# Math 531 －Partial Differential Equations <br> Separation of Variables－Part B 

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2023

## 5050

Heat Equation－Insulated BCs Orthogonality of Cosines
Heat Conduction in a Ring

Heat Equation－Other Examples
Laplace＇s Equation－Rectangle
Laplace＇s Equation－Circular Disk
Properties of Laplace Equation

Heat Equation－Insulated BCs
The Heat Equation－Insulated BCs：

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, \quad 0<x<L
$$

with initial conditions（ICs）and Neumann or Insulated boundary conditions（BCs）：

$$
u(x, 0)=f(x), \quad 0<x<L, \quad \text { with } \quad u_{x}(0, t)=0 \quad \text { and } \quad u_{x}(L, t)=0
$$

Separation of Variables：Again we separate the temperature $u(x, t)$ into a product of a function of $x$ and a function of $t$

$$
u(x, t)=\phi(x) G(t)
$$

From the PDE we have

$$
\phi G^{\prime}=k \phi^{\prime \prime} G \quad \text { or } \quad \frac{G^{\prime}}{k G}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda
$$

## Outline

Heat Equation－Other Examples －Heat Equation－Insulated BCs－Orthogonality of Cosines
－Heat Conduction in a Ring

（2）
Laplace＇s Equation－Rectangle －Separation of Variables
－Superposition principle

（3）
Laplace＇s Equation－Circular Disk
－Separation and Sturm－Liouville Problem
－$r$ Equation
－Superposition and Fourier Coefficients
（4）Properties of Laplace Equation
－Maximum Principle
－Well－posedness
－Uniqueness
－Solvability Condition

Heat Equation－Other Examples Laplace＇s Equation－Rectangle Laplace＇s Equation－Circular Disk Properties of Laplace Equation

Heat Equation－Insulated BCs
Two ODEs：The separation of variables leaves to ODEs．The time－varying ODE is：

$$
G^{\prime}=-k \lambda G
$$

which has the solution

$$
G(t)=A e^{-k \lambda t}
$$

The associated Sturm－Liouville／BVP in space，$x$ ，is

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi^{\prime}(0)=0 \quad \text { and } \quad \phi^{\prime}(L)=0 .
$$

We must consider 3 cases，depending on $\lambda$ ．
Case（i）：Let $\lambda=0, \quad$ then $\phi^{\prime \prime}=0$ or $\phi(x)=c_{2} x+c_{1}$ ．
The BCs give $\phi^{\prime}(0)=\phi^{\prime}(L)=c_{2}=0$ ．However，$c_{1}$ is arbitrary，so we have an eigenvalue $\lambda_{0}=0$ with associated eigenfunction：

$$
\phi_{0}(x)=1 .
$$

## Heat Equation－Insulated BCs

Case（ii）：Let $\lambda=-\alpha^{2}<0, \quad$ then $\phi^{\prime \prime}-\alpha^{2} \phi=0$ ，so

$$
\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x) .
$$

The BC at $x=0$ gives $\phi^{\prime}(0)=c_{2} \alpha=0$ ，so $c_{2}=0$ ．
Similarly，$\phi^{\prime}(L)=c_{1} \alpha \sinh (\alpha l)=0$ ，so $c_{1}=0$ ．
Thus，if $\lambda<0$ ，only the trivial solution，$\phi(x) \equiv 0$ ，satisfies the BCs．
Case（iii）：Let $\lambda=\alpha^{2}>0, \quad$ then $\phi^{\prime \prime}+\alpha^{2} \phi=0$ ，so

$$
\phi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) .
$$

The BC at $x=0$ gives $\phi^{\prime}(0)=c_{2} \alpha=0$ ，so $c_{2}=0$ ．
The other BC gives $\phi^{\prime}(L)=-c_{1} \alpha \sin (\alpha L)=0$ ．
Since we do NOT want the trivial solution，we need $\sin (\alpha L)=0$ or $\alpha L=n \pi, \quad n=1,2, \ldots$ or

$$
\alpha_{n}=\frac{n \pi}{L} \quad \text { or } \quad \lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2, \ldots
$$

Orthogonality of Cosines
Assume $m \neq n$ ，integers and with some trig identities consider

$$
\begin{aligned}
\int_{0}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =\int_{0}^{L} \frac{\cos \left(\frac{(n-m) \pi x}{L}\right)+\cos \left(\frac{(n+m) \pi x}{L}\right)}{2} d x \\
& =\left.\frac{1}{2}\left(\frac{\sin \left(\frac{(n-m) \pi x}{L}\right)}{(n-m) \pi / L}+\frac{\sin \left(\frac{(n+m) \pi x}{L}\right)}{(n+m) \pi / L}\right)\right|_{0} ^{L} \\
& =0
\end{aligned}
$$

When $m=n$ ，then

$$
\begin{aligned}
\int_{0}^{L} \cos ^{2}\left(\frac{n \pi x}{L}\right) d x & =\int_{0}^{L} \frac{1+\cos \left(\frac{2 n \pi x}{L}\right)}{2} d x \\
& =\left.\left(\frac{x}{2}+\frac{\sin \left(\frac{2 n \pi x}{L}\right)}{4 n \pi / L}\right)\right|_{0} ^{L} \\
& =\frac{L}{2}
\end{aligned}
$$

Heat Equation－Other Examples

## Heat Equation－Insulated BCs

Case（iii）：（cont．）Since the arbitrary constant is associated with the cosine function，the eigenfunction is：

$$
\phi_{n}(x)=\cos \left(\frac{n \pi x}{L}\right)
$$

The product solutions are：

$$
u_{0}(x, t)=1 \quad \text { and }
$$

$$
u_{n}(x, t)=e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \cos \left(\frac{n \pi x}{L}\right)
$$

The Superposition Principle gives the solution：

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \cos \left(\frac{n \pi x}{L}\right)
$$

Orthogonality of $\phi_{0}(x)$ and $\phi_{n}(x)$
Consider $\phi_{0}(x)=1$ and $\phi_{n}(x)$ ，and integrate

$$
\int_{0}^{L} 1 \cdot \cos \left(\frac{n \pi x}{L}\right) d x=\left.\frac{L}{n \pi}\left(\sin \left(\frac{n \pi x}{L}\right)\right)\right|_{0} ^{L}=0 .
$$

Also，

$$
\int_{0}^{L}(1 \cdot 1) d x=L .
$$

The eigenfunctions，$\phi_{i}(x), \quad i=0,1,2, \ldots$ ，are mutually orthogonal，which allows finding Fourier coefficients for any initial conditions，$f(x)$ ，where

$$
u(x, 0)=f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) .
$$

## Fourier Coefficients

For

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right),
$$

we first multiply by $\phi_{0}(x)=1$ and integrate $x \in[0, L]$ ，which by orthogonality with $\phi_{n}(x), n=1,2, \ldots$ gives

$$
\int_{0}^{L} f(x) d x=\int_{0}^{L} A_{0} d x=A_{0} L, \quad \text { or } \quad A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x .
$$

Next we multiply by $\phi_{m}(x)$ and integrate $x \in[0, L]$ ，so

$$
\begin{aligned}
\int_{0}^{L} f(x) \cos \left(\frac{m \pi x}{L}\right) d x & =\sum_{n=1}^{\infty} A_{n} \int_{0}^{L}\left(\cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right)\right) d x \\
& =A_{m}\left(\frac{L}{2}\right)
\end{aligned}
$$

from orthogonality．

Heat Equation－Insulated BCs
Heat Conduction in a Ring

Heat Equation－Other Examples
Laplace＇s Equation－Rectangle Laplace＇s Equation－Circular Disk Properties of Laplace Equation

It follows that the Fourier coefficients are：

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \quad \text { and } \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x .
$$

Recall the solution of the heat equation with insulated boundaries conditions is given by：

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \cos \left(\frac{n \pi x}{L}\right)
$$

The steady－state solution examines $t \rightarrow \infty$ ，

$$
\lim _{t \rightarrow \infty} u(x, t)=A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

which is the average temperature distribution from the ICs．

Heat Equation－Other Examples
Heat Equation－Insulated BCs
Laplace＇s Equation－Rectangle
Laplace＇s Equation－Circular Disk
Properties of Laplace Equation
Heat Conduction in a Ring
Heat Conduction in a Ring

The PDE for the Heat Equation in a Ring separates as before，so if $u(x, t)=\phi(x) G(t)$ ，then

$$
\phi G^{\prime}=k \phi^{\prime \prime} G \quad \text { or } \quad \frac{G^{\prime}}{k G}=\frac{\phi^{\prime \prime}}{\phi}=-\lambda
$$

Again the time－varying $O D E$ is：

$$
G^{\prime}=-k \lambda G,
$$

which has the solution

$$
G(t)=A e^{-k \lambda t}
$$

## Heat Conduction in a Ring

The associated Sturm－Liouville／BVP in space，$x$ ，is

$$
\phi^{\prime \prime}+\lambda \phi=0 \quad \text { with } \quad \phi(-L)=\phi(L) \quad \text { and } \quad \phi^{\prime}(-L)=\phi^{\prime}(L) .
$$

Case（i）：Let $\lambda=0, \quad$ then $\phi^{\prime \prime}=0 \quad$ or $\quad \phi(x)=c_{2} x+c_{1}$ ．
The BCs give $\phi(-L)-\phi(L)=-2 c_{2} L=0$ or $c_{2}=0$ ．
Also，$\phi^{\prime}(-L)-\phi^{\prime}(L)=c_{2}-c_{2}=0$ ，which gives no new information．
Thus，$c_{1}$ is arbitrary，so we have an eigenvalue $\lambda_{0}=0$ with associated eigenfunction：

$$
\phi_{0}(x)=1 .
$$

## SDSO

Heat Equation－Other Examples
aplace＇s Equation－Circular Disk
Properties of Laplace Equation
Heat Conduction in a Ring
Heat Conduction in a Ring
Case（iii）：Let $\lambda=\alpha^{2}>0, \quad$ then $\phi^{\prime \prime}+\alpha^{2} \phi=0$ ，so

$$
\phi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x) .
$$

The first BC gives
$c_{1} \cos (-\alpha L)+c_{2} \sin (-\alpha L)=c_{1} \cos (\alpha L)+c_{2} \sin (\alpha L)$ ，so
$2 c_{2} \sin (\alpha L)=0$（from cos being even and $\sin$ being odd），which has nontrivial solutions，$c_{2} \neq 0$ ，when $\alpha_{n}=n \pi / L, \quad n=1,2, \ldots$

The second BC gives
$-c_{1} \alpha \sin (-\alpha L)+c_{2} \alpha \cos (-\alpha L)=-c_{1} \alpha \sin (\alpha L)+c_{2} \alpha \cos (\alpha L)$ ，so $2 c_{1} \alpha \sin (\alpha L)=0$ ，which has nontrivial solutions，$c_{1} \neq 0$ ，when $\alpha_{n}=n \pi / L, \quad n=1,2, \ldots$
It follows that $\lambda_{n}=\alpha_{n}^{2}=\frac{n^{2} \pi^{2}}{L^{2}}, n=1,2, \ldots$ ，are eigenvalues with corresponding independent eigenfunctions

$$
\phi_{n}(x)=A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad n=1,2, \ldots
$$

Case（ii）：Let $\lambda=-\alpha^{2}<0, \quad$ then $\phi^{\prime \prime}-\alpha^{2} \phi=0$ ，so

$$
\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x) .
$$

The first BC gives
$c_{1} \cosh (-\alpha L)+c_{2} \sinh (-\alpha L)=c_{1} \cosh (\alpha L)+c_{2} \sinh (\alpha L)$ ，so
$2 c_{2} \sinh (\alpha L)=0$（from cosh being even and sinh being odd）．Hence， $c_{2}=0$ ．

The second BC gives
$c_{1} \alpha \sinh (-\alpha L)+c_{2} \alpha \cosh (-\alpha L)=c_{1} \alpha \sinh (\alpha L)+c_{2} \alpha \cosh (\alpha L)$ ，so
$2 c_{1} \alpha \sinh (\alpha L)=0$ or $c_{1}=0$ ．
Thus，if $\lambda<0$ ，only the trivial solution，$\phi(x) \equiv 0$ ，satisfies the BCs．

Heat Equation－Other Examples Laplace＇s Equation－Circular Disk

Properties of Laplace Equation
Heat Equation－Insulated BCs
Heat Conduction in a Ring
Heat Conduction in a Ring
The product solutions are：

$$
\begin{aligned}
& u_{0}(x, t)=A_{0} \\
& u_{n}(x, t)=e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}}\left(A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right)
\end{aligned}
$$

The Superposition Principle gives the solution：

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}}\left(A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right)
$$

The Initial Condition gives

$$
u(x, 0)=f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{n \pi x}{L}\right)+B_{n} \sin \left(\frac{n \pi x}{L}\right)\right) .
$$

## Orthogonality

The orthogonality over $x \in(-L, L)$ give

$$
\begin{aligned}
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \cos \left(\frac{n \pi x}{L}\right) d x & =\left\{\begin{array}{cl}
0 & n \neq m, \\
L & n=m \neq 0, \\
2 L & n=m=0 .
\end{array}\right. \\
\int_{-L}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x & = \begin{cases}0 & n \neq m, \\
L & n=m \neq 0 .\end{cases} \\
\int_{-L}^{L} \cos \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x & =0 \text { for all } n>0, \quad m \geq 0 .
\end{aligned}
$$

The Fourier coefficients are

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Separation of Variables
Superposition principle

Laplace＇s Equation－Rectangle
aplace＇s Equation－Circular Disk
Properties of Laplace Equation


Laplace＇s Equation on a Rectangle：It is easier to use the superposition principle and divide the problem into 4 problems， each with only one nonhomogeneous BC

Laplace＇s Equation satisfies：

PDE：$\nabla^{2} u_{1}=0$
$\frac{\partial^{2} u_{1}}{\partial x^{2}}+\frac{\partial^{2} u_{1}}{\partial y^{2}}=0$.
BC＇s：$u_{1}(x, 0)=f_{1}(x)$ ，
$u_{1}(x, H)=0$ ，
$u_{1}(0, y)=0$ ，
$u_{1}(L, y)=0$


This problem is readily solved with our Separation of Variables technique．（Similarly，for the other 3 problems．）

## Laplace＇s Equation

From our separation assumption the homogeneous BCs imply that

$$
\psi(H)=0, \quad \phi(0)=0, \quad \text { and } \quad \phi(L)=0 .
$$

We need to locate our Sturm－Liouville problem to obtain our eigenvalues and eigenfunctions for this PDE．
Significantly，we find the pairwise homogeneous BC conditions，which in this case are associated with $\phi(x)$ ，so examine

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0 .
$$

This eigenvalue problem is familiar from before with
Eigenvalues：$\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2, \ldots$
Eigenfunctions：$\phi_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad n=1,2, \ldots$
5050

Heat Equation－Other Examples
aplace＇s Equation－Circular Disk
Properties of Laplace Equation
Separation of Variables
Superposition principle
$\qquad$

## Laplace＇s Equation

The extended superposition principle gives the following solution：

$$
u_{1}(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) \sinh \left(\frac{n \pi(H-y)}{L}\right) .
$$

It remains to examine the nonhomogeneous BC

$$
u_{1}(x, 0)=f_{1}(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) \sinh \left(\frac{n \pi H}{L}\right)
$$

We use the orthogonality of the sines to obtain the Fourier coefficients

$$
B_{n} \sinh \left(\frac{n \pi H}{L}\right)=\frac{2}{L} \int_{0}^{L} f_{1}(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

## Laplace＇s Equation

With the eigenvalues，$\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$ ，we solve the second ODE：

$$
\psi^{\prime \prime}-\frac{n^{2} \pi^{2}}{L^{2}} \psi=0, \quad \text { with } \quad \psi(H)=0
$$

With the homogeneous boundary condition，it suggests selecting the linearly independent solutions：

$$
\psi(y)=c_{1} \cosh \left(\frac{n \pi(H-y)}{L}\right)+c_{2} \sinh \left(\frac{n \pi(H-y)}{L}\right) .
$$

The BC，$\psi(H)=0$ ，gives $\quad \psi(H)=c_{1}=0$ ，so

$$
\psi_{n}(y)=c_{2} \sinh \left(\frac{n \pi(H-y)}{L}\right) .
$$

The results above are combined with $u_{n}(x, y)=\phi_{n}(x) \psi_{n}(x)$

This process could be repeated for each of the other Dirichlet BCs to find the $\mathbf{3}$ other solutions with 3 homogeneous $B C s$
For example，if $u_{2}(0, y)=g_{1}(y)$（other BCs homogeneous），then the same procedure above gives

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} C_{n} \sinh \left(\frac{n \pi(L-x)}{H}\right) \sin \left(\frac{n \pi y}{H}\right)
$$

where the Fourier coefficient satisfies

$$
C_{n}=\frac{2}{H \sinh \left(\frac{n \pi L}{H}\right)} \int_{0}^{H} g_{1}(x) \sin \left(\frac{n \pi y}{H}\right) d y
$$

We solve all these problems，then the general Laplace＇s equation satisfies

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)+u_{3}(x, y)+u_{4}(x, y)
$$

Separation of Variables：Let $u(r, \theta)=\phi(\theta) G(r)$

$$
\frac{1}{r} \frac{d}{d r}\left(r \frac{d G}{d r}\right) \phi+\frac{1}{r^{2}} G \phi^{\prime \prime}=0
$$

This gives

$$
\frac{r}{G} \frac{d}{d r}\left(r \frac{d G}{d r}\right)=-\frac{\phi^{\prime \prime}}{\phi}=\lambda .
$$

The Sturm－Liouville problem has the eigenvalue problem：

$$
\phi^{\prime \prime}+\lambda \phi=0,
$$

where the periodic BCs on $u(r, \theta)$ imply that

$$
\phi(-\pi)=\phi(\pi) \quad \text { and } \quad \phi^{\prime}(-\pi)=\phi^{\prime}(\pi) .
$$

Laplace＇s Equation
From the separation of variables，the $r$ equation becomes

$$
r \frac{d}{d r}\left(r \frac{d G}{d r}\right)=n^{2} G
$$

or

$$
r^{2} G^{\prime \prime}+r G^{\prime}-n^{2} G=0 .
$$

When $n=0$ ，the $r$ equation satisfies：

$$
\frac{d}{d r}\left(r \frac{d G}{d r}\right)=0,
$$

which is integrated twice to give

$$
\begin{aligned}
r \frac{d G}{d r} & =c_{1} \\
G(r) & =c_{1} \ln (r)+c_{2} .
\end{aligned}
$$

Thus，for $\lambda_{0}=0$ ，we have $G_{0}(r)=c_{1} \ln (r)+c_{2}$ ．
The boundedness BC as $r \rightarrow 0$ implies $c_{1}=0$ ，so

$$
G_{0}(r)=c_{2}
$$

For $n>0$ ，the differential equation in $G(r)$ is Euler＇s equation：

$$
r^{2} G^{\prime \prime}+r G-n^{2} G=0,
$$

which is solved by using $G(r)=c r^{\alpha}$ ，so $G^{\prime}(r)=c \alpha r^{\alpha-1}$ $G^{\prime \prime}(r)=c \alpha(\alpha-1) r^{\alpha-2}$ or

$$
\begin{aligned}
c \alpha(\alpha-1) r^{\alpha}+c \alpha r^{\alpha}-n^{2} c r^{\alpha} & =0, \\
c r^{\alpha}\left(\alpha^{2}-n^{2}\right) & =0
\end{aligned}
$$

Thus，the general solution to this Euler＇s equation is：

$$
G_{n}(r)=c_{1} r^{-n}+c_{2} r^{n} .
$$

Heat Equation－Other Examples
Laplace＇s Equation－Rectangle
Laplace＇s Equation－Circular Disk
Properties of Laplace Equatio
paration and Sturm－Liouville Problen Equation
Superposition and Fourier Coefficients

Heat Equation－Other Examples
Laplace＇s Equation－Rectangle
aplace＇s Equation－Circular Disk
Properties of Laplace Equation
Iaximum Principle
Well－posedness
Uniqueness
Solvability Condition

## Laplace＇s Equation

Applying the BC at $r=a$ gives：
$u(a, \theta)=f(\theta)=A_{0}+\sum_{n=1}^{\infty} A_{n} a^{n} \cos (n \theta)+\sum_{n=1}^{\infty} B_{n} a^{n} \sin (n \theta), \quad-\pi<\theta \leq \pi$.
From the orthogonality，the Fourier coefficients are

$$
\begin{aligned}
& A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta \\
& A_{n}=\frac{1}{\pi a^{n}} \int_{-\pi}^{\pi} f(\theta) \cos (n \theta) d \theta \quad B_{n}=\frac{1}{\pi a^{n}} \int_{-\pi}^{\pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

Note that in Steady－state the temperature at the center of the disk is the average of the perimeter temperature

## Theorem（Mean Value Theorem）

The average solution of Laplace＇s equation inside a circle gives the temperature at the center（origin or $r=0$ ），

$$
u(0, \theta)=A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta .
$$

The temperature at the center of a circle is the average of the temperature around any circle of radius，$r_{0}$ ，（inside $R$ ）

## Maximum Principle

## Well－posedness

A problem is well－posed if there exists a unique solution that depends continuously on the nonhomogeneous data，i．e．，small variations in the data result in small changes in the solution

Consider

$$
\nabla^{2} u=0 \quad \text { on } \quad R \quad \text { with } \quad u=f(x) \quad \text { on } \quad \partial R .
$$

Consider a small variation on the boundary，$\partial R$ ，with $g(x) \approx f(x)$

$$
\nabla^{2} v=0 \quad \text { on } \quad R \quad \text { with } \quad v=g(x) \quad \text { on } \quad \partial R .
$$

Let $w=u-v$ ．Clearly，

$$
\nabla^{2} w=0 \quad \text { on } \quad R \quad \text { with } \quad w=f(x)-g(x) \quad \text { on } \quad \partial R .
$$

Since

$$
\nabla^{2} w=0 \quad \text { on } \quad R \quad \text { with } \quad w=f(x)-g(x) \quad \text { on } \quad \partial R
$$

the Maximum（and minimum）principle give the maximum and minimum of the solution occur on the boundary，$\partial R$ ．

It follows that

$$
\min (f(x)-g(x)) \leq w \leq \max (f(x)-g(x)) \quad \text { for all } x \in R .
$$

Thus，if $f(x)$ is close to $g(x)$ ，then $w$ is small everywhere in $R$

## Theorem（Uniqueness）

If $u(x)$ is a solution of

$$
\nabla^{2} u=0 \quad \text { for } \quad x \in R \quad \text { with } \quad u=f(x) \quad \text { on } \quad \partial R,
$$

then $u(x)$ is unique．
Proof：Suppose there is another $v(x)$ with $\nabla^{2} v=0$ and $v=f(x)$ on $\partial R$ ．Let $w=u-v$ ，then

$$
\nabla^{2} w=0 \quad \text { for } \quad x \in R \quad \text { with } \quad w=0 \quad \text { on } \quad \partial R .
$$

The Maximum principle implies $w(x) \equiv 0$ ．Thus，$u(x)=v(x)$ ，so $u(x)$ is unique．

Q．E．D

## Solvability Condition

If the heat flow is specified, $-K_{0} \nabla u \cdot \tilde{\mathbf{n}}$, on the boundary, $\partial R$ and suppose that

$$
\nabla^{2} u=0 \quad \text { on } R
$$

According to the Divergence Theorem, we have

$$
\iint_{R} \nabla^{2} u d A=\iint_{R} \nabla \cdot \nabla u d A=\oint_{\partial R} \nabla u \cdot \tilde{\mathbf{n}} d S .
$$

Thus, when $u$ satisfies Laplace's equation, then the net heat flow through the boundary, $\partial R$, must be zero for the solvability (compatibility) condition.

