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Introduction

The separation of variables technique solved our various PDEs
provided we could write:

f(x) = a0 +

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
.

Questions:

1 Does the infinite series converge?

2 Does it converge to f(x)?

3 Is the resulting infinite series really a solution of the PDE (and
its subsidiary conditions)?

Mathematically, these are all difficult problems, yet these solutions
have worked well since the early 1800’s.
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Definitions

Begin by restricting the class of f(x) that we’ll consider.

Definition (Piecewise Smooth)

A function f(x) is piecewise smooth on some interval if and only if
f(x) is continuous and f ′(x) is continuous on a finite collection of
sections of the given interval.

The only discontinuities allowed are jump discontinuities.

Definition (Jump Discontinuity)

A function f(x) has a jump discontinuity at a point x = x0, if the
limit from the right [f(x+0 )] and the limit from the left [f(x−0 )] both
exist and are not equal.

Piecewise smooth allows only a finite number of jump
discontinuities in the function, f(x), and its derivative, f ′(x).
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Piecewise Smooth

The graph on the left is piecewise smooth with the function being
continuous, but having a jump discontinuity in the derivative at
x = 0
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The graph on the right is not piecewise smooth, as the derivative
becomes unbounded in any neighborhood of x = 0
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Periodic Extension

The Fourier series of f(x) on an interval −L ≤ x ≤ L is periodic
with period 2L.

However, the function f(x) itself doesn’t need to be periodic.
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The graph above gives the Fourier series period 2 extension of
f(x) = x (along with f(x), not periodic).
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Fourier Series

Definitions of Fourier coefficients and a Fourier series. We
must distinguish between a function f(x) and its Fourier series over
the interval −L ≤ x ≤ L.

Fourier series = a0 +

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
.

The infinite series may not converge, and if it converges, it may not
converge to f(x)

If the series converges, the Fourier coefficients a0, an, and bn use
certain orthogonality integrals.
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Fourier coefficients

Definition (Fourier coefficients)

The definition of the Fourier coefficients are:

a0 =
1

2L

∫ L

−L
f(x)dx

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx

The coefficients must be defined, e.g.,

∣∣∣∣∣
∫ L

−L
f(x)dx

∣∣∣∣∣ <∞ for a0 to

exist. (No Fourier series for f(x) = 1/x2.)
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Fourier convergence

We write the Fourier series

f(x) ∼ a0 +

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
.

Theorem (Fourier convergence)

If f(x) is piecewise smooth on the interval −L ≤ x ≤ L, then the
Fourier series of f(x) converges to:

1 The periodic extension of f(x), where the periodic extension is
continuous

2 The average of the two limits, usually 1
2 [f(x+) + f(x−)], where

the periodic extension has a jump discontinuity

Proof: The proof of this theorem requires significant techniques
from Mathematical analysis, which is beyond the scope of this course.
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Example 1

Example: Consider the Heaviside function shifted by 1:

f(x) = H(x− 1) =

{
0, x < 1,
1, x ≥ 1.

Find the Fourier series with L = 2.

The Fourier constant coefficient is

a0 =
1

4

∫ 2

−2
f(x)dx =

1

4

∫ 2

1

1 dx =
1

4
.

The cosine coefficients:

an =
1

2

∫ 2

−2
f(x) cos

(nπx
2

)
dx =

1

2

∫ 2

1

cos
(nπx

2

)
dx

=
sin(nπ)− sin(nπ/2)

nπ
= − 1

nπ
sin
(nπ

2

)
.
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Example 2

The sine coefficients:

bn =
1

2

∫ 2

−2
f(x) sin

(nπx
2

)
dx =

1

2

∫ 2

1

sin
(nπx

2

)
dx

=
cos(nπ/2)− cos(nπ)

nπ
=

1

nπ

(
cos
(nπ

2

)
− (−1)n

)
.

The function, f(x), and truncated Fourier series.
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Example 3

1 % Periodic Fourier series, -2 < x < 2
2 % Step function at x = 1
3

4 NptsX=2000; % number of x pts
5 Nf=200; % number of Fourier terms
6 x=linspace(-5,5,NptsX);
7

8 a0=1/4;
9 a=zeros(1,Nf);

10 b=zeros(1,Nf);
11 f=a0*ones(1,NptsX);
12

13 for n=1:Nf
14 a(n)= -sin(n*pi/2)/(n*pi); % Fourier cosine ...

coefficients
15 b(n)=(cos(n*pi/2)-cos(n*pi))/(n*pi); % ...

Fourier sine coefficients
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Example 4

16 fn=a(n)*cos((n*pi*x)/2) + ...
b(n)*sin((n*pi*x)/2); % Fourier function(n)

17 f=f+fn;
18 end
19 set(gca,'FontSize',16);
20 plot(x,f,'b-','LineWidth',1.5);
21 hold on
22 plot([-5,1],[0,0],'r-','LineWidth',1.5);
23 plot([1,5],[1,1],'r-','LineWidth',1.5);
24 xlabel('$x$','FontSize',16,'FontName',fontlabs, ...
25 'interpreter','latex');
26 ylabel('$y$','FontSize',16,'FontName',fontlabs, ...
27 'interpreter','latex');
28 axis on; grid;
29

30 print -depsc eg200 gr.eps
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Fourier Sine Series

If f(x) is an odd function, then a0 = an = 0 and only the sine series
remains:

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.

This series appeared for solutions of the heat equation, 0 < x < L
with u(0, t) = u(L, t) = 0

The Sine series produces an odd extension of f(x)

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, 0 < x < L,

Bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.
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Fourier Cosine Series

If f(x) is an even function, then bn = 0 and only the cosine series
remains:

f(x) ∼ A0 +

∞∑
n=1

An cos
(nπx
L

)
, 0 < x < L,

where

A0 =
1

L

∫ L

0

f(x)dx and An =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx.

This series appeared for solutions of the heat equation, 0 < x < L
with ux(0, t) = ux(L, t) = 0.
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Gibbs Phenomenon 1

Let f(x) = 100, and consider the odd extension of this function, so
f(x) is defined by

f(x) =

{
100, 0 < x < L,

−100, −L < x < 0.

and extend it periodically with period 2L.

As an odd function, this has a Fourier sine series

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
,

with

Bn =
2

L

∫ L

0

100 sin
(nπx
L

)
dx =

{
400
nπ , n odd,

0, n even.
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Gibbs Phenomenon 2

We examine the graph for n = 1, 3, 5, 7 of

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, with Bn =

{
400
nπ , n odd,

0, n even.

−20 −15 −10 −5 0 5 10 15 20
−150

−100

−50

0

50

100

150

x

y

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Fourier Series — (17/44)

Introduction
Fourier Sine and Cosine Series

Differentiation of Fourier Series
Method of Eigenfunction Expansion

Gibbs Phenomenon
Continuous Fourier Series

Gibbs Phenomenon 3

We examine the graphs for n = 40 (20 nonzero terms) and n = 200
(100 nonzero terms) for

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, with Bn =

{
400
nπ , n odd,

0, n even.
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Gibbs Phenomenon 4

The Fourier series for the 2L-periodic, odd extension of
f(x) = 100,

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, with Bn =

{
400
nπ , n odd,

0, n even.

It is clear that the Fourier series converges to 0 at x = 0 as every
term in the series is 0.

Similarly, the Fourier series converges to 0 at any x = nL for
n = 0,±1,±2, ..., as every term in the series is also 0.

The Fourier Convergence Theorem claims that the series
converges to 100 for each 0 < x < L.
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Gibbs Phenomenon 5

The 2L-periodic, odd extension of f(x) = 100,

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
, with Bn =

{
400
nπ , n odd,

0, n even.

by the Fourier Convergence Theorem converges to 100 for
0 < x < L, which is hard to show for most values of x.

Consider x = L
2 ,

∞∑
n=1

Bn sin
(nπ

2

)
=

400

π

(
1− 1

3
+

1

5
− 1

7
+ ...

)

Euler’s formula gives π
4 = 1− 1

3 + 1
5 −

1
7 + ..., (which is a very

inefficient way to compute π, as it is an alternating series that does
not converge absolutely)
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Gibbs Phenomenon 6

Harder to show convergence for other values of x ∈ (0, L).

Convergence easily visualized as worst near jump discontinuity

For any finite sum in the series near x = 0, the solution starts at 0,
then shoots up beyond 100, the primary overshoot
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Examine previous f(x)

Figure (close up) with
n = 1000 (or 500
nonzero terms)

The overshoot is about
20%

The maximum occurs at
(0.01, 117.898)
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Gibbs Phenomenon 7

This overshoot is an example of the Gibbs phenomenon

For large n, in general, there is an overshoot of approximately 9% of
the jump discontinuity

Note the previous example had a jump of 200, and we saw the
maximum of 117.898, which is 9% of the jump

The Gibbs phenomenon only occurs for a finite series at a jump
discontinuity
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Continuous Fourier Series

Theorem (Fourier Series)

For a piecewise smooth f(x), the Fourier series of f(x) is
continuous and converges to f(x) for x ∈ [−L,L] if and only if f(x) is
continuous and f(−L) = f(L).

Theorem (Fourier Cosine Series)

For a piecewise smooth f(x), the Fourier cosine series of f(x) is
continuous and converges to f(x) for x ∈ [0, L] if and only if f(x) is
continuous.

Theorem (Fourier Sine Series)

For a piecewise smooth f(x), the Fourier sine series of f(x) is
continuous and converges to f(x) for x ∈ [0, L] if and only if f(x) is
continuous and both f(0) = 0 and f(L) = 0.
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Differentiation of Fourier Series

Previously, we solved

PDE:
∂u

∂t
= k

∂2u

∂x2
, BC: u(0, t) = 0,

u(L, t) = 0.
IC: u(x, 0) = f(x),

and obtained the solution

u(x, t) =

∞∑
n=1

Bne
− kn2π2t

L2 sin
(nπx
L

)
.

The Superposition principle justified this solution for any finite
series, but can it be extended to the infinite series?

If f(x) is piecewise smooth, then the Fourier Convergence
Theorem shows that the Fourier series converges to the Initial
Conditions
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Differentiation of Fourier Series

Suppose we can differentiate the series term-by-term, then in t

∂u

∂t
= −

∞∑
n=1

kn2π2

L2
Bne

− kn2π2t
L2 sin

(nπx
L

)
.

Taking two partials with respect to x gives

∂2u

∂x2
= −

∞∑
n=1

n2π2

L2
Bne

− kn2π2t
L2 sin

(nπx
L

)
.

It follows that our solution above satisfies the heat equation:

ut = kuxx.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Fourier Series — (25/44)

Introduction
Fourier Sine and Cosine Series

Differentiation of Fourier Series
Method of Eigenfunction Expansion

Differentiation of Fourier Series
Differentiation of Cosine Series
Differentiation of Sine Series

Counterexample 1

Differentiation Counterexample: Consider the Fourier sine series for
f(x) = x with x ∈ [0, L]:

x ∼
∞∑

n=1

bn sin
(nπx
L

)
.

The Fourier coefficients satisfy:

bn =
2

L

∫ L

0
x sin

(nπx
L

)
=

2L

n2π2

(
sin
(nπ x

L

)
−
nπ x

L
cos
(nπ x

L

))∣∣∣∣L
0

= −
2L

nπ
cos(nπ) =

2L

nπ
(−1)n+1

Thus, we have

x ∼
∞∑

n=1

2L

nπ
(−1)n+1 sin

(nπx
L

)
, x ∈ [0, L).
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Counterexample 2

Differentiation Counterexample: Continuing with

x ∼
∞∑
n=1

2L

nπ
(−1)n+1 sin

(nπx
L

)
, x ∈ [0, L),

we differentiate the series term-by-term and obtain:

2

∞∑
n=1

(−1)n+1 cos
(nπx
L

)
.

However, the series above is clearly not the cosine series for f ′(x) = 1
(the derivative of x)

This series fails to converge anywhere, since the nth term doesn’t
approach zero!
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Differentiation of Fourier Series

When is term-by-term differentiation justified?

Theorem (Term-by-Term Differentiation)

A Fourier series that is continuous can be differentiated
term-by-term if f ′(x) is piecewise smooth.

Corollary

If f(x) is piecewise smooth, then the Fourier series of a
continuous function, f(x) can be differentiated term-by-term if
f(−L) = f(L).
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Differentiation of Fourier Cosine Series

From our earlier result, if f(x) is continuous, then its Fourier cosine
series is continuous, avoiding jump discontinuities where difficulties
occur for term-by-term differentiation

Theorem (Cosine Series Term-by-Term Differentiation)

If f ′(x) is piecewise smooth, then a continuous Fourier cosine
series of f(x) can be differentiated term-by-term.

Corollary (Cosine Series Term-by-Term Differentiation)

If f ′(x) is piecewise smooth, then the Fourier cosine series of a
continuous function f(x) can be differentiated term-by-term.
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Cosine Series Term-by-Term Differentiation

Thus, if

f(x) = A0 +

∞∑
n=1

An cos
(nπx
L

)
, 0 ≤ x ≤ L,

where equality implies convergence for all 0 ≤ x ≤ L, the theorem
above implies that

f ′(x) ∼ −
∞∑
n=1

(nπ
L

)
An sin

(nπx
L

)
.

This sine series converges to points of continuity of f ′(x) and to the
average where the Fourier sine series of f ′(x) is discontinuous.
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Cosine Example 1

Example: Consider f(x) = x on 0 ≤ x ≤ L. Create an even extension, then make
this 2L-periodic as seen in the graph.
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The function has a continuous,
piecewise smooth Fourier cosine series.

By our theorem, this Fourier series
converges

The Fourier coefficients are

A0 =
1

L

∫ L

0
xdx =

x2

2L

∣∣∣∣L
0

=
L

2

and

An =
2

L

∫ L

0
x cos

(nπx
L

)
dx =

(
2L

n2π2
cos
(nπx
L

)
+

2x

nπ
sin
(nπx
L

))∣∣∣∣L
0

=
2L

n2π2
((−1)n − 1)
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Cosine Example 2

Thus,

x =
L

2
−

4L

π2

∑
n odd

1

n2
cos
(nπx
L

)
,

where the series converges pointwise to the graph on the previous slide.

Note: This series converges absolutely by comparison to the series for 1
n2
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The derivative of f(x) is piecewise
constant, as seen in the graph (right).

Differentiating term-by-term gives

1 ∼
4

π

∑
n odd

1

n
sin
(nπx
L

)
, 0 < x < L.

The weaker series convergence is easily
seen, and it is easy to verify that this is
the sine series for f ′(x) = 1.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Fourier Series — (32/44)



Introduction
Fourier Sine and Cosine Series

Differentiation of Fourier Series
Method of Eigenfunction Expansion

Differentiation of Fourier Series
Differentiation of Cosine Series
Differentiation of Sine Series

Sine Series Term-by-Term Differentiation

Similar results hold for the sine series with more conditions

Theorem

Sine Series Term-by-Term Differentiation] If f ′(x) is piecewise
smooth, then a continuous Fourier sine series of f(x) can be
differentiated term-by-term.

Corollary (Sine Series Term-by-Term Differentiation)

If f ′(x) is piecewise smooth, then the Fourier sine series of a
continuous function f(x) can be differentiated term-by-term if
f(0) = 0 and f(L) = 0.
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Sine Series Term-by-Term Differentiation

Proof: We prove term-by-term differentiation of the Fourier sine
series of a continuous function f(x), when f ′(x) is piecewise
smooth and f(0) = 0 = f(L):

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
,

where Bn are expressed later. Equality holds if f(0) = 0 = f(L).

If f ′(x) is piecewise smooth, then f ′(x) has a Fourier cosine series

f ′(x) ∼ A0 +

∞∑
n=1

An cos
(nπx
L

)
,

where A0 and An are expressed later.

This series will not converge to f ′(x) at points of discontinuity.
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Sine Series Term-by-Term Differentiation

Proof (cont): Need to verify that

f ′(x) ∼
∞∑
n=1

nπ

L
Bn cos

(nπx
L

)
.

The Fundamental Theorem of Calculus gives:

A0 =
1

L

∫ L

0

f ′(x)dx =
1

L

(
f(L)− f(0)

)
.

Integrating by parts,

An =
2

L

∫ L

0
f ′(x) cos

(nπx
L

)
dx

=
2

L

[
f(x) cos

(nπx
L

)∣∣∣L
0

+
nπ

L

∫ L

0
f(x) sin

(nπx
L

)
dx

]
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Sine Series Term-by-Term Differentiation

Proof (cont): However, Bn, the Fourier sine series coefficient
of f(x) is

Bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx,

so for n 6= 0

An =
nπ

L
Bn +

2

L

[
(−1)nf(L)− f(0)

]
.

It follows that we need f(0) = 0 = f(L) for both A0 = 0 and
An = nπ

L Bn, completing the proof.

However, this proof gives us more information about differentiating
the Fourier sine series.
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Sine Series Term-by-Term Differentiation

The more general theorem for differentiating the Fourier sine
series is below:

Theorem

If f ′(x) is piecewise smooth, then the Fourier sine series of a
continuous function f(x),

f(x) ∼
∞∑
n=1

Bn sin
(nπx
L

)
cannot, in general be differentiated term-by-term. However,

f ′(x) ∼
1

L

[
f(L)− f(0)

]
+

∞∑
n=1

(
nπ

L
Bn +

2

L

[
(−1)nf(L)− f(0)

])
cos
(nπx
L

)
.
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Sine Series Term-by-Term Differentiation

Example: Previously considered f(x) = x with a Fourier sine
series and showed this could not be differentiated term-by-term.

The Fourier sine series satisfies:

f(x) = x ∼ 2

∞∑
n=1

L(−1)n+1

nπ
sin
(nπx
L

)
.

Since f(0) = 0 and f(L) = L, from the general formula above:

A0 =
1

L

(
f(L)− f(0)

)
= 1.

and

An =
nπ

L
Bn +

2

L

[
(−1)nf(L)− f(0)

]
= 2(−1)n+1 + 2(−1)n = 0.

It follows that we obtain the correct derivative

f ′(x) = 1.
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Method of Eigenfunction Expansion

Want to apply techniques of differentiating a Fourier series
term-by-term to PDEs

Use an alternative method of eigenfunction expansion, which can
be applied to nonhomogeneous BCs

Consider an eigenfunction expansion of the form

u(x, t) ∼
∞∑
n=1

Bn(t) sin
(nπx
L

)
,

where the Fourier sine coefficients depend on time, t
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Method of Eigenfunction Expansion

The initial condition, u(x, 0) = f(x), is satisfied if

f(x) ∼
∞∑
n=1

Bn(0) sin
(nπx
L

)
,

where the initial Fourier sine coefficients are

Bn(0) =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

Can we differentiate term-by-term to satisfy the heat equation,

ut = kuxx?

Need two partial derivatives with respect to x and one partial
derivative with respect to t.
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Method of Eigenfunction Expansion

If u(x, t) is continuous, then the Fourier sine series can be
differentiated term-by-term provided

u(0, t) = 0 and u(L, t) = 0.

(homogeneous BCs)

The result is
∂u

∂x
∼
∞∑
n=1

nπ

L
Bn(t) cos

(nπx
L

)
,

which is a Fourier cosine series

Provided ∂u
∂x is continuous, it can be differentiated term-by-term:

∂2u

∂x2
∼ −

∞∑
n=1

n2π2

L2
Bn(t) sin

(nπx
L

)
,
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Method of Eigenfunction Expansion

The two derivatives w.r.t. x could be taken term-by-term provided
the problem has homogeneous BCs.

Need
∂u

∂t
∼
∞∑
n=1

dBn
dt

sin
(nπx
L

)
.

If term-by-term evaluation is justified, then

dBn
dt

= −kn
2π2

L2
Bn(t),

so

Bn(t) = Bn(0)e−
n2π2

L2 kt.
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Method of Eigenfunction Expansion

Theorem

The Fourier series of a continuous function u(x, t)

u(x, t) = a0(t) +

∞∑
n=1

(
an(t) cos

(nπx
L

)
+ bn(t) sin

(nπx
L

))
,

can be differentiated term-by-term with respect to t

∂u(x, t)

∂t
= a′0(t) +

∞∑
n=1

(
a′n(t) cos

(nπx
L

)
+ b′n(t) sin

(nπx
L

))
,

if ∂u
∂t is piecewise smooth.

This theorem justifies the use of separation of variables and our
solution.
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Term-by-Term Integration

Theorem

A Fourier series of a piecewise smooth f(x) can always be
integrated term-by-term and the result is a convergent infinite series
that always converges to the integral of f(x) for −L ≤ x ≤ L (even if
the original Fourier series has jump discontinuities.
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