

Previously we developed the *heat equation* for a one-dimensional rod

We want to extend the *heat equation* for higher dimensions

Conservation of Heat Energy: In any volume element, the basic conservation equation for **heat** satisfies

Rate of change		Heat energy flowing		Heat energy
of heat energy	=	across boundaries	+	generated inside
in time		per unit time		per unit time

Define c(x, y, z) to be the **specific heat of a material** (the **heat** energy required to raise a unit mass of a material a unit of temperature)

Define $\rho(x, y, z)$ to be the **mass density** (per unit volume)

Define u(x, y, z, t) as the *temperature of a material*

The specific heat, c, mass density, ρ , and temperature, u, are used with the conservation law above to create the general *heat equation*

The total energy in a volume element R satisfies:

Total Energy =
$$\iiint_R c\rho u \, dV.$$

The rate of change of heat energy in time is given by

$$\frac{d}{dt} \iiint_R c\rho u \, dV.$$

Heat Equation 3D Derivation Laplacian in Other Coordinates Heat Equation

Heat Conduction in a Higher Dimensions

Define $\phi(x, y, z, t)$ as the *heat flux vector* for the heat crossing the surface of the region R denoted ∂R , and define n as the *outward normal vector*

By convention the heat flux is the flow directed into the region R, so the *heat flux* into the region R is the integral over ∂R of $-\phi \cdot n$.

Heat Equation 3D Laplacian in Other Coordinates Heat Equation

Heat Conduction in a Higher Dimensions

Define Q(x, y, z, t) as the *heat energy* generated per unit time from the *sources* or *sinks* inside the region R.

This gives

 $\iiint_R Q \, dV.$

The **Conservation of Heat Energy** combines these terms to give:

$$\frac{d}{dt} \iiint_R c\rho u \, dV = - \oint_{\partial R} \phi \cdot n \, dS + \iiint_R Q \, dV.$$

We need to combine these terms to obtain the general **Heat Equation**.

Heat Conduction in a Higher Dimensions

Theorem (Divergence or Gauss's Theorem)

Suppose R is a subset of \mathbb{R}^3 , which is compact and has a piecewise smooth boundary ∂R . If ϕ is a continuously differentiable vector field defined on a neighborhood of R, then we have:

$$\oint_{\partial R} (\phi \cdot n) \, dS = \iint_R (\nabla \cdot \phi) \, dV.$$

The **Conservation of Heat Energy** combines these terms to give:

$$\frac{d}{dt} \iiint_R c\rho u \, dV = - \iiint_R (\nabla \cdot \phi) \, dV + \iiint_R Q \, dV.$$

Heat Conduction in a Higher Dimensions

The previous equation is rearranged to give:

$$\iiint\limits_{R} \left(c\rho \frac{\partial u}{\partial t} + \nabla \cdot \phi - Q \right) \, dV = 0.$$

Since this holds for any region R, we have the **heat equation**:

$$c\rho\frac{\partial u}{\partial t} = -\nabla \cdot \phi + Q.$$

Fourier's law of heat conduction satisfies:

$$\phi = -K_0 \nabla u,$$

which produces the **heat equation** in higher dimensions:

$$c\rho \frac{\partial u}{\partial t} = \nabla \cdot (K_0 \nabla u) + Q.$$

SDS(7/12)

Heat Equation 3D Laplacian in Other Coordinates Heat Equation

Heat Equation in a Higher Dimensions

The **heat equation** in higher dimensions is:

$$c\rho \frac{\partial u}{\partial t} = \nabla \cdot (K_0 \nabla u) + Q.$$

If the Fourier coefficient is constant, K_0 , as well as the specific heat, c, and material density, ρ , and if there are no sources or sinks, $Q \equiv 0$, then the **heat equation** becomes

$$\frac{\partial u}{\partial t}=k\nabla^2 u, \qquad t>0 \quad \text{and} \quad (x,y,z)\in R,$$

where $k = K_0/(c\rho)$ and

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2},$$

in Cartesian coordinates.

Poisson's and Laplace's Equations

The **heat equation** in higher dimensions is:

$$c\rho \frac{\partial u}{\partial t} = \nabla \cdot (K_0 \nabla u) + Q.$$

If the Fourier coefficient is constant, K_0 , then the **Steady-State** problem can be written:

$$\nabla^2 u = -\frac{Q}{K_0}$$

which is **Poisson's equation**

Furthermore, if there are no sources or sinks $(Q \equiv 0)$, then we obtain Laplace's equation

 $\nabla^2 u = 0.$

		3030			3030
$\textbf{Joseph M. Mahaffy}, \; \texttt{(jmahaffy@mail.sdsu.edu)}$	Heat Conduction	— (9/12)	$\textbf{Joseph M. Mahaffy}, \ \texttt{(jmahaffy@mail.sdsu.edu)}$	Heat Conduction	— (10/12)
Heat Equation 3D Laplacian in Other Coordinates	Poisson's and Laplace's Equations Other Coordinates		Heat Equation 3D Laplacian in Other Coordinates	Poisson's and Laplace's Equations Other Coordinates	
Laplacian in 2D			Laplacian in 3D		

In Cartesian coordinates, the Laplacian in 2D is

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

Recall that in polar coordinates

$$x = r\cos(\theta)$$
 and $y = r\sin(\theta)$.

By using the **chain rule** and the **dot product**, we find:

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$

In cylindrical coordinates

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad \text{and} \quad z = z,$$

 \mathbf{SO}

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2}.$$

In spherical coordinates

$$x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \text{ and } z = \rho \cos(\phi),$$

so it can be shown (HW exercise):

$$\nabla^2 u = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2 \sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) \frac{\partial u}{\partial \phi} \right) + \frac{1}{\rho^2 \sin^2(\phi)} \frac{\partial^2 u}{\partial \theta^2}.$$

SDSU (11/12)

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Heat Conduction