Outline

Math 531 －Partial Differential Equations
 Review of Ordinary Differential Equations

> Joseph M. Mahaffy, \langle jmahaffy@sdsu.edu \rangle

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2023

5050

Review Second Order Differential Equation

Second Order Differential Equation

Consider the initial value problem（IVP）：

$$
y^{\prime \prime}-y=0, \quad y(0)=y_{0}, \quad \text { and } \quad y^{\prime}(0)=y p_{0}
$$

This is a second order linear homogeneous differential equation．

Solve this by attempting the solution $y(t)=c e^{\lambda t}$ ，which results in

$$
c \lambda^{2} e^{\lambda t}-c e^{\lambda t}=c e^{\lambda t}\left(\lambda^{2}-1\right)=0 .
$$

This results in the characteristic equation

$$
\lambda^{2}-1=(\lambda+1)(\lambda-1)=0, \quad \text { so } \quad \lambda= \pm 1,
$$

which gives the general solution：

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t} .
$$Review Second Order Differential Equation

－First Order System of DEs
－Boundary Value Problem

Definitions and Theorems
－Linear Independence
－Existence and Uniqueness

Harmonic Oscillator
－Initial Value Problem
－Boundary Value Problem
－General Case

Review Second Order Differential Equation
 Second Order Differential Equation

The initial value problem（IVP）：

$$
y^{\prime \prime}-y=0, \quad y(0)=y_{0}, \quad \text { and } \quad y^{\prime}(0)=y p_{0} .
$$

has the solution

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t} .
$$

From the initial conditions，

$$
\begin{aligned}
c_{1}+c_{2} & =y_{0} \\
c_{1}-c_{2} & =y p_{0}
\end{aligned}
$$

which has the unique solution $c_{1}=\frac{y_{0}+y p_{0}}{2}$ and $c_{2}=\frac{y_{0}-y p_{0}}{2}$ ．
Thus，

$$
y(t)=\frac{y_{0}+y p_{0}}{2} e^{t}+\frac{y_{0}-y p_{0}}{2} e^{-t}=y_{0} \cosh (t)+y p_{0} \sinh (t)
$$

First Order System of DEs

Consider the eigenvalue $\lambda_{1}=1$ for the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The associated eigenvector is easily seen to be $\xi_{1}=\binom{1}{1}$
Similarly associated eigenvector for $\lambda_{2}=-1$ is $\xi_{2}=\binom{1}{-1}$
It follows that the solution to the system of DEs

$$
\dot{\mathbf{y}}=A \mathbf{y},
$$

is

$$
\mathbf{y}=\binom{y_{1}(t)}{y_{2}(t)}=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{1}{-1} e^{-t}
$$

Once again the associated eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1$
5050

Review Second Order Differential Equation Definitions and Theorems
 First Order System of DEs Boundary Value Problem

Boundary Value Problem

Consider the boundary value problem（BVP）：

$$
y^{\prime \prime}-y=0, \quad y(0)=A, \quad \text { and } \quad y(1)=B
$$

which again has the general solution $y(t)=c_{1} e^{t}+c_{2} e^{-t}$ ．
With algebra，the unique solution becomes

$$
y(t)=-\frac{(A \mathrm{e}-B) \mathrm{e}^{-t}}{\mathrm{e}^{-1}-\mathrm{e}}+\frac{\left(A \mathrm{e}^{-1}-B\right) \mathrm{e}^{t}}{\mathrm{e}^{-1}-\mathrm{e}}
$$

Since $\sinh (t)$ and $\sinh (1-t)$ are linearly independent combinations of e^{t} and e^{-t} ，we could write

$$
y(t)=d_{1} \sinh (t)+d_{2} \sinh (1-t) .
$$

The algebra makes it much easier to see that

$$
y(t)=\frac{B}{\sinh (1)} \sinh (t)+\frac{A}{\sinh (1)} \sinh (1-t) .
$$

Existence and Uniqueness

Below is the definition of Linear Independence．

Definition（Linear Independence）

Let V be the vector space of all real valued functions of a real variable x ．A set of functions，$\left\{f_{i}(x)\right\}_{i=1}^{n}$ ，is linearly independent if and only if a linear combination of those functions，

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0, \quad \text { for all } \quad x,
$$

implies that all the constants，$c_{i}=0$ ．
Consider the set of functions，$\left\{e^{t}, e^{-t}\right\}$ and assume that

$$
c_{1} e^{t}+c_{2} e^{-t}=0, \quad \text { for all } t .
$$

Solving this equation gives $c_{1} e^{2 t}=-c_{2}$ ，for all t ，which only occurs when $c_{1}=0$ ．It follows that c_{2} is also zero．

Below is an important theorem about the initial value problem：

$$
\begin{equation*}
y^{\prime}=f(t, y), \quad \text { with } \quad y(0)=0 \tag{1}
\end{equation*}
$$

Theorem（Existence and Uniqueness）

If f and $\partial f / \partial y$ are continuous in a rectangle $R:|t| \leq a,|y| \leq b$ ，then there is some interval $|t| \leq h \leq|a|$ in which there exists a unique solution $y=\phi(t)$ of the initial value problem（1）．

This theorem states that assuming the function f is smooth，then the first order differential equation has a unique solution through a specific initial condition．

Since we are primarily considering $f(t, y)$ linear in y ，this theorem is satisfied．

Does this theorem hold for boundary value problems？

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（9／14）
rder Differential Equation
Definitions and Theorems Harmonic Oscillator

Initial Value Problem
Boundary Value Problem General Case

Harmonic Oscillator

Example（Harmonic Oscillator）：Consider the IVP：

$$
y^{\prime \prime}+y=0, \quad y(0)=A, \quad y^{\prime}(0)=B
$$

The characteristic equation for this ODE is $\lambda^{2}+1=0$ ，which has solutions $\lambda= \pm i$
It follows that the general solution is

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t) .
$$

The initial conditions are easily solved to give the unique solution

$$
y(t)=A \cos (t)+B \sin (t),
$$

which is the classic harmonic undamped oscillator．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（10／14）
Review Second Order Differential Equation
Definitions and Theorems

Harmonic Oscillator $~$| Initial Value Problem |
| :--- |
| Boundary Value Problem |
| General Case |

Example（Harmonic Oscillator）：Now consider the BVP：

$$
y^{\prime \prime}+y=0, \quad y(0)=A, \quad y(1)=B
$$

which again has the general solution

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

The boundary conditions are easily solved to give

$$
y(t)=A \cos (t)+\frac{B-A \cos (1)}{\sin (1)} \sin (t) .
$$

This again gives a unique solution，but the denominator of $\sin (1)$ suggests potential problems at certain t values．

Harmonic Oscillator

General Case

Example（Harmonic Oscillator）：Now consider the BVP：

$$
y^{\prime \prime}+y=0, \quad y(0)=A, \quad y(\pi)=B
$$

which again has the general solution

$$
y(t)=c_{1} \cos (t)+c_{2} \sin (t)
$$

The condition $y(0)=A$ implies $c_{1}=A$ ．However，$y(\pi)=B$ gives

$$
y(\pi)=A \cos (\pi)+c_{2} \sin (\pi)=-A=B
$$

This only has a solution if $B=-A$ ．Furthermore，if $B=-A$ ，the arbitrary constant c_{2} remains undetermined，so takes any value．
－If $B \neq-A$ ，then no solution exists．
－If $B=-A$ ，then infinity many solutions exist and satisfy $y(t)=A \cos (t)+c_{2} \sin (t), \quad$ where c_{2} is arbitrary.

Theorem（Boundary Value Problem）
Consider the second order linear BVP

$$
y^{\prime \prime}+p y^{\prime}+q y=0, \quad y(a)=A, \quad y(b)=B
$$

where $p, q, a \neq b, A$ ，and B are constants．Exactly one of the following conditions hold：
－There is a unique solution to the BVP．
－There is no solution to the BVP．
－There are infinity many solutions to the BVP．
The previous example demonstrates this theorem well，and this theorem will be critical to solving many of our PDEs this semester．

