved several Lemmas confirming the simple shape
- At $A_{2 n-1}^{*}(R)$ as $R \rightarrow \frac{1}{2 n}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n-1}$, and $\Delta_{2 n-1}$
- At $A_{2 n}^{*}(R)$ as $R \rightarrow \frac{1}{2 n+1}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n}$, and $\Delta_{2 n}$
- Have excellent program (MatLab) for generating and analyzing bifurcation curves

Discussion

- Have proved several Lemmas confirming the simple shape
- At $A_{2 n-1}^{*}(R)$ as $R \rightarrow \frac{1}{2 n}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n-1}$, and $\Delta_{2 n-1}$
- At $A_{2 n}^{*}(R)$ as $R \rightarrow \frac{1}{2 n+1}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n}$, and $\Delta_{2 n}$
- Have excellent program (MatLab) for generating and analyzing bifurcation curves
- Showed the increase in region of stability for $R \rightarrow \frac{1}{n}$, especially n small

Discussion

－Have proved several Lemmas confirming the simple shape
－At $A_{2 n-1}^{*}(R)$ as $R \rightarrow \frac{1}{2 n}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n-1}$ ，and $\Delta_{2 n-1}$
－At $A_{2 n}^{*}(R)$ as $R \rightarrow \frac{1}{2 n+1}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n}$ ，and $\Delta_{2 n}$
－Have excellent program（MatLab）for generating and analyzing bifurcation curves
－Showed the increase in region of stability for $R \rightarrow \frac{1}{n}$ ， especially n small
－Discovered interesting stable spurs，adding complexity

Discussion

－Have proved several Lemmas confirming the simple shape
－At $A_{2 n-1}^{*}(R)$ as $R \rightarrow \frac{1}{2 n}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n-1}$ ，and $\Delta_{2 n-1}$
－At $A_{2 n}^{*}(R)$ as $R \rightarrow \frac{1}{2 n+1}$ primarily $\Gamma_{0}, \Gamma_{1}, \Gamma_{2 n}$ ，and $\Delta_{2 n}$
－Have excellent program（MatLab）for generating and analyzing bifurcation curves
－Showed the increase in region of stability for $R \rightarrow \frac{1}{n}$ ， especially n small
－Discovered interesting stable spurs，adding complexity
－Showed an interesting application with high sensitivity to a second delay

Questions

Questions?

$R=\frac{1}{2}$ with 1000 curves

$R=0.499$ with 200 curves

