Math 531 - Partial Differential Equations Separation of Variables

Joseph M. Mahaffy, $\langle j m a h a f f y @ m a i l . s d s u . e d u\rangle$

Department of Mathematics and Statistics
Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720
http://jmahaffy.sdsu.edu
Spring 2023

Outline

(1) Homogeneous Heat Equation

- Basic Definitions
- Principle of Superposition
(2) Separation of Variables
- Two ODEs
- Eigenfunctions
- Superposition
(3) Orthogonality and Computer Approximation
- Orthogonality of Sines
- Heat Equation Example
- Maple and MatLab

Homogeneous

Heat Equation: Assume a uniform rod of length L, so that the diffusivity, specific heat, and density do not vary in x

The general heat equation satisfies the partial differential equation (PDE):

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+\frac{Q(x, t)}{c \rho}, \quad t>0, \quad 0<x<L
$$

with initial conditions (ICs):

$$
u(x, 0)=f(x), \quad 0<x<L
$$

and Dirichlet boundary conditions (BCs):

$$
u(0, t)=T_{1}(t) \quad \text { and } \quad u(L, t)=T_{2}(t), \quad t>0 .
$$

If $Q(x, t) \equiv 0$, then the PDE is homogeneous.
If $T_{1}(t) \equiv T_{2}(t) \equiv 0$, then the BCs are homogeneous.

Linearity

Definition (Linearity)

An operator \mathcal{L} is linear if and only if

$$
\mathcal{L}\left[c_{1} u_{1}+c_{2} u_{2}\right]=c_{1} \mathcal{L}\left[u_{1}\right]+c_{2} \mathcal{L}\left[u_{2}\right]
$$

for any two functions u_{1} and u_{2} and constants c_{1} and c_{2}.

Define the Heat Operator

$$
\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}=\mathcal{L}
$$

Principle of Superposition

The following shows linearity of the Heat Operator:

$$
\begin{aligned}
\mathcal{L}\left[c_{1} u_{1}+c_{2} u_{2}\right] & =\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}\right)\left(c_{1} u_{1}+c_{2} u_{2}\right) \\
& =c_{1} \frac{\partial u_{1}}{\partial t}+c_{2} \frac{\partial u_{2}}{\partial t}-k c_{1} \frac{\partial^{2} u_{1}}{\partial x^{2}}-k c_{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} \\
& =c_{1} \mathcal{L}\left[u_{1}\right]+c_{2} \mathcal{L}\left[u_{2}\right]
\end{aligned}
$$

Theorem (Principle of Superposition)

If u_{1} and u_{2} satisfy a linear homogeneous equation $(\mathcal{L}(u)=0)$, then any arbitrary linear combination, $c_{1} u_{1}+c_{2} u_{2}$, also satisfies the linear homogeneous equation.

Note: Concepts of linearity and homogeneity also apply to boundary conditions.

Homogeneous Heat Equation

The Heat Equation with Homogeneous Boundary Conditions:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, \quad 0<x<L
$$

with initial conditions (ICs) and Dirichlet boundary conditions (BCs):

$$
u(x, 0)=f(x), \quad 0<x<L, \quad \text { with } \quad u(0, t)=0 \quad \text { and } \quad u(L, t)=0 .
$$

Separation of Variables: Developed by Daniel Bernoulli in the 1700 's, we separate the temperature $u(x, t)$ into a product of a function of x and a function of t

$$
u(x, t)=\phi(x) G(t)
$$

Separation of Variables

Separation of Variables: With $u(x, t)=\phi(x) G(t)$, we use the heat equation and obtain:

$$
\phi(x) \frac{d G}{d t}=k \frac{d^{2} \phi}{d x^{2}} G(t) .
$$

Separating the variables we have

$$
\frac{1}{G} \frac{d G}{d t}=\frac{k}{\phi} \frac{d^{2} \phi}{d x^{2}} \quad \text { or } \quad \frac{1}{k G} \frac{d G}{d t}=\frac{1}{\phi} \frac{d^{2} \phi}{d^{2} x}
$$

Since the left hand side depends only on the independent variable t and the right hand side depends only on the independent variable x, these must equal a constant

$$
\frac{1}{k G} \frac{d G}{d t}=\frac{1}{\phi} \frac{d^{2} \phi}{d^{2} x}=-\lambda
$$

Two ODEs

Thus, the Separation of Variables results in the two ODEs:

$$
\frac{d G}{d t}=-\lambda k G \quad \text { and } \quad \frac{d^{2} \phi}{d x^{2}}=-\lambda \phi
$$

The boundary conditions with the separation assumption give:

$$
u(0, t)=G(t) \phi(0)=0 \quad \text { or } \quad \phi(0)=0
$$

since we don't want $G(t) \equiv 0$. Also,

$$
u(L, t)=G(t) \phi(L)=0 \quad \text { or } \quad \phi(L)=0
$$

The Time-dependent ODE is readily solved:

$$
\begin{aligned}
\frac{d G}{d t} & =-\lambda k G \\
G(t) & =c e^{-k \lambda t}
\end{aligned}
$$

Sturm-Liouville Problems

The second ODE is a BVP and is in a class we'll be calling Sturm-Liouville problems:

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0
$$

Note: The trivial solution $\phi(x) \equiv 0$ always satisfies this BVP.
If we want to satisfy a nonzero initial condition, then we need to find nontrivial solutions to this BVP.

From our experience in ODEs, we can readily see there are 4 cases:

1. $\lambda=0$
2. $\lambda<0$
3. $\lambda>0$
4. λ is complex

We'll ignore Case 4 and later prove that Sturm-Liouville problems only have real λ

Sturm-Liouville Problem Cases

Consider Case 1: $\lambda=0$, so

$$
\frac{d^{2} \phi}{d x^{2}}=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0 .
$$

The general solution to this BVP is

$$
\phi(x)=c_{1} x+c_{2} .
$$

We have $\phi(0)=c_{2}=0$, and $\phi(L)=c_{1} L=0 \quad$ or $\quad c_{1}=0$.
It follows that when $\lambda=0$, the unique solution to the $\mathbf{B V P}$ is the trivial solution.

Sturm-Liouville Problem Cases

Consider Case 2: $\lambda=-\alpha^{2}<0$ with $\alpha>0$, so

$$
\frac{d^{2} \phi}{d x^{2}}-\alpha^{2} \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0
$$

The general solution to this BVP is

$$
\phi(x)=c_{1} \cosh (\alpha x)+c_{2} \sinh (\alpha x) .
$$

We have $\phi(0)=c_{1}=0$, and $\phi(L)=c_{2} \sinh (\alpha L)=0 \quad$ or $\quad c_{2}=0$, since $\sinh (\alpha L)>0$.

It follows that when $\lambda<0$, the unique solution to the $\mathbf{B V P}$ is the trivial solution.

Sturm-Liouville Problem Cases

Consider Case 3: $\lambda=\alpha^{2}>0$ with $\alpha>0$, so

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha^{2} \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0
$$

The general solution to this BVP is

$$
\phi(x)=c_{1} \cos (\alpha x)+c_{2} \sin (\alpha x)
$$

We have $\phi(0)=c_{1}=0$, and $\phi(L)=c_{2} \sin (\alpha L)=0$.
It follows that either $c_{2}=0$, leading to the trivial solution, or $\sin (\alpha L)=0$.
We are interested in nontrivial solutions, so we solve $\sin (\alpha L)=0$, which occurs when $\alpha L=n \pi, n=1,2, \ldots$ or

$$
\alpha=\frac{n \pi}{L}, \quad \text { or } \quad \lambda=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2, \ldots
$$

Eigenfunctions

We saw that if $\lambda=\alpha^{2}>0$, then the BVP:

$$
\frac{d^{2} \phi}{d x^{2}}+\alpha^{2} \phi=0 \quad \text { with } \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0
$$

has the nontrivial solution,

$$
\phi_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad n=1,2, \ldots
$$

which are called eigenfunctions and their associated eigenvalues are given by

$$
\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2, \ldots
$$

Note: $\phi_{n}(x)$ has $n-1$ zeroes in $0<x<L$, which later we'll prove is a general property

Eigenfunctions

The Sturm-Liouville problem from the heat equation with Dirichlet BCs generates a set of eigenfunctions, $\phi_{n}(x), n=1,2, \ldots$ Below is a graph of the first 3 eigenfunctions.

x

Product Solution

From above, the Sturm-Liouville problem from the heat equation gave the eigenfunctions:

$$
\phi_{n}(x)=\sin \left(\frac{n \pi x}{L}\right), \quad n=1,2, \ldots
$$

with associated eigenvalues

$$
\lambda=\frac{n^{2} \pi^{2}}{L^{2}}, \quad n=1,2, \ldots
$$

This can be inserted into the t-equation to give:

$$
G_{n}(t)=B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} .
$$

From our separation assumption, we obtain the product solution

$$
u_{n}(x, t)=G_{n}(x, t) \phi_{n}(x)=B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right), \quad n=1,2, \ldots
$$

Example

Example: Consider the heat equation:

$$
\begin{array}{lr}
\text { PDE: } \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, & \text { BC: } u(0, t)=0 \\
u(10, t)=0
\end{array}
$$

$$
\text { IC: } u(x, 0)=4 \sin \left(\frac{3 \pi x}{10}\right),
$$

From our separation of variables results, we obtain the product solution

$$
u_{n}(x, t)=B_{n} e^{-\frac{k n^{2} \pi^{2} t}{100}} \sin \left(\frac{n \pi x}{10}\right), \quad n=1,2, \ldots
$$

which satisfies the BVP
By inspection, we solve the IC's by taking $n=3$ and $B_{n}=4$. This gives the solution to this example as:

$$
u(x, t)=4 e^{-\frac{9 k \pi^{2} t}{100}} \sin \left(\frac{3 \pi x}{10}\right)
$$

Example

Example 2: Vary the IC and consider the heat equation:

$$
\text { PDE: } \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

$$
\mathrm{IC}: u(x, 0)=3 \sin \left(\frac{3 \pi x}{5}\right)+7 \sin (\pi x),
$$

With the Principle of Superposition, we can add our product solutions, $u_{3}(x, t)+u_{5}(x, t)$.

By inspection, we satisfy the IC's by taking $B_{3}=3$ and $B_{5}=7$. This gives the solution to this example as:

$$
u(x, t)=3 e^{-\frac{9 k \pi^{2} t}{25}} \sin \left(\frac{3 \pi x}{5}\right)+7 e^{-k \pi^{2} t} \sin (\pi x) .
$$

Extended Superposition Principle

Extended Superposition Principle: The superposition principle can be extended to show that if $u_{1}, u_{2}, \ldots, u_{M}$, are solutions of a linear homogeneous problem, then any linear combination

$$
c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{M} u_{M}
$$

is also a solution.
It follows for the homogeneous heat problem

$$
u_{t}=k u_{x x}, \quad u(0, t)=0 \quad \text { and } \quad u(L, t)=0
$$

that we can write a solution of the form

$$
u(x, t)=\sum_{n=1}^{M} B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right)
$$

Heat Problem with ICs

The complete homogeneous heat problem includes an IC.
Again the solution has the form:

$$
u(x, t)=\sum_{n=1}^{M} B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right)
$$

and will satisfy any IC, where

$$
u(x, 0)=\sum_{n=1}^{M} B_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x)
$$

i.e., any IC that is a finite sum of sine functions.

What can we do about solving an arbitrary $f(x)$?

Arbitrary ICs

What if $f(x)$ is NOT a finite linear combination of appropriate sine functions?

Soon we'll learn about Fourier series
(1) Any function with reasonable restrictions can be approximated by a linear combination of $\sin \left(\frac{n \pi x}{L}\right)$
(2) The approximation improves with M increasing
(3) If we consider the limit as $M \rightarrow \infty$, then with some restrictions the eigenfunctions, $\sin \left(\frac{n \pi x}{L}\right)$ in the right combination converges to $f(x)$
(4) It remains to find the constants, B_{n}, such that:

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Orthogonality of Sines

Assume $m \neq n$, integers and with some trig identities consider

$$
\begin{aligned}
\int_{0}^{L} \sin \left(\frac{m \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x & =\int_{0}^{L} \frac{\cos \left(\frac{(n-m) \pi x}{L}\right)-\cos \left(\frac{(n+m) \pi x}{L}\right)}{2} d x \\
& =\left.\frac{1}{2}\left(\frac{\sin \left(\frac{(n-m) \pi x}{L}\right)}{(n-m) \pi / L}-\frac{\sin \left(\frac{(n+m) \pi x}{L}\right)}{(n+m) \pi / L}\right)\right|_{0} ^{L} \\
& =0
\end{aligned}
$$

When $m=n$, then

$$
\begin{aligned}
\int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x & =\int_{0}^{L} \frac{1-\cos \left(\frac{2 n \pi x}{L}\right)}{2} d x \\
& =\left.\left(\frac{x}{2}-\frac{\sin \left(\frac{2 n \pi x}{L}\right)}{4 n \pi / L}\right)\right|_{0} ^{L} \\
& =\frac{L}{2}
\end{aligned}
$$

Orthogonality

Definition (Orthogonality - Function Inner Product)

Whenever

$$
\int_{0}^{L} A(x) B(x) d x=0
$$

we say that the functions, $A(x)$ and $B(x)$ are orthogonal over the interval $[0, L]$.

Previous slide shows that the set of functions, $\sin \left(\frac{n \pi x}{L}\right), n=1,2, \ldots$, are orthogonal to each other

This orthogonal set of functions arise from the eigenvalue BVP:

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0 .
$$

Later generalize this property to any Sturm-Liouville Problem

Finding B_{n}

Consider the expression

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Use the orthogonality of these sine functions, so multiply both sides by $\sin \left(\frac{m \pi x}{L}\right)$ and integrate $x \in[0, L]$

$$
\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L}\left(\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)\right) \sin \left(\frac{m \pi x}{L}\right) d x
$$

To use orthogonality requires some analysis to allow the interchange of the integration and summation

Finding B_{n}

Assuming we can interchange the integration and summation,

$$
\begin{aligned}
\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x & =\sum_{n=1}^{\infty} B_{n} \int_{0}^{L}\left(\sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right)\right) d x \\
& =B_{m}\left(\frac{L}{2}\right)
\end{aligned}
$$

by the orthogonality of the sine functions
If follows that we can obtain the appropriate coefficients (Fourier) to represent an arbitrary function $f(x)$,

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Heat Equation Example

Example: Consider the equation:

$$
\begin{array}{lcc}
\text { PDE: } u_{t}=k u_{x x}, & t>0, & 0<x<L, \\
\text { BC: } u(0, t)=0, & u(L, t)=0, & t>0, \\
\text { IC: } u(x, 0)=100, & 0<x<L &
\end{array}
$$

From before, the solution satisfies:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right)
$$

The Fourier coefficients are given by

$$
B_{n}=\frac{2}{L} \int_{0}^{L} 100 \sin \left(\frac{n \pi x}{L}\right) d x
$$

Heat Equation Example

Expanding the Fourier coefficients:

$$
\begin{aligned}
B_{n} & =\frac{2}{L} \int_{0}^{L} 100 \sin \left(\frac{n \pi x}{L}\right) d x=\left.\frac{200}{L}\left(-\frac{L}{n \pi} \cos \left(\frac{n \pi x}{L}\right)\right)\right|_{0} ^{L} \\
& =\frac{200}{n \pi}(1-\cos (n \pi))= \begin{cases}\frac{400}{n \pi}, & n \text { odd, } \\
0, & n \text { even. }\end{cases}
\end{aligned}
$$

Thus, the solution satisfies:

$$
u(x, t)=\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{\left(1-(-1)^{n}\right)}{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}}} \sin \left(\frac{n \pi x}{L}\right) .
$$

Because of the coefficient on the exponential decay term, this solution rapidly approaches

$$
u(x, t) \approx \frac{400}{\pi} e^{-\frac{k \pi^{2} t}{L^{2}}} \sin \left(\frac{\pi x}{L}\right) .
$$

Orthogonality and Computer Approximation

Heat Equation with Maple

Heat Equation with Maple: Show commands and plots.
$>\mathrm{u}:=(\mathrm{x}, \mathrm{t}) \rightarrow(200 / \mathrm{Pi}) * \operatorname{sum}\left(\left(\left(1-(-1)^{\wedge} \mathrm{n}\right) / \mathrm{n}\right) * \sin (\mathrm{n} * \mathrm{Pi} * \mathrm{x} / 10)\right.$ *exp $\left.\left(-(\mathrm{n} * \mathrm{Pi} / 10)^{\wedge} 2 * \mathrm{t}\right), \mathrm{n}=1 . .20\right)$;
$>\operatorname{plot} 3 \mathrm{~d}(\mathrm{u}(\mathrm{x}, \mathrm{t}), \mathrm{x}=0 . .10, \mathrm{t}=0 . .20)$;

Heat Equation with Maple

Heat Equation with Maple: Increase the sum to 60 (30 nonzero terms)

Heat Equation with MatLab

MatLab Program for Heat equation solution $u(x, t)$

```
    % Solutions to heat flow in 1-D rod length L
2 format compact;
3 L = 10;
4 Temp = 100;
5 tfin = 20;
6 k = 1;
7 NptsX=151;
8 NptsT=151;
9 Nf=200;
% length of rod
% Constant initial temperature
% final time
% heat coef of the medium
% number of x pts
% number of t pts
% number of Fourier terms
10 x=linspace (0, L, NptsX) ;
11 t=linspace(0,tfin,NptsT);
12 [X,T]=meshgrid(x,t);
13 b=zeros(1,Nf);
14 U=zeros(NptsT,NptsX) ;
```


Heat Equation with MatLab

```
for n=1:Nf
    b (n) = (2\star Temp/(n*pi))*(1-(-1)^n); % Fourier ...
        coefficients
    Un=b(n)*exp (- (n*pi*k/L)^2*T).*sin (n*pi*X/L); ...
        % Temperature(n)
    U=U+Un;
end
set(gca,'FontSize',[14]);
surf(X,T,U);
shading interp
colormap (jet)
xlabel('$x$','Fontsize',14,'interpreter','latex');
ylabel('$t$','Fontsize',14,'interpreter','latex');
zlabel('$u(x,t)$','Fontsize',14,'interpreter','latex');
axis tight;
view([120 10]);
print -depsc heat_surf.eps
```

Orthogonality of Sines

Heat Equation with MatLab

Graph of Heat Equation Solution using 200 terms with MatLab

Heat Equation with MatLab

Changing the view to view ([0 90]); obtain a heat map

