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Introduction - Nonhomogeneous Problems

Introduction: Separation of Variables requires a linear PDE with
homogeneous BCs.

Consider the following nonhomogeneous problems:

∂u

∂t
= k

∂2u

∂x2
− h(u− Te), t > 0, 0 < x < L,

with BCs: u(0, t) = A and u(L, t) = B, and IC: u(x, 0) = f(x).

Begin by solving the steady state problem, uE(x),

ku′′E − h(uE − Te) = 0, uE(0) = A and uE(L) = B.

Equivalently,

u′′E −
h

k
uE = −h

k
Te,

which is easily seen to have a particular solution, uEp(x) = Te.
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The general solution to the steady state problem,
u′′E − h

kuE = −hkTe, is given by

uE(x) = c1 cosh

(√
h
kx

)
+ c2 sinh

(√
h
kx

)
+ Te.

The BCs give:

uE(0) = c1 + Te = A or c1 = A− Te,

and

uE(L) = (A− Te) cosh

(√
h
kL

)
+ c2 sinh

(√
h
kL

)
+ Te = B.

It follows that

c2 =
B − Te

sinh

(√
h
kL

) + (Te −A) coth

(√
h
kL

)
.
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Now let v(x, t) = u(x, t)− uE(x), so u = v + uE

∂u

∂t
=
∂v

∂t
= k

∂2v

∂x2
+ ku′′E − h(v + uE − Te).

However, ku′′E − h(uE − Te) = 0, so the above PDE becomes the
homogeneous PDE for v(x, t)

∂v

∂t
= k

∂2v

∂x2
− hv,

with the homogeneous BCs: v(0, t) = 0 and v(L, t) = 0, and the
IC: v(x, 0) = f(x)− uE(x).

Our previous techniques of separation of variables applies to this
problem, so let v(x, t) = φ(x)g(t), and

φg′ = kgφ′′ − hφg or
g′ + hg

kg
=
φ′′

φ
= −λ.
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The Sturm-Liouville problem is

φ′′ + λφ = 0, with φ(0) = 0 and φ(L) = 0.

As we have often seen before, this has eigenvalues and
eigenfunctions:

λn =
n2π2

L2
, and φn(x) = sin

(nπx
L

)
.

The solution to the t-equation is

g(t) = ce−(h+λk)t.

By the superposition principle, the solution becomes:

v(x, t) =

∞∑
n=1

Bne
−
(
h+ kn2π2

L2

)
t
sin
(nπx
L

)
.
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We apply the IC, so

v(x, 0) = f(x)− uE(x) =

∞∑
n=1

Bn sin
(nπx
L

)
,

which has the Fourier coefficients:

Bn =
2

L

∫ L

0

(f(x)− uE(x)) sin
(nπx
L

)
dx.

The solution to the original nonhomogeneous problem is

u(x, t) = v(x, t) + uE(x),

where uE(x) is the solution of the steady-state problem and v(x, t) is
the solution above to the homogeneous PDE.
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Time-dependent Nonhomogeneous Terms

Consider the time-dependent nonhomogeneous PDE:

∂u

∂t
= k

∂2u

∂x2
+Q(x, t),

with time-dependent BCs:

u(0, t) = A(t) and u(L, t) = B(t),

and IC: u(x, 0) = f(x).

Create a related problem with homogeneous BCs.

Consider any reference temperature distribution, r(x, t), where
simpler is better, such that

r(0, t) = A(t) and r(L, t) = B(t).

For example,

r(x, t) = A(t) +
x

L
(B(t)−A(t)).
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Time-dependent Nonhomogeneous Terms

Take v(x, t) = u(x, t)− r(x, t), then the PDE becomes:

∂v

∂t
= k

∂2v

∂x2
+

(
Q(x, t)− ∂r

∂t
+ k

∂2r

∂x2

)
≡ k ∂

2v

∂x2
+ Q̄(x, t)

with homogeneous BCs:

v(0, t) = 0 and v(L, t) = 0,

and IC: v(x, 0) = f(x)− r(x, 0).

Note: Our choice of r(x, t) being linear in x gives rxx = 0,
simplifying the PDE above and Q̄(x, t), in particular.
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Method of Eigenfunction Expansion

The use of a reference function readily converts nonhomogeneous
BCs to one with homogeneous BCs, so what about nonhomgeneities
in the PDE?

Consider the problem:

∂v

∂t
= k

∂2v

∂x2
+ Q̄(x, t),

with homogeneous BCs:

v(0, t) = 0 and v(L, t) = 0,

and IC: v(x, 0) = g(x).

The related homogeneous problem is:

∂u

∂t
= k

∂2u

∂x2
,

with homogeneous BCs:

u(0, t) = 0 and u(L, t) = 0.
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Method of Eigenfunction Expansion

The problem, ut = kuxx, with u(0, t) = 0 and u(L, t) = 0, has been
shown to have eigenvalues and eigenfunctions:

λn =
n2π2

L2
and φn(x) = sin

(
nπx
L

)
.

To solve the nonhomogeneous problem in v(x, t), we attempt a
solution of the form:

v(x, t) =

∞∑
n=1

an(t)φn(x),

where φn(x) are any eigenfunctions of the related homogeneous
problem (often different BCs).
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Method of Eigenfunction Expansion

The IC is

v(x, 0) = g(x) =

∞∑
n=1

an(0)φn(x),

so

an(0) =

∫ L
0
g(x)φn(x)dx∫ L
0
φ2n(x)dx

.

This can be easily generalized to Sturm-Liouville problems with
different weighting functions.

If v and ∂v
∂x are continuous and v(x, t) solves the same homogeneous

BCs as φn(x), then term-by-term differentiation can be justified.

We showed this for the Fourier sine and cosine series, but general
Sturm-Liouville problems have the same properties and related
theorems.
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Method of Eigenfunction Expansion

With v(x, t) given by:

v(x, t) =
∞∑
n=1

an(t)φn(x),

the term-by-term differentiation gives:

∂v

∂t
=
∞∑
n=1

d an(t)

dt
φn(x),

and
∂2v

∂x2
=

∞∑
n=1

an(t)
d2φn(x)

d2x
= −

∞∑
n=1

an(t)λnφn(x).

This leaves us with the system of linear ODEs:

∞∑
n=1

[
d an(t)

dt
+ λnkan(t)

]
φn(x) = Q̄(x, t),

where our previous Fourier series for the ICs gave the values for an(0).
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Method of Eigenfunction Expansion

The left hand side of the equation

∞∑
n=1

[
d an(t)

dt
+ λnkan(t)

]
φn(x) = Q̄(x, t),

gives the Fourier expansion of Q̄(x, t).

Assuming that

Q̄(x, t) =
∞∑
n=1

q̄n(t)φn(x),

then the orthogonality of the eigenfunctions gives the system of ODEs:

d an(t)

dt
+ λnkan(t) = q̄n(t) =

∫ L
0 Q̄(x, t)φn(x)dx∫ L

0 φ2n(x)dx
, n = 1, 2, ...

This system of ODEs is solved with the variation of parameters method, giving

an(t) = an(0)e−λnkt + e−λnkt
∫ t

0
q̄n(s)eλnksds.

The nonhomogeneous solution becomes v(x, t) =
∞∑
n=1

an(t)φn(x).
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Example for Eigenfunction Expansion

Consider the nonhomogeneous PDE given by

∂u

∂t
=
∂2u

∂x2
+ e−t sin(3x), 0 < x < π, t > 0.

Assume BCs given by u(0, t) = 0 and u(π, t) = 1 and IC given by
u(x, 0) = f(x).

We create a problem with homogeneous BCs by using a simple
reference function, r(x) = x/π, so take

v(x, t) = u(x, t)− x

π
.

The new nonhomogeneous problem for v(x, t) becomes:

∂v

∂t
=
∂2v

∂x2
+ e−t sin(3x),

with homogeneous BCs and IC:

v(0, t) = 0, v(π, t) = 0, and v(x, 0) = f(x)− x

π
.
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Example for Eigenfunction Expansion

The problem vt = vxx with BC v(0, t) = 0 = v(π, t) has eigenvalues,
λn = n2, with associated eigenfunctions, φn(x) = sin(nx).

Thus, we use the eigenfunction expansion:

v(x, t) =

∞∑
n=1

an(t) sin(nx).

We insert this expansion into the nonhomogeneous problem:

∞∑
n=1

d an(t)

dt
sin(nx) = −n2

∞∑
n=1

an(t) sin(nx) + e−t sin(3x),

which can be written:

∞∑
n=1

(
d an(t)

dt
+ n2an(t)

)
sin(nx) = e−t sin(3x).
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The Fourier coefficients are found by multiplying by sin(mx) and
integrating from x = 0 to x = π, giving

d an
dt

+ n2an =

{
0, n 6= 3,
e−t, n = 3.

The solution to these equations are

an(t) =

{
an(0)e−n

2t, n 6= 3,

1
8e
−t +

(
a3(0)− 1

8

)
e−9t, n = 3.

,

where

an(0) =
2

π

∫ π

0

(
f(x)− x

π

)
sin(nx) dx.

The solution satisfies:

u(x, t) = v(x, t) +
x

π
.
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Consider the PDE:

∂u

∂t
= k

∂2u

∂x2
+Q(x, t),

with BCs and IC:

u(0, t) = A(t), u(L, t) = B(t), u(x, 0) = f(x).

The related homogeneous BVP is

d2φn
dx2

+ λnφn = 0, φn(0) = 0 = φn(L),

which has eigenvalues and corresponding eigenfunctions:

λn =
n2π2

L2
and φn(x) = sin

(
nπx
L

)
.
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Expand the u(x, t) in term of the eigenfunctions:

u(x, t) ∼
∞∑
n=1

bn(t)φn(x).

1 This expansion fails at the boundaries, since φn(x) are
homogeneous, while u(x, t) is not.

2 We can NOT differentiate w.r.t. x because of the different BCs
for φn and u.

3 However, term-by-term differentiation by t is valid.

We write
∂u

∂t
=
∞∑
n=1

dbn
dt

φn(x).
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It follows that
∞∑
n=1

dbn
dt

φn(x) = k
∂2u

∂x2
+Q(x, t),

so

dbn
dt

=

∫ L
0

[
k ∂

2u
∂x2 +Q(x, t)

]
φn(x) dx∫ L

0
φ2n(x) dx

.

If Q(x, t) has a generalized Fourier expansion

Q(x, t) =

∞∑
n=1

qn(t)φn(x), with qn(t) =

∫ L
0
Q(x, t)φn(x) dx∫ L
0
φ2n(x) dx

,

then
dbn
dt

= qn(t) +

∫ L
0
k ∂

2u
∂x2 φn(x) dx∫ L

0
φ2n(x) dx

.
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Eigenfunction Expansion and Green’s Formula

Recall that when L is any Sturm-Liouville operator with

L =
d

dx

(
p(x)

d

dx

)
+ q(x),

we had Green’s formula∫ L

0

[uL(v)− vL(u)]dx = p

(
u
dv

dx
− v du

dx

)∣∣∣∣L
0

.

In our example, we have the operator

L =
∂2

∂x2
with p(x) = 1.

We can use partial derivatives in Green’s formula with t fixed.
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Let v(x) = φn(x) = sin
(
nπx
L

)
, so dv

dx = nπ
L cos

(
nπx
L

)
.

By Green’s formula,∫ L

0

φn(x)L(u) dx =

∫ L

0

uL(v) dx+

(
v
∂u

∂x
− udv

dx

)∣∣∣∣L
0

,

= −λn
∫ L

0

uφn dx−
nπ

L
[u(L, t) cos(nπ)− u(0, t)] ,

= −λn
∫ L

0

uφn dx−
nπ

L
[B(t)(−1)n −A(t)] .

However, bn(t) are the generalized Fourier coefficients of u(x, t),
so

bn(t) =

∫ L
0
uφn dx∫ L

0
φ2n dx

.
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The information above is substituted into the DE for bn(t) and

dbn(t)

dt
+ kλnbn = qn(t)− knπ

L
∫ L
0
φ2n dx

[B(t)(−1)n −A(t)] .

The ICs give

f(x) =

∞∑
n=1

bn(0)φn(x), so bn(0) =

∫ L
0
f(x)φn(x) dx∫ L
0
φ2n dx

.

The above 1st order differential equation in bn(t) with its IC has
a unique solution, solving the PDE in u(x, t).

If the PDE in u(x, t) has homogeneous BCs, then the eigenfunction
expansion solution converges much faster than if the BCs are
nonhomogeneous.
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Green’s Functions

Consider the Heat Equation:

∂u

∂t
= k

∂2u

∂x2
, t > 0, 0 < x < L,

with BCs and IC:

u(0, t) = 0, u(L, t) = 0, u(x, 0) = g(x).

The solution from before is

u(x, t) =

∞∑
n=1

an sin
(
nπx
L

)
e−k(nπ/L)

2t,

where the initial condition gives the Fourier coefficients

g(x) =

∞∑
n=1

an sin
(
nπx
L

)
, so an =

2

L

∫ L

0

g(x) sin
(
nπx
L

)
dx.
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Green’s Functions

We want to examine more closely the effect of the IC g(x).

Introduce a dummy variable x0 and substitute in the Fourier
coefficient:

u(x, t) =

∞∑
n=1

(
2

L

∫ L

0
g(x0) sin

(nπx0
L

)
dx0

)
sin
(
nπx
L

)
e−k(nπ/L)2t.

Interchange the summation and integration to obtain:

u(x, t) =

∫ L

0
g(x0)

( ∞∑
n=1

2

L
sin
(nπx0

L

)
sin
(
nπx
L

)
e−k(nπ/L)2t

)
dx0.

The quantity in the parentheses is the influence function for the
initial condition.

It expresses the contribution of the temperature at x and t due to the
initial temperature at x0. The solution u(x, t) is the integral over all
influences from all the positions of the IC.
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Green’s Functions

If we extend the previous analysis to the PDE:

∂u

∂t
= k

∂2u

∂x2
+Q(x, t),

where the BCs are the same homogeneous ones and u(x, 0) = g(x).

From our eigenfunction expansion technique, we write:

u(x, t) =

∞∑
n=1

an(t) sin
(
nπx
L

)
.

This is differentiated term-by-term because of the homogeneous BCs,
so

dan

dt
+ k

(nπ
L

)2
an = qn(t) =

2

L

∫ L

0
Q(x, t) sin

(
nπx
L

)
dx,

where

Q(x, t) =
∞∑
n=1

qn(t) sin
(
nπx
L

)
.
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Green’s Functions

The ODE for an(t) has the solution:

an(t) = an(0)e−k(nπ/L)2t + e−k(nπ/L)2t

∫ t

0
qn(t0)ek(nπ/L)2t0 dt0,

where u(x, 0) = g(x), so

g(x) =

∞∑
n=1

an(0) sin
(
nπx
L

)
and an(0) =

2

L

∫ L

0

g(x) sin
(
nπx
L

)
dx.

The Fourier coefficients are eliminated to produce:

u(x, t) =
∞∑
n=1

[(
2

L

∫ L

0
g(x0) sin

(nπx0
L

)
dx0

)
e−k(nπ/L)2t

+ e−k(nπ/L)2t

∫ t

0

(
2

L

∫ L

0
Q(x0, t0) sin

(nπx0
L

)
dx0

)
ek(nπ/L)2t0 dt0

]
sin
(
nπx
L

)
.
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Interchanging the order of summation and integration gives:

u(x, t) =

∫ L

0
g(x0)

( ∞∑
n=1

2

L
sin
(nπx0

L

)
sin
(
nπx
L

)
e−k(nπ/L)2t

)
dx0

+

∫ L

0

∫ t

0
Q(x0, t0)

( ∞∑
n=1

2

L
sin
(nπx0

L

)
sin
(
nπx
L

)
e−k(nπ/L)2(t−t0)

)
dt0 dx0.

Define the Green’s function, G(x, t;x0, t0),

G(x, t;x0, t0) =
∞∑
n=1

2

L
sin
(nπx0

L

)
sin
(
nπx
L

)
e−k(nπ/L)2(t−t0)

The solution can be written:

u(x, t) =

∫ L

0

g(x0)G(x, t;x0, 0) dx0

+

∫ L

0

∫ t

0

Q(x0, t0)G(x, t;x0, t0) dt0 dx0.
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The Green’s function, G(x, t;x0, 0), expresses the influence of the initial
temperature at position x and time t

The Green’s function, G(x, t;x0, t0), gives the influence on position x at
time t of the forcing term, Q(x0, t0)

The Green’s function depends only on the elapsed time, t− t0,

G(x, t;x0, t0) = G(x, t− t0;x0, 0).

The Heat equation is independent of time, so thermal properties are not
changing.

The most recent time events are most important.

The series converges more slowly for small t, while G(x, t;x0, t0) more
accurately describes long time behavior.

The solution u(x, t) given with the Green’s function gives the influences
over all x0 and past time 0 < t0 < t.

This gives the causality principle where the temperature depends on the
thermal sources acting before the current time, t.
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