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Heat Conduction in a Higher Dimensions

Previously we developed the heat equation for a one-dimensional rod
We want to extend the heat equation for higher dimensions

Conservation of Heat Energy: In any volume element, the basic
conservation equation for heat satisfies

Rate of change Heat energy flowing
of heat energy = across boundaries
in time per unit time

Heat energy
+ generated inside
per unit time

Define ¢(z,y, z) to be the specific heat of a material (the heat
energy required to raise a unit mass of a material a unit of
temperature)

Define p(z,y, z) to be the mass density (per unit volume)

Define u(x,y, z,t) as the temperature of a material

Heat Conduction in a Higher Dimensions

The specific heat, ¢, mass density, p, and temperature, u, are used
with the conservation law above to create the general heat equation

The total energy in a volume element R satisfies:

Total Energy = /// cpudV.

R

The rate of change of heat energy in time is given by

% /// cpudV.
R
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Define ¢(z,y, z,t) as the heat flux vector for the heat crossing the
surface of the region R denoted OR, and define n as the outward

Define Q(z,vy, z,t) as the heat energy generated per unit time from
normal vector

the sources or sinks inside the region R.

This gives
6on , // Qdv.
R

The Conservation of Heat Energy combines these terms to give:

i/}[](;pudv—5%'¢-n/ds+/}Z]QdV

7]

By convention the heat flux is the flow directed into the region R, so

the heat flux into the region R is the integral over R of —¢ - n. We need to combine these terms to obtain the general Heat
[ Equation.
— # ¢-ndS
R SDSJ SDST
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Heat Conduction in a Higher Dimensions

The previous equation is rearranged to give:

Theorem (Divergence or Gauss’s Theorem) /// [ Ou
p—+V ¢ — dav = 0.
cpg tV- -0
R

Suppose R is a subset of R, which is compact and has a piecewise
smooth boundary OR. If ¢ is a continuously differentiable vector field
defined on a neighborhood of R, then we have: Since this holds for any region R, we have the heat equation:
ou “
#@on)dS’:///(V-(ﬁ)dV. cpaz—v-afﬂr@.
AR R

) ] Fourier’s law of heat conduction satisfies:
The Conservation of Heat Energy combines these terms to give:

dt /// cpudV =~ /// (V-¢)dv + // @dv. which produces the heat equation in higher dimensions:
R R R
0
(:p—u =V (KoVu) + Q.
ot SDST
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Heat Equation in a Higher Dimensions Poisson’s and Laplace’s Equations

The heat equation in higher dimensions is:
The heat equation in higher dimensions is:

ou
Por = V- (KoVu) + Q. ou
cp— =V - (KoVu) + Q.
ot
If the Fourier coefficient is constant, Ko, as well as the specific heat, If the Fourier coefficient is constant, Ky, then the Steady-State
¢, and material density, p, and if there are no sources or sinks, Q = 0, problem can be written:
then the heat equation becomes
2 Q
du 2 Viu = ~ %
— = kV*-u, t>0 and (z,y,2) € R, 0

ot

which is Poisson’s equation
where k = Ky/(cp) and

Furthermore, if there are no sources or sinks (@ = 0), then we obtain
Pu  0*u  O%u Laplace’s equation
Vu=——+ 455+ 25 Viu=0
Ox dy 0z U .

in Cartesian coordinates. SDSJ SDSO
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Laplacian in 2D Laplacian in 3D

In cylindrical coordinates

In Cartesian coordinates,the Laplacian in 2D is .
x=rcos(d), y=rsin(d), and z=z,

9 0?u  0%u
V u = ﬁ -+ W SO
20 Gr_ 10 (Ln) 10 o
“Erar\Uor r2 002 022
Recall that in polar coordinates
x = rcos(f) and y = rsin(6). In spherical coordinates
By using the chain rule and the dot product, we find: x = psin(¢) cos(f), y = psin(¢)sin(d), and 2z = pcos(e),
U2y — 10 ([ Ou 1 9%u so it can be shown (HW exercise):
“rar Uar r2 962"

s 1.0 [ ,0u 1 o (. ou 1 0?u
V“‘aw(pw)*wmwm¢@“@w)+mmﬂ@wf
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