Math 531 - Partial Differential Equations Heat Conduction in Higher Dimensions

Joseph M. Mahaffy, $\langle j m a h a f f y @ m a i l . s d s u . e d u\rangle$
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://jmahaffy.sdsu.edu

$$
\text { Spring } 2020
$$

Outline

(1) Heat Equation 3D

- Derivation
- Heat Equation
(2) Laplacian in Other Coordinates
- Poisson's and Laplace's Equations
- Other Coordinates

Heat Conduction in a Higher Dimensions

Previously we developed the heat equation for a one-dimensional rod
We want to extend the heat equation for higher dimensions
Conservation of Heat Energy: In any volume element, the basic conservation equation for heat satisfies

| Rate of change
 of heat energy
 in time$=$Heat energy flowing
 across boundaries
 per unit time$+$Heat energy
 generated inside
 per unit time |
| :--- | :--- | :--- |

Define $c(x, y, z)$ to be the specific heat of a material (the heat energy required to raise a unit mass of a material a unit of temperature)

Define $\rho(x, y, z)$ to be the mass density (per unit volume)
Define $u(x, y, z, t)$ as the temperature of a material

Heat Conduction in a Higher Dimensions

The specific heat, c, mass density, ρ, and temperature, u, are used with the conservation law above to create the general heat equation

The total energy in a volume element R satisfies:

$$
\text { Total Energy }=\iiint_{R} c \rho u d V .
$$

The rate of change of heat energy in time is given by

$$
\frac{d}{d t} \iiint_{R} c \rho u d V
$$

Heat Conduction in a Higher Dimensions

Define $\phi(x, y, z, t)$ as the heat flux vector for the heat crossing the surface of the region R denoted ∂R, and define n as the outward normal vector

By convention the heat flux is the flow directed into the region R, so the heat flux into the region R is the integral over ∂R of $-\phi \cdot n$.

$$
-\oiint_{\partial R} \phi \cdot n d S
$$

Heat Conduction in a Higher Dimensions

Define $Q(x, y, z, t)$ as the heat energy generated per unit time from the sources or sinks inside the region R.

This gives

$$
\iiint_{R} Q d V
$$

The Conservation of Heat Energy combines these terms to give:

$$
\frac{d}{d t} \iiint_{R} c \rho u d V=-\oiint \oiint_{\partial R} \phi \cdot n d S+\iiint_{R} Q d V .
$$

We need to combine these terms to obtain the general Heat Equation.

Heat Conduction in a Higher Dimensions

Theorem (Divergence or Gauss's Theorem)

Suppose R is a subset of \mathbb{R}^{3}, which is compact and has a piecewise smooth boundary ∂R. If ϕ is a continuously differentiable vector field defined on a neighborhood of R, then we have:

$$
\oiint_{\partial R}(\phi \cdot n) d S=\iiint_{R}(\nabla \cdot \phi) d V .
$$

The Conservation of Heat Energy combines these terms to give:

$$
\frac{d}{d t} \iiint_{R} c \rho u d V=-\iiint_{R}(\nabla \cdot \phi) d V+\iiint_{R} Q d V .
$$

Heat Conduction in a Higher Dimensions

The previous equation is rearranged to give:

$$
\iiint_{R}\left(c \rho \frac{\partial u}{\partial t}+\nabla \cdot \phi-Q\right) d V=0
$$

Since this holds for any region R, we have the heat equation:

$$
c \rho \frac{\partial u}{\partial t}=-\nabla \cdot \phi+Q
$$

Fourier's law of heat conduction satisfies:

$$
\phi=-K_{0} \nabla u
$$

which produces the heat equation in higher dimensions:

$$
c \rho \frac{\partial u}{\partial t}=\nabla \cdot\left(K_{0} \nabla u\right)+Q
$$

Heat Equation in a Higher Dimensions

The heat equation in higher dimensions is:

$$
c \rho \frac{\partial u}{\partial t}=\nabla \cdot\left(K_{0} \nabla u\right)+Q
$$

If the Fourier coefficient is constant, K_{0}, as well as the specific heat, c, and material density, ρ, and if there are no sources or sinks, $Q \equiv 0$, then the heat equation becomes

$$
\frac{\partial u}{\partial t}=k \nabla^{2} u, \quad t>0 \quad \text { and } \quad(x, y, z) \in R,
$$

where $k=K_{0} /(c \rho)$ and

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}},
$$

in Cartesian coordinates.

Poisson's and Laplace's Equations

The heat equation in higher dimensions is:

$$
c \rho \frac{\partial u}{\partial t}=\nabla \cdot\left(K_{0} \nabla u\right)+Q .
$$

If the Fourier coefficient is constant, K_{0}, then the Steady-State problem can be written:

$$
\nabla^{2} u=-\frac{Q}{K_{0}},
$$

which is Poisson's equation
Furthermore, if there are no sources or sinks $(Q \equiv 0)$, then we obtain Laplace's equation

$$
\nabla^{2} u=0
$$

Laplacian in 2D

In Cartesian coordinates, the Laplacian in 2D is

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} .
$$

Recall that in polar coordinates

$$
x=r \cos (\theta) \quad \text { and } \quad y=r \sin (\theta) .
$$

By using the chain rule and the dot product, we find:

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} .
$$

Laplacian in 3D

In cylindrical coordinates

$$
x=r \cos (\theta), \quad y=r \sin (\theta), \quad \text { and } \quad z=z,
$$

so

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}} .
$$

In spherical coordinates

$$
x=\rho \sin (\phi) \cos (\theta), \quad y=\rho \sin (\phi) \sin (\theta), \quad \text { and } \quad z=\rho \cos (\phi),
$$

so it can be shown (HW exercise):

$$
\nabla^{2} u=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin (\phi)} \frac{\partial}{\partial \phi}\left(\sin (\phi) \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2}(\phi)} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

