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Vibrating Rectangular Membrane Separation of Variables
Product i

Fourier

Introduction

We want to consider PDEs in higher dimensions.

Vibrating Membrane:
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Vibrating Rectangular Membrane

Rectangular Membrane

Vibrating Rectangular Membrane:

PDE: |
o0%u 9 <82u 82’[1,) |
ot? Ox? 6y2 , ? .
BCs:
u(,0,0) = 0, =
U(LL', H, t) = O’ 1 Tv‘
u(07 y, t) = 07 \2; v
U(La y, t) = O’
0 w@o -0 L L
ICs:

u(xvyvo):a(xvy) and ut(x,y,O)ZB(%y).
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Vibrating Rectangular Membrane Separation of Variables
Product Solutio
Fourier Coefficients

Rectangular Membrane

Let u(z,y,t) = h(t)¢(x)(y), then the PDE becomes

W't = ¢ (hg" + hoy")
This is rearranged to give

" /! 1
L N
c2h 10) P

which gives the time dependent ODE:

B+ M?h = 0.

The remaining spatial equation is rearranged to:
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Vibrating Rectangular Membrane Separation of Variables
Produ Solution
Fourier Coefficients

Rectangular Membrane

The spatial equations form two Sturm-Liouville problems. With
the BCs u(0,y) = 0 = u(L,y), we obtain the 15t Sturm-Liouville
problem:

¢"+up=0,  $0)=0 and ¢(L)=0.

From before, this gives the eigenvalues and eigenfunctions:

m2m? .
fm =~y and Gm(x) = sin (212)

If A — gy, = v, then the 2"? Sturm-Liouville problem is:
" 4+ vp =0, $(0) =0 and ¢(H)=0.
From before, this gives the eigenvalues and eigenfunctions:

7’L27T2 . nm
Vn = and ¥n(y) =sin (“F) .
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Vibrating Rectangular Membrane Separation of Variables
Product Soluti
Fourier Coefficients

Rectangular Membrane

From above we see A\ = pin + vy = mif + ";’;2 > 0, so the time
equation:
R 4+ Xc*h =0,

has the solution
Rimn () = ap cos(en/ Amnt) + by sin(ey/ Amnt).

The Product solution is

U () = (amn oS (c )\mnt) + by Sin ( Ft)) sin (™12) sin (“F2) .

The Superposition Principle gives

u(z,y,t mi::l ni::l (amn cos (c /\mnt) ~+ byn sin (c )\mnt)> sin (mgz) sin (%) .
SDSO
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Vibrating Rectangular Membrane

Separation of Variables
Product Solution
Fourier Coeffici

Nodal Curves

Nodal Curves
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Vibrating Rectangular Membrane Separation of Variables
Product Solution
Fourier Coeffici

Nodal Curves

Nodal Curves
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Vibrating Rectangular Membrane S ration of V:
Product Solution
Fourier Coefficients

Rectangular Membrane

From the ICs, we have

oo oo

u(z, yvo) = oc(:c,y) = Z Z Amn SiN (mgz) sin (L;;y) :

m=1n=1

L
y € [0, H]. Orthogonality gives:

Amn = TH / / a(z,y) sin ("”””) sin ( ) dx dy.

Multiply by sin (ﬂ

Similarly,

ue(2,y,0) = B(@,9) = D Y bmncy/ Amn sin (L) sin (2F4)

-

m=1n=1

and orthogonality gives:

b= LHcm/ / Alz,y)sin (V=) sin (7*) de dy.
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Theorems for Eigenvalue Problems

Helmholtz Equation:
Vp+Xp=0 inR,

with
ap+ Ve -n=0 on OR.

Generalizes to
V- (Vo) +qd+ Aop =0.

Theorem

1. All eigenvalues are real.

2. There exists infinitely many eigenvalues with a smallest, but no
largest etgenvalue.

3. There may be many eigenfunctions corresponding to an
etgenvalue. P
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Theorems for Eigenvalue Problems

Theorem

4. The eigenfunctions form a complete set, so if f(x,y) is
piecewise smooth

F@,y) ~ > arda(z,y).
A

5. Eigenfunctions corresponding to different eigenvalues are
orthogonal

/ ¢)\1 ¢A20dR =0 if )\1 # )\2_
R

Different etgenfunctions belonging to the same eigenvalue can be
made orthogonal by Gram-Schmidt process.
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Theorems for Eigenvalue Problems

Theorem

6. For 0 =1, an eigenvalue \ can be related to the eigenfunction
by the Rayleigh quotient:

— § ¢V -nds+ [[,|Vo2dR
OR
JJg ¢*dR

The boundary conditions often simplify the boundary integral.

A=

We use the Example for the vibrating rectangular membrane to
illustrate a number of the Theorem results above.
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Example

Example: The Sturm-Liouville problem for the vibrating

rectangular membrane satisfies:
PDE: VZ2¢p+ ¢ =0,

ICs: $(0,y) =0, o(L,y) =0,
#(z,0) =0, o(z, H) = 0.
We have already shown that this Helmholtz equation has
eitgenvalues:
2 2
Anbn: (%) + (%) y m = 1,2,... n = 1,2,...

with corresponding eigenfunctions:

Gmn(,y) = sin (L) sin (252, m=12,.. n=1,2,..
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Example

Example (cont): We already demonstrated that:
© Real eigenvalues: The eigenvalues are clearly real.

© Ordering the eigenvalues: It is easy to see that there is the

lowest eigenvalue \; = (%)2 + (%)2 and that there is no

largest etgenvalue, as m or n — oo.
© Multiple eigenvalues: Suppose that L = 2H. It follows that

2

Ao = 773

m? + 4n2) .

It is easy to see for m=4,n=1and m =2,n = 2,

52
Aa1 = Agg = T2
These solutions will oscillate with the same frequency. sDST
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Example

Theorems for Eigenvalue Problems Orthogonality and Fourier Coefficients

Example

Example (cont): We have:

@ Series of eigenfunctions: If f(z,y) is piecewise smooth, then

o0 o0
flz,y) ~ Dy sin () sin (254) .
m=1n=1

© Convergence: As before, write the Error using a finite series

E://R f—z/\:a,\@ 2dR.

The approximation improves with increasing A, and we found
that the series ), ax¢x converges in the mean to f.
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Example

Theorems for Eigenvalue Problems OrtiraEealy mrd Wermier Ceciicies

Orthogonality

Orthogonality: Assume A1 # Ay with etgenfunctions ¢y, and ¢,,
and insert these into the equation:

V- (pVe)+qp+ Aogp = 0.
Multiplying by the other eigenfunction and subtracting, we can write

Oa, (V- (V) = dr, (V- (pVA,)) = (A2 — A1)odr, P, -

Use integration by parts over the entire region R and the
homogeneous boundary conditions to give (more details next section):

/ bx, Or,0dR = 0, it A # Ao

R

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Higher Dimensions — (17/26)



Example

Theorems for Eigenvalue Problems OrtiraEealy mrd Wermier Ceciicies

Fourier Coefficients

Fourier Coefficients: Assume that f is piecewise smooth, so

f(‘r7y) ~ ZGA¢A'
A

Use the orthogonality relationship with respect to the weighting

function o:
/ P Or, 01 =0, if A\ # Ao,
R

then the Fourier coefficients satisfy

Jf for,0dR
R
T T2 0dR
R

Note: If there is more than one eigenfunction associated with an
eitgenvalue, then assume the eigenfunctions have been made

orthogonal by Gram-Schmidt. S0SO
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Green’s Formula and Self-Adjoint
Orth onality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Green’s Formula

Consider the PDE:
V264 Ao =0, in R,

with BCs:
B1¢ + B2V -1 =0, on OR,

where 81 and (5 are real functions in R.

Basic product rule gives:

V- (uVv) = uV?+Vu- Vo,
V-(wVu) = vVu+Vo-Vu.

Subtracting gives:

uV — oV?u =V - (uVv — vVu).
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Green’s Formula

The previous result is integrated to give:

/ /R (uV?0 —oV?u) dR = / /R V - (uVv — vVu)dR.

Apply the Divergence Theorem and obtain:
Green’s Formula: Also, Green’s second identity:

// (uV?v — vV?u) dR = j{ (uVv —ovVu) -nds.
R OR

This identity is important in showing an operator is self-adjoint if
there are homogeneous BCs.
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Self-Adjoint Operator

Let L = V2 be a linear operator:

Theorem (Self-Adjoint)

If uw and v are two functions such that

% (uVv —ovVu) -ndS =0,
OR

then

//R (“VQU*”WU)CZR://R(UL[U}*vL[u])dRzo,

Note: The above theorem is stated in 2D, but it equally applies to
3D by substituting double integrals with triple integrals and line
integrals with surface integrals.
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Orthogonality

Orthogonality of Eigenfunctions: We use Green’s formula to
show orthogonality of eigenfunctions, ¢; and ¢2, corresponding to
different eigenvalues, A1 and \s.

Suppose with L = V?

Ligi] + M1 =0  and  Llpa] + Aap2 = 0.
If ¢1 and ¢ satisfy the same homogeneous BCss,
j{ (01V g2 — p2V1) - 1dS = 0,
AR
then by Green’s formula:

//R (¢1L[¢2] — ¢2L[¢n]) dR = 0.
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Orthogonality

However,

//R (¢p1L[¢p2] — p2L[p1])dR = //R o1 — Mbrcrs) dR

= ()\27/\1)//R¢1¢2dR = 0.

So for Ay # Aq, the eigenfunctions are orthogonal:

//R p1¢2dR = 0.
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Gram-Schmidt Process

Gram-Schmidt Process: Suppose that ¢1, ¢, ..., ¢, are
independent eigenfunctions all corresponding to the eigenvalue, A
(a single e.v.).

Let ¢1 = ¢1 be an etgenfunction.

Any linear combination of eigenfunctions is also an eigenfunction,

so take
o = ¢o + 1.
We want
/ /R vrbadk =0~ | /R $1(d + ctr)dR,
so choose
_ ffR ¢21/)1dR
[[rvtdR

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) PDESs - Higher Dimensions — (24/26)



Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Gram-Schmidt Process

Gram-Schmidt Process: Continuing take

Y3 = ¢3 + 11 + catda.

() - o
//R(¢3+c11/}1+cy/}2)($;>d1% = 0.

It follows that

We want

_ ffR ¢3¢1dR
J[pvidR

_ ffR ¢3¢2dR

and co = fwang .

Cc1 =
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Green’s Formula and Self-Adjoint
Orthogonality
More on Multidimensional E.V. Problem Gram-Schmidt Process

Gram-Schmidt Process

Gram-Schmidt Process: In general,

sdR
B LT

vz

Thus, we can always obtain an orthogonal set of eigenfunctions.
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