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Second Order Differential Equation

Consider the initial value problem (IVP):
y(0) =50, and y'(0) = ypo.

This is a second order linear homogeneous differential
equation.

Solve this by attempting the solution y(t) = ce*, which results in

eAZeM — e = ceM(A\2 - 1) = 0.

This results in the characteristic equation
M-1l=A+1)AN-1)=0, SO

which gives the general solution:

y(t) = cre’ + coe ", sDST
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Second Order Differential Equation

The initial value problem (IVP):
y(0) =70, and y'(0) = ypo.

has the solution

y(t) = cre’ + coe™ .

From the initial conditions,

c1+c2 Yo,
€1 — ¢ = Ypo,
which has the unique solution ¢; = 2420 and ¢, = LU0,
Thus,
y(t) = Yo —|—2ypo et 4 20 —2yp0 e~ ' = yo cosh(t) + ypo sinh(t).
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First Order System of DEs First Order System of DEs

Consider the ODE Consider the eigenvalue A\; = 1 for the matrix

y”—y::O 01
Let 1 (1) = y(t) and ya(t) = 1'(1) = vi (1), 50 5(t) = 1"(8) = (1) 4= ( Lo )

The second order DF can be written as the first order system of

ODEs: ( V() ) B ( 0 1 ) ( i () ) The associated eigenvector is easily seen to be & = ( i >
Yo (t) 10 ya(t)

1
Similarly associated eigenvector for Ay = —1 is & = < 1 )

The characteristic equation of the matrix satisfies .
It follows that the solution to the system of DEs

-2 1 )
det |A — \| = det \ =X —-1=0, y = Ay,
is
which is the same as for the ODE before. y1(t) 1 . 1 .
y= =C 1 e’ + Co 1 e
Once again the associated eigenvalues are Ay =1 and Ay = —1 SDST Y2 (t) N SDST
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Boundary Value Problem

The results above give the general solution Consider the boundary value problem (BVP):

Q) 1\, 1\ y"—y=0, y(0)=A, and y(1)=B,

=cC 1 e+ co 1 e
Yya(t) which again has the general solution y(t) = ciet + coe™.
A With algebra, the unique solution b
This is a saddle node. \\\i\\w:»)///;;;// HHL alpebra, The tnique SoTubion becotmes
AN \\\\::::j:://// 7/ (Ae _ B) et Ae ! — B)et

Solutions move toward the origin \?\\\\Qi\?gﬁ,,;;// ? ?; y(t) = — P + ( e e)
. . . 1 NN NN NSNS m s S T
in the direction & = ( 1 ) ;\\\ssss\\\“»//}????;;

R g . . . _ . . S
and move away from origin in the | L\ L VN NS 7 7 11 1] Stlnce sm_lt(t) and smh(l' t) are linearly independent combinations of
o (1) o e and e~ e cod wit

rrection &1 = 1)Or arger IRV SRR O . -
Y Y2 SN \\\\\ y(t) = dy sinh(t) 4 da sinh(1 — ).
/] LY ==~ NN NN
Y Yt N ANAN WY
VAV Y S N AN NANEANN . .
7/////(ﬁ\\\\\\§ The algebra makes it much easier to see that
VI SN NN
VYoo — SN, \ NN B
S MR y(t) = sinh(¢) + sinh(1 — ¢).

sinh(1) sinh(1) SDST
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Below is the definition of Linear Independence. Below is an important theorem about the initial value problem:
Definition (Linear Independence) y' = f(t,y), with y(0) =0 (1)
Let V be the wector space of all real valued functions of a real
variable z. A set of functions, {f;(z)}!, is linearly independent if Theorem (Existence and Uniqueness)

and only if a linear combination of those functions,

If f and Of /Dy are continuous in a rectangle R : [t| < a,|y| < b, then
1 f1(z) + c2fo(@) + .+ cpfu(z) =0, forall z, there is some interval |t| < h < |a| in which there exists a unique
solution y = ¢(t) of the initial value problem (1).

implies that all the constants, ¢; = 0.

This theorem states that assuming the function f is smooth, then the
Consider the set of functions, {e’,e~ '} and assume that first order differential equation has a unique solution through a

specific tnitial condition.

¢ —t
cre’ +coe " =0, forall t¢. ) ) . o . ) ) )
! ? Since we are primarily considering f(¢,y) linear in y, this theorem is

Solving this equation gives c;e?* = —cy, for all ¢, which only occurs satisfied.

when ¢; = 0. It follows that c; is also zero. =n=T Does this theorem hold for boundary value problems? o7
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Harmonic Oscillator Harmonic Oscillator
Example (Harmonic Oscillator): Consider the IVP: Example (Harmonic Oscillator): Now consider the BVP:
y"+y=0, y0)=4, y'(0)=28 y"+y=0, y(0)=4, y(1)=58,
The characteristic equation for this ODE is A?> + 1 = 0, which has which again has the general solution

solutions A = +¢

t) = t) + in(t).
It follows that the general solution is y(t) = v cos(t) + eosin(t)

y(t) = c1 cos(t) + cosin(t). The boundary conditions are easily solved to give
B — Acos(1)
The initial conditions are easily solved to give the unique solution y(t) = Acos(t) + W sin(t).

y(t) = Acos(t) + Bsin(t),
This again gives a unique solution, but the denominator of sin(1)
which is the classic harmonic undamped oscillator. suggests potential problems at certain ¢ values.

SDSJO SDSJT
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General Case

Harmonic Oscillator

Example (Harmonic Oscillator): Now consider the BVP:

y"+y=0, y(0) =4, y(r) =B, Theorem (Boundary Value Problem)
which again has the general solution Consider the second order linear BV P
y(t) = c1 cos(t) + casin(t). y"+py' +ay=0, yla)=A, yb) =25,
The condition y(0) = A implies ¢; = A. However, y(r) = B gives where p, q, a # b, A, and B are constants. Ezxactly one of the

y(m) = Acos(m) + easin(r) = —A = B. following conditions hold:

@ There is a unique solution to the BVP.
This only has a solution if B = —A. Furthermore, if B = —A, the

arbitrary constant co remains undetermined, so takes any value. ® There is no solution to the BVP.

@ There are infinity many solutions to the BVP.
o If B # —A, then no solution exists. -

The previous example demonstrates this theorem well, and this
theorem will be critical to solving many of our PDEs this semester.
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@ If B = —A, then infinity many solutions exist and satisfy

y(t) = Acos(t) + cosin(t), where cg is arbitrary.
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