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Heat Conduction in a One-Dimensional Rod

Heat in a Rod: Consider a rod of length L with cross-sectional area
A, which is perfectly insulated on its lateral surface.

Below is a diagram of this rod

We examine the heat transfer through a small slice of the rod

Define e(x, t) = thermal energy density

Heat energy in the small slice = e(x, t)A∆x

Define φ(x, t) = heat flux (amount of thermal energy per unit
time flowing to the right per unit surface area)

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉 Heat Conduction — (3/14)

Heat Equation
Heat Equation Equilibrium

Derivation
Temperature and Heat Equation

Heat Conduction in a One-Dimensional Rod

Conservation of Heat Energy: With insulated lateral edges, the
basic conservation equation for heat in our small slice satisfies

Rate of change Heat energy flowing Heat energy
of heat energy = across boundaries + generated inside
in time per unit time per unit time

The rate of change of heat energy satisfies

∂

∂t
(e(x, t)A∆x)

The heat flux across the boundaries satisfies

φ(x, t)A− φ(x+ ∆x, t)A

(heat entering on left and leaving on right)
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Heat Conduction in a One-Dimensional Rod

Heat sources/sinks: Define Q(x, t) = heat energy per unit
volume generated per unit time, accounting for any sources or
sinks of heat inside the thin rod

Conservation of heat energy (thin slice) combining elements
above:

∂

∂t
(e(ξ1, t)A∆x) = φ(x, t)A− φ(x+ ∆x, t)A+Q(ξ2, t)A∆x,

where by the Intermediate Value Theorem assuming continuity of
both e(x, t) and Q(x, t), there are ξ1, ξ2 ∈ (x, x+ ∆x) providing
equality above.

Rearranging we have

∂e(ξ1, t)

∂t
=
φ(x, t)− φ(x+ ∆x, t)

∆x
+Q(ξ2, t),

which by taking the limit as ∆x→ 0 gives

∂e(x, t)

∂t
= −∂φ(x, t)

∂x
+Q(x, t).
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Alternate Integral Derivation

Alternate Integral Derivation: Use the conservation of heat
energy on any interval [a, b], then

d

dt

∫ b

a

e(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

Q(x, t)dt.

However, by Leibnitz’s rule of differentiation of an integral and
the Fundamental Theorem of Calculus, we have

d

dt

∫ b

a

e(x, t)dx =

∫ b

a

∂e(x, t)

∂t
and φ(a, t)−φ(b, t) = −

∫ b

a

∂φ(x, t)

∂x
dx

It follows that for any interval [a, b]∫ b

a

(
∂e(x, t)

∂t
+
∂φ(x, t)

∂x
−Q(x, t)

)
dx = 0,

so the integrand is zero, giving the same equation as before.
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Heat and Temperature

Temperature and Specific heat: Define u(x, t) as the temperature
of a material and c(x) as the specific heat of a material (the heat
energy required to raise a unit mass of a material a unit of
temperature)

Mass density: Define ρ(x) as the mass density (per unit volume)

Thermal energy: From the definitions above, we have

e(x, t) = c(x)ρ(x)u(x, t)

Fourier’s Law: Heat flows proportional to the negative gradient of
the temperature (hot to cold) or

φ(x, t) = −K0(x)
∂u(x, t)

∂x
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Heat Equation

From the heat conduction equation

∂e(x, t)

∂t
= −∂φ(x, t)

∂x
+Q(x, t),

we obtain the heat equation

c(x)ρ(x)
∂u(x, t)

∂t
=

∂

∂x

(
K0(x)

∂u(x, t)

∂x

)
+Q(x, t).

If the material in the rod is consistent, c(x), ρ(x), and K0(x) are
constant. Also, if there are no sources or sinks, Q(x, t) = 0. Then the
heat equation has the form:

∂u

∂t
= k

∂2u

∂x2
,

where k = K0/(cρ) is the thermal diffusivity.
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Heat Equation

The first PDE that we’ll solve is the heat equation

∂u

∂t
= k

∂2u

∂x2
.

This linear PDE has a domain t > 0 and x ∈ (0, L).
In order to solve, we need initial conditions

u(x, 0) = f(x),

and boundary conditions (linear)

Dirichlet or prescribed: e.g., u(0, t) = u0(t)

Neumann: Insulated: e.g., ux(0, t) = 0

Neumann: Prescribed flux: e.g., −K0ux(0, t) = φ(t)

Robin or mixed: e.g., Newton’s cooling:
K0ux(0, t) = H(u(0, t)− uE(t))
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Heat Equation Equilibrium

Consider the heat equation:

∂u

∂t
= k

∂2u

∂x2
,

with the initial condition and Dirichlet boundary conditions

u(x, 0) = f(x), u(0, t) = T1(t) and u(L, t) = T2(t).

Suppose that the boundary conditions (BCs) are constant, T1(t) = T1
and T2(t) = T2.

Examine the steady-state or equilibrium solution, which implies
that

∂u

∂t
= 0, so u(x, t) = u(x).
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Heat Equation Equilibrium

The equilibrium heat equation (ODE) problem reduces to

d2u

dx2
= 0 with u(0) = T1 and u(L) = T2.

The solution of the ODE is

u(x) = c1x+ c2.

Since u(0) = T1, we have c2 = T1.

Also, u(L) = T2 implies T2 = c1L+ T1 or c1 = T2−T1

L , giving the
solution

u(x) =
T2 − T1

L
x+ T1.
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Heat Equation Equilibrium

The equilibrium solution for the heat equation with fixed
temperatures at each end is

u(x) =
T2 − T1

L
x+ T1.

Thus, the temperature equilibrates to a linear function connecting the
two end temperatures

0 L

T1

T2

x

u
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Heat Equation Equilibrium – Insulated

Consider the heat equation with the initial condition and
Neumann boundary conditions:

∂u

∂t
= k

∂2u

∂x2
, u(x, 0) = f(x), ux(0, t) = 0 and ux(L, t) = 0.

As before, the equilibrium problem is

d2u

dx2
= 0 with u ′(0) = 0 and u ′(L) = 0.

The general solution of the ODE is

u(x) = c1x+ c2.

But u ′(x) = c1, so either BC implies c1 = 0.

The BC gives no information about c2
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Heat Equation Equilibrium – Insulated

From above the ODE has the solution

u(x) = c2.

So what is c2?

Since the lateral sides and the ends are insulated, then the thermal
energy is conserved

d

dt

∫ L

0

cρu(x)dx = −K0
∂u

∂x
(0, t) +K0

∂u

∂x
(L, t) = 0.

The initial thermal energy is

cρ

∫ L

0

f(x)dx = cρ

∫ L

0

u(x)dx = cρ

∫ L

0

c2dx = cρLc2.

It follows that

u(x) = c2 =
1

L

∫ L

0

f(x)dx.
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