# Math 531 －Partial Differential Equations <br> Fourier Transforms for PDEs－Part C 

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

Spring 2023

## Outline

1. Fourier Sine and Cosine Transforms

- Definitions
- Differentiation Rules
(2) Applications
- Heat Equation on Semi-Infinite Domain
- Wave Equation
- Laplace's Equation on Semi-Infinite Strip


## Heat Equation on Semi-Infinite Domains

Consider the PDE for the heat equation on a semi-infinite domain:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, \quad x>0
$$

with the $\mathbf{B C}$ and IC:

$$
u(0, t)=0 \quad \text { and } \quad u(x, 0)=f(x)
$$

where we assume $f(x) \rightarrow 0$ as $x \rightarrow \infty$.
We employ the separation of variables, $u(x, t)=h(t) \phi(x)$, where the Sturm-Liouville problem is

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty}|\phi(x)|<\infty
$$

The solution to the SL-Problem is:

$$
\phi(x)=c_{1} \sin (\omega x), \quad \text { where } \quad \omega=\sqrt{\lambda}
$$

## Heat Equation on Semi-Infinite Domains

The ODE in $t$ is $h^{\prime}=-k \omega^{2} h$, which has the solution

$$
h(t)=c e^{-k \omega^{2} t}
$$

Thus, the product solution becomes

$$
u_{\omega}(x, t)=A(\omega) \sin (\omega x) e^{-k \omega^{2} t}, \quad \omega>0
$$

The superposition principle gives the solution:

$$
u(x, t)=\int_{0}^{\infty} A(\omega) \sin (\omega x) e^{-k \omega^{2} t} d \omega
$$

where

$$
f(x)=\int_{0}^{\infty} A(\omega) \sin (\omega x) d \omega
$$

and

$$
A(\omega)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x
$$

## Fourier Sine Transform

From the Fourier transforms with complex exponentials, we have the Fourier pair:

$$
\begin{aligned}
f(x) & =\frac{1}{\gamma} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega x} d \omega \\
F(\omega) & =\frac{\gamma}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x, \quad \text { for any } \gamma
\end{aligned}
$$

If $f(x)$ is odd (choose an odd extension),

$$
\begin{aligned}
F(\omega) & =\frac{\gamma}{2 \pi} \int_{-\infty}^{\infty} f(x)(\cos (\omega x)+i \sin (\omega x)) d x \\
& =\frac{2 i \gamma}{2 \pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x
\end{aligned}
$$

Note $F(\omega)$ is an odd function of $\omega$, so

$$
\begin{aligned}
f(x) & =\frac{1}{\gamma} \int_{-\infty}^{\infty} F(\omega)(\cos (\omega x)-i \sin (\omega x)) d \omega \\
& =-\frac{2 i}{\gamma} \int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega
\end{aligned}
$$

## Fourier Sine and Cosine Transforms

For convenience, take $-\frac{2 i}{\gamma}=1$, so for $f(x)$ odd we obtain the Fourier sine transform pair:

$$
\begin{aligned}
f(x) & =\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega \equiv S^{-1}[F(\omega)] \\
F(\omega) & =\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x \equiv S[f(x)]
\end{aligned}
$$

Note that some like to have symmetry and have a coefficient in front of the integrals as $\sqrt{2 / \pi}$.

If $f(x)$ is even, then we obtain the Fourier cosine transform pair:

$$
\begin{aligned}
f(x) & =\int_{0}^{\infty} F(\omega) \cos (\omega x) d \omega \equiv C^{-1}[F(\omega)] \\
F(\omega) & =\frac{2}{\pi} \int_{0}^{\infty} f(x) \cos (\omega x) d x \equiv C[f(x)]
\end{aligned}
$$

## Differentiation Rules for Sine and Cosine Transforms

Assume that both $f(x)$ and $\frac{d f}{d x}(x)$ are continuous and both are vanishing for large $x$, i.e., $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} \frac{d f}{d x}(x)=0$.
Use integration by parts to find the transforms of the first derivatives:

$$
C\left[\frac{d f}{d x}\right]=\frac{2}{\pi} \int_{0}^{\infty} \frac{d f}{d x} \cos (\omega x) d x=\left.\frac{2}{\pi} f(x) \cos (\omega x)\right|_{0} ^{\infty}+\frac{2 \omega}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x
$$

and

$$
S\left[\frac{d f}{d x}\right]=\frac{2}{\pi} \int_{0}^{\infty} \frac{d f}{d x} \sin (\omega x) d x=\left.\frac{2}{\pi} f(x) \sin (\omega x)\right|_{0} ^{\infty}-\frac{2 \omega}{\pi} \int_{0}^{\infty} f(x) \cos (\omega x) d x
$$

It follows that

$$
C\left[\frac{d f}{d x}\right]=-\frac{2}{\pi} f(0)+\omega S[f]
$$

and

$$
S\left[\frac{d f}{d x}\right]=-\omega C[f] .
$$

Note that these formulas imply that if the PDE has any first partial w.r.t. the potential transformed variable, then Fourier sine or Fourier cosine transforms 50 won't work.

## Differentiation Rules for Sine and Cosine Transforms

From the pair,

$$
C\left[\frac{d f}{d x}\right]=-\frac{2}{\pi} f(0)+\omega S[f]
$$

and

$$
S\left[\frac{d f}{d x}\right]=-\omega C[f]
$$

we can readily obtain the transforms of the second derivatives:

$$
C\left[\frac{d^{2} f}{d x^{2}}\right]=-\frac{2}{\pi} \frac{d f}{d x}(0)+\omega S\left[\frac{d f}{d x}\right]=-\frac{2}{\pi} \frac{d f}{d x}(0)-\omega^{2} C[f]
$$

and

$$
S\left[\frac{d^{2} f}{d x^{2}}\right]=-\omega C\left[\frac{d f}{d x}\right]=\frac{2}{\pi} \omega f(0)-\omega^{2} S[f] .
$$

Note: When solving a PDE (with second partials), then either $f(0)$ must be known and Fourier sine transforms are used or $\frac{d f}{d x}(0)$ must be known and Fourier cosine transforms are used.

## Heat Equation on Semi-Infinite Domain

Consider the PDE for the heat equation on a semi-infinite domain:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, \quad x>0
$$

with the $\mathbf{B C}$ and IC:

$$
u(0, t)=g(t) \quad \text { and } \quad u(x, 0)=f(x) .
$$

Since the BC is nonhomogeneous, the technique of separation of variables does NOT apply.

Since we know $u$ at $x=0$, we want to apply the Fourier sine transform to the PDE.

## Heat Equation on Semi-Infinite Domain

For the nonhomogeneous equation

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad t>0, \quad x>0
$$

we apply the Fourier sine transform:

$$
\bar{U}(\omega, t)=\frac{2}{\pi} \int_{0}^{\infty} u(x, t) \sin (\omega x) d x
$$

which gives the ODE in $\bar{U}$

$$
\frac{\partial \bar{U}}{\partial t}=k\left(\frac{2}{\pi} \omega g(t)-\omega^{2} \bar{U}\right)
$$

The Fourier sine transform of the initial condition is:

$$
\bar{U}(\omega, 0)=\frac{2}{\pi} \int_{0}^{\infty} f(x) \sin (\omega x) d x
$$

## Heat Equation on Semi-Infinite Domain

The ODE is linear and can be written:

$$
\frac{\partial \bar{U}}{\partial t}+k \omega^{2} \bar{U}=\frac{2 k \omega}{\pi} g(t),
$$

which is readily solved to give:

$$
\bar{U}(\omega, t)=\bar{U}(\omega, 0) e^{-k \omega^{2} t}+\frac{2 k \omega}{\pi} \int_{0}^{t} e^{-k \omega^{2}(t-s)} g(s) d s .
$$

This problem is readily solved with programs similar to the ones shown earlier.

With specific ICs, $f(x)$, and BCs, $g(t)$, the integrals can be formed, then numerically computed.

## Heat Equation on Semi-Infinite Domain

As a specific example, we choose to numerically show the solution with

$$
u(x, 0)=f(x)=0, \quad \text { and } \quad u(0, t)=g(t)=e^{-a t} .
$$

The Fourier sine transform satisfies:

$$
\begin{aligned}
& \bar{U}(\omega, t)=\bar{U}(\omega, 0) e^{-k \omega^{2} t}+\frac{2 k \omega}{\pi} \int_{0}^{t} e^{-k \omega^{2}(t-s)} g(s) d s, \\
& \bar{U}(\omega, t)=\frac{2 k \omega}{\pi} \frac{\left(e^{-k \omega^{2} t}-e^{-a t}\right)}{a-k \omega^{2}} .
\end{aligned}
$$

It follows that

$$
u(x, t)=\int_{0}^{\infty} \bar{U}(\omega, t) \sin (\omega x) d \omega .
$$

## Heat Equation on Semi-Infinite Domain

Enter the Maple commands for the graph of $u(x, t)$

$$
\begin{aligned}
& \mathrm{u}:=(\mathrm{x}, \mathrm{t}) \rightarrow(2 / \mathrm{Pi}) *\left(\operatorname { i n t } \left(\mathrm{w} *\left(\exp \left(-\mathrm{w}^{\wedge} 2 * \mathrm{t}\right)-\exp (-0.1 * \mathrm{t})\right) * \sin (\mathrm{w} * \mathrm{x}) /\right.\right. \\
&\left.\left.\left(0.1-\mathrm{w}^{\wedge} 2\right), \mathrm{w}=0 . .50\right)\right) ;
\end{aligned} \quad \begin{aligned}
\mathrm{plot} 3 \mathrm{~d}(\mathrm{u}(\mathrm{x}, \mathrm{t}), \mathrm{x}=0 . .10, \mathrm{t}=0 \quad \mathrm{n})
\end{aligned}
$$

The IC is

$$
f(x)=0 .
$$

The $\mathbf{B C}$ is

$$
g(t)=e^{-0.1 t} .
$$

This graph shows the diffusion of the heat with time.


## Heat Equation on Semi-Infinite Domain

In both Maple and MatLab, the integral over $\omega$ is truncated at 50 . The figure below shows that this creates some oscillations.

```
\% Solution Heat Equation with FT
\% \(f(x)=0, u(0, t)=e^{\wedge}(-t)\)
N1 = 201; N2 = 201;
tv \(=\) linspace (0,20,N1);
xv \(=\) linspace (0,10,N2);
[t1,x1] = ndgrid(tv,xv);
f = @(w, c) (2*w/pi).*(exp(-c(1)*w.^2)-...
    exp (-0.1*c(1)))./(0.1-w.^2);
for i \(=1: N 1\)
    for \(j=1: N 2\)
        c \(=\) [t1 (i,j),x1(i,j)];
        \(\mathrm{U}(\mathrm{i}, \mathrm{j})=\ldots\).
                            integral(@(w)f(w, c).*sin(w*c(2)),0,50);
13 end
```

14 end

Fourier Sine and Cosine Transforms Applications

## Heat Equation on Semi-Infinite Domain

```
16 set(gca,'FontSize', [12]);
17 surf(t1,x1,U);
18}\mathrm{ shading interp
19 colormap(jet)
20 view([100 15])
```



## Wave Equation

Consider the wave equation on an infinite domain:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, \quad t>0
$$

with the ICs:

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=0
$$

where the latter IC is to simplify the problem.
The Fourier transform pair satisfies:

$$
\begin{aligned}
\bar{U}(\omega, t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} u(x, t) e^{i \omega x} d x \\
u(x, t) & =\int_{-\infty}^{\infty} \bar{U}(\omega, t) e^{i \omega x} d \omega
\end{aligned}
$$

## Wave Equation

From the differentiation rules, we have

$$
\frac{\partial^{2} \bar{U}}{\partial t^{2}}=-c^{2} \omega^{2} \bar{U}
$$

where the ICs give

$$
\begin{aligned}
\bar{U}(\omega, 0) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x \\
\frac{\partial \bar{U}(\omega, 0)}{\partial t} & =0
\end{aligned}
$$

The general solution becomes:

$$
\bar{U}(\omega, t)=A(\omega) \cos (c \omega t)+B(\omega) \sin (c \omega t) .
$$

The IC with the velocity being zero gives $B(\omega)=0$.

## Wave Equation

The initial position gives:

$$
A(\omega)=\bar{U}(\omega, 0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x
$$

The inverse Fourier transform satisfies:

$$
u(x, t)=\int_{-\infty}^{\infty} \bar{U}(\omega, 0) \cos (c \omega t) e^{-i \omega x} d \omega
$$

Euler's formula gives $\cos (c \omega t)=\frac{e^{i c \omega t}+e^{-i c \omega t}}{2}$, so

$$
u(x, t)=\int_{-\infty}^{\infty} \bar{U}(\omega, 0)\left[\frac{e^{-i \omega(x-c t)}+e^{-i \omega(x+c t)}}{2}\right] d \omega .
$$

## Wave Equation

Since

$$
f(x)=\int_{-\infty}^{\infty} \bar{U}(\omega, 0) e^{-i \omega x} d \omega,
$$

we have

$$
\begin{aligned}
& u(x, t)=\int_{-\infty}^{\infty} \bar{U}(\omega, 0)\left[\frac{e^{-i \omega(x-c t)}+e^{-i \omega(x+c t)}}{2}\right] d \omega \\
& u(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)] .
\end{aligned}
$$

It follows that the initial position breaks into 2 traveling waves with velocity $c$ in opposite directions.

This solution is also obtained using $D^{\prime}$ 'Alembert's method.

## Laplace's Equation on a Semi-Infinite Strip

Consider Laplace's equation on a semi-infinite strip:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<L, \quad y>0 .
$$

with BCs:

$$
u(0, y)=g_{1}(y), \quad u(L, y)=g_{2}(y), \quad u(x, 0)=f(x) .
$$

Divide the problem into

$$
\nabla^{2} u_{1}=0,
$$

with homogeneous BC on the bottom.

Second problem is


$$
\nabla^{2} u_{2}=0
$$

with homogeneous BCs on the sides.

## Laplace's Equation on a Semi-Infinite Strip

Consider Laplace's equation

$$
\nabla^{2} u_{2}=0, \quad 0<x<L, \quad y>0
$$

with BCs:

$$
u_{2}(0, y)=0, \quad u_{2}(L, y)=0, \quad \text { and } \quad u_{2}(x, 0)=f(x)
$$

Separation of variables with $u(x, y)=\phi(x) h(y)$ gives

$$
\frac{\phi^{\prime \prime}}{\phi}=-\frac{h^{\prime \prime}}{h}=-\lambda, \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0
$$

The Sturm-Liouville problem is

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi(0)=0 \quad \text { and } \quad \phi(L)=0,
$$

so the eigenvalues and eigenfunctions are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad \text { and } \quad \phi_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) .
$$

## Laplace's Equation on a Semi-Infinite Strip

The other ODE is $h^{\prime \prime}-\lambda_{n} h=0$, which has the solution:

$$
h_{n}(y)=c_{1} e^{-\frac{n \pi y}{L}}+c_{2} e^{\frac{n \pi y}{L}} .
$$

For the $h_{n}(y)$ to be bounded as $y \rightarrow \infty$, then $c_{2}=0$.
The superposition principle gives

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-\frac{n \pi y}{L}}
$$

The lower BC, $u(x, 0)=f(x)$ gives

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

where

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \text {. }
$$

## Laplace's Equation on a Semi-Infinite Strip

The second Laplace's problem is:

$$
\nabla^{2} u_{1}=0, \quad 0<x<L, \quad y>0,
$$

with BCs:

$$
u_{1}(0, y)=g_{1}(y), \quad u_{1}(L, y)=g_{2}(y), \quad \text { and } \quad u_{1}(x, 0)=0 .
$$

Separation of variables for this case gives

$$
h(y)=c_{1} \cos (\omega y)+c_{2} \sin (\omega y), \quad \text { for } \quad \omega \geq 0 .
$$

The homogeneous BC at $y=0$ gives $c_{1}=0$, suggesting that we use the Fourier sine transform.

## Laplace's Equation on a Semi-Infinite Strip

The Fourier sine transform pair is:

$$
\begin{aligned}
u_{1}(x, y) & =\int_{0}^{\infty} \bar{U}_{1}(x, \omega) \sin (\omega y) d \omega \\
\bar{U}_{1}(x, \omega) & =\frac{2}{\pi} \int_{0}^{\infty} u_{1}(x, y) \sin (\omega y) d y
\end{aligned}
$$

Recall

$$
S\left[\frac{\partial^{2} u_{1}}{\partial y^{2}}\right]=\frac{2}{\pi} \omega u_{1}(x, 0)-\omega^{2} S\left[u_{1}\right] .
$$

Laplace's equation becomes:

$$
\frac{\partial^{2} \bar{U}_{1}}{\partial x^{2}}-\omega^{2} \bar{U}_{1}=0,
$$

which is easily solved.

## Laplace's Equation on a Semi-Infinite Strip

It is convenient to take the solution of the form:

$$
\bar{U}_{1}(x, \omega)=a(\omega) \sinh (\omega x)+b(\omega) \sinh (\omega(L-x))
$$

The BCs give:

$$
\begin{aligned}
& \bar{U}_{1}(0, \omega)=b(\omega) \sinh (\omega L)=\frac{2}{\pi} \int_{0}^{\infty} g_{1}(y) \sin (\omega y) d y, \\
& \bar{U}_{1}(L, \omega)=a(\omega) \sinh (\omega L)=\frac{2}{\pi} \int_{0}^{\infty} g_{2}(y) \sin (\omega y) d y,
\end{aligned}
$$

so we can readily find $a(\omega)$ and $b(\omega)$,
$a(\omega)=\frac{2}{\pi \sinh (\omega L)} \int_{0}^{\infty} g_{2}(y) \sin (\omega y) d y \quad$ and $\quad b(\omega)=\frac{2}{\pi \sinh (\omega L)} \int_{0}^{\infty} g_{1}(y) \sin (\omega y) d y$.

## Laplace's Equation on a Semi-Infinite Strip

Example: Consider the specific case:

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<2, \quad y>0 .
$$

with BCs:

$$
u(0, y)=e^{-y} \sin (y), \quad u(2, y)=\left\{\begin{array}{ll}
2, & y<5, \\
0, & y>5,
\end{array} \quad u(x, 0)=x\right.
$$

This problem is broken into the $\mathbf{2}$ problems with either a homogeneous end condition or homogeneous side conditions, then the 2 solutions are added together.

We provide the details to produce a temperature profile for this problem, using the previous work.

## Laplace's Equation on a Semi-Infinite Strip

When the two sides are homogeneous,

$$
\nabla^{2} u_{2}=0, \quad 0<x<2, \quad y>0
$$

with BCs:

$$
u_{2}(0, y)=0, \quad u_{2}(2, y)=0, \quad \text { and } \quad u_{2}(x, 0)=x .
$$

From before, the solution is:

$$
u_{2}(x, y)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{2}\right) e^{-\frac{n \pi y}{2}}
$$

where using Maple, we find:

$$
a_{n}=\int_{0}^{2} x \sin \left(\frac{n \pi x}{2}\right) d x=\frac{4(-1)^{n+1}}{n \pi}
$$

## Laplace's Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for $u_{2}(x, y)$ using 100 terms in the series is shown below.


## Laplace's Equation on a Semi-Infinite Strip

```
\% Solution Laplace's equation - semi-infinite strip
N1 = 201; N2 = 201; M = 100;
xv = linspace(0,2,N1);
yv = linspace (0,10,N2);
    [x1,y1] = ndgrid(xv,yv);
    for i \(=1: N 1\)
        for \(j=1: N 2\)
        \(c=[x 1(i, j), y 1(i, j)] ;\)
        U2 (i,j) = 0;
        for \(k=1: M\)
            U2 (i,j) = U2 (i,j) + ...
                        (4* (-1) ^(k+1)/(k*pi))...
                        *sin(k*pi*c(1)/2) *exp(-k*pi*c(2)/2);
        end
        end
    end
```


## Laplace's Equation on a Semi-Infinite Strip

Laplace's problem for $u_{1}(x, y)$ is:

$$
\nabla^{2} u_{1}=0, \quad 0<x<2, \quad y>0
$$

with BCs:
$u_{1}(0, y)=e^{-y} \sin (y), \quad u_{1}(2, y)=\left\{\begin{array}{ll}2, & y<5, \\ 0, & y>5,\end{array} \quad u_{1}(x, 0)=0\right.$.
From before, the Fourier transform solution satisfies:

$$
u_{1}(x, y)=\int_{0}^{\infty} \bar{U}_{1}(x, \omega) \sin (\omega y) d \omega
$$

where

$$
\bar{U}_{1}(x, \omega)=a(\omega) \sinh (\omega x)+b(\omega) \sinh (\omega(2-x)) .
$$

## Laplace's Equation on a Semi-Infinite Strip

Once again Maple is used to find the coefficients $a(\omega)$ and $b(\omega)$ :

$$
\begin{aligned}
a(\omega) & =\frac{2}{\pi \sinh (2 \omega)} \int_{0}^{5} 2 \sin (\omega y) d y \\
& =\frac{4(1-\cos (5 \omega))}{\pi \omega \sinh (2 \omega)}
\end{aligned}
$$

and

$$
\begin{aligned}
b(\omega) & =\frac{2}{\pi \sinh (2 \omega)} \int_{0}^{\infty} e^{-y} \sin (y) \sin (\omega y) d y \\
& =\frac{4 \omega}{\pi\left(\omega^{2}-2 \omega+2\right)\left(\omega^{2}+2 \omega+2\right) \sinh (2 \omega)} .
\end{aligned}
$$

## Laplace's Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for $u_{1 a}(x, y)$ integrating on $\omega \in[0,100]$, where this only accounts for the BC at $x=2(b(\omega)=0)$, is shown below.


## Laplace's Equation on a Semi-Infinite Strip

Below is the MatLab for the first part of $u_{1}(x, y)$

```
32 wmax = 100;
33 f = @ (w, C) ...
    4*(1-\operatorname{cos}(5*w)).*\operatorname{sinh}(c(1)*w).*\operatorname{sin}(c(2)*w) ...
34 ./(pi*w.*sinh(2*w));
35 for i = 1:N1
36 for j = 1:N2
37 C = [x1(i,j),yl(i,j)];
38 Ula(i,j) = integral(@(w)f(w,c),0,wmax);
39 end
40 end
41 surf(x1,y1,U1a);
42 shading interp
43 colormap (jet)
```


## Laplace's Equation on a Semi-Infinite Strip

The steady-state temperature temperature profile for $u_{1 b}(x, y)$ integrating on $\omega \in[0,100]$, where this only accounts for the BC at $x=0(a(\omega)=0)$, is shown below.


## Laplace's Equation on a Semi-Infinite Strip

Below is the MatLab for the second part of $u_{1}(x, y)$

```
55 wmax = 100;
f = @(w, c) 4*w.*sinh((2-c(1))*w).*sin(c(2)*W) ...
    ./(pi*(w.^ 2-2*w+2).*(w.^ 2+2*w+2).*sinh(2*w));
    for i = 1:N1
        for j = 1:N2
        c = [x1(i,j),yl(i,j)];
        U1b(i, j) = integral(@(w)f(w, c),0,wmax);
        end
    end
    surf(x1,y1,U1b);
    shading interp
    colormap(jet)
```


## Laplace's Equation on a Semi-Infinite Strip

Combining all the results above, the steady-state temperature temperature profile for $u(x, y)$ with the limits on number of terms in the series and the wave numbers $\omega$ in the integral is shown below.


## Laplace's Equation on a Semi-Infinite Strip

Below is the MatLab for the complete steady-state temperature profile $u(x, y)$

```
78 for i = 1:N1
79 for j = 1:N2
    U(i,j) = U2(i,j) +U1a(i,j)+U1b(i,j);
81 end
82 end
83 surf(x1,y1,U);
84 shading interp
85 colormap(jet)
```

