Outline

Math 531 －Partial Differential Equations

Fourier Series

Joseph M．Mahaffy，
〈jmahaffy＠mail．sdsu．edu〉
Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2023

5050

Introduction
Fourier Sine and Cosine Series
Differentiation of Fourier Series
Method of Eigenfunction Expansion

Definitions

Convergence Theorem
Example

Introduction
The separation of variables technique solved our various PDEs provided we could write：

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right) .
$$

Questions：
（1）Does the infinite series converge？
（2）Does it converge to $f(x)$ ？
（3）Is the resulting infinite series really a solution of the PDE（and its subsidiary conditions）？

Mathematically，these are all difficult problems，yet these solutions have worked well since the early 1800＇s．

Introduction
－Definitions
－Convergence Theorem
－Example

（2）
Fourier Sine and Cosine Series －Gibbs Phenomenon
－Continuous Fourier Series

（3）
Differentiation of Fourier Series －Differentiation of Fourier Series －Differentiation of Cosine Series －Differentiation of Sine Series

Method of Eigenfunction Expansion

Fourier Sine and Cosine Series Differentiation of Fourier Series Method of Eigenfunction Expansion

Definitions

Convergence Theorem
Example

Definitions

Begin by restricting the class of $f(x)$ that we＇ll consider．
Definition（Piecewise Smooth）
A function $f(x)$ is piecewise smooth on some interval if and only if $f(x)$ is continuous and $f^{\prime}(x)$ is continuous on a finite collection of sections of the given interval．

The only discontinuities allowed are jump discontinuities．

Definition（Jump Discontinuity）

A function $f(x)$ has a jump discontinuity at a point $x=x_{0}$ ，if the limit from the right $\left[f\left(x_{0}^{+}\right)\right]$and the limit from the left $\left[f\left(x_{0}^{-}\right)\right]$both exist and are not equal

Piecewise smooth allows only a finite number of jump discontinuities in the function，$f(x)$ ，and its derivative，$f^{\prime}(x)$ ．

The graph on the left is piecewise smooth with the function being continuous，but having a jump discontinuity in the derivative at $x=0$

The graph on the right is not piecewise smooth，as the derivative becomes unbounded in any neighborhood of $x=0$

Introduction

Convergence Theorem

Example

Fourier Series

Definitions of Fourier coefficients and a Fourier series．We must distinguish between a function $f(x)$ and its Fourier series over the interval $-L \leq x \leq L$ ．

$$
\text { Fourier series }=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

The infinite series may not converge，and if it converges，it may not converge to $f(x)$
If the series converges，the Fourier coefficients a_{0}, a_{n} ，and b_{n} use certain orthogonality integrals．

Definitions

Example

We write the Fourier series

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

Theorem（Fourier convergence）
If $f(x)$ is piecewise smooth on the interval $-L \leq x \leq L$ ，then the Fourier series of $f(x)$ converges to：
（1）The periodic extension of $f(x)$ ，where the periodic extension is continuous
（2）The average of the two limits，usually $\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]$，where the periodic extension has a jump discontinuity

Proof：The proof of this theorem requires significant techniques from Mathematical analysis，which is beyond the scope of this course．5050

Introduction

Fourier Sine and Cosine Series Differentiation of Fourier Series

Definitions

onvergence Theoren
Example

Example

The sine coefficients：

$$
\begin{aligned}
b_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{1}^{2} \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{\cos (n \pi / 2)-\cos (n \pi)}{n \pi}=\frac{1}{n \pi}\left(\cos \left(\frac{n \pi}{2}\right)-(-1)^{n}\right) .
\end{aligned}
$$

The function，$f(x)$ ，and truncated Fourier series．

Fourier series，$n=20$

Fourier series，$n=200$

Fourier Sine and Cosine Series

Definitions
Example

Example

Find the Fourier series with $L=2$ ．
The Fourier constant coefficient is

$$
a_{0}=\frac{1}{4} \int_{-2}^{2} f(x) d x=\frac{1}{4} \int_{1}^{2} 1 d x=\frac{1}{4} .
$$

The cosine coefficients：

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{-2}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\frac{1}{2} \int_{1}^{2} \cos \left(\frac{n \pi x}{2}\right) d x \\
& =\frac{\sin (n \pi)-\sin (n \pi / 2)}{n \pi}=-\frac{1}{n \pi} \sin \left(\frac{n \pi}{2}\right) .
\end{aligned}
$$

\% Periodic Fourier series, $-2<\mathrm{x}<2$
\% Step function at $\mathrm{x}=1$
NptsX=2000; \% number of x pts
$\mathrm{Nf}=200$; \quad number of Fourier terms
x=linspace (-5,5,NptsX) ;
a0=1/4;
$a=z e r o s(1, N f) ;$
b=zeros(1,Nf);
f=a0*ones(1,NptsX);
for $\mathrm{n}=1: \mathrm{Nf}$
$a(n)=-\sin (n * p i / 2) /(n * p i) ;$ Fourier cosine ...
coefficients
$\mathrm{b}(\mathrm{n})=(\cos (\mathrm{n} * \mathrm{pi} / 2)-\cos (\mathrm{n} * \mathrm{pi})) /(\mathrm{n} * \mathrm{pi}) ; \% \ldots$
Fourier sine coefficients

Fourier Sine Series

If $f(x)$ is an odd function，then $a_{0}=a_{n}=0$ and only the sine series remains：

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
$$

This series appeared for solutions of the heat equation， $0<x<L$ with $u(0, t)=u(L, t)=0$
The Sine series produces an odd extension of $f(x)$

$$
\begin{aligned}
f(x) & \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad 0<x<L \\
B_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
\end{aligned}
$$

Fourier Sine and Cosine Series Differentiation of Fourier Series

Gibbs Phenomenol
Continuous Fourier Series

Fourier Sine and Cosine Series
Differentiation of Fourier Series
Gibbs Phenomenon
Method of Eigenfunction Expansion
Continuous Fourier Series

Gibbs Phenomenon

Let $f(x)=100$ ，and consider the odd extension of this function，so $f(x)$ is defined by

$$
f(x)=\left\{\begin{array}{rc}
100, & 0<x<L \\
-100, & -L<x<0
\end{array}\right.
$$

and extend it periodically with period $2 L$ ．
As an odd function，this has a Fourier sine series

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

with

$$
B_{n}=\frac{2}{L} \int_{0}^{L} 100 \sin \left(\frac{n \pi x}{L}\right) d x=\left\{\begin{array}{cc}
\frac{400}{n \pi}, & n \text { odd } \\
0, & n \text { even }
\end{array}\right.
$$

Gibbs Phenomenon

We examine the graph for $n=1,3,5,7$ of

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { with } \quad B_{n}=\left\{\begin{array}{cl}
\frac{400}{n \pi}, & n \text { odd } \\
0, & n \text { even }
\end{array}\right.
$$

Introduction
Cosine Series
Differentiation of Fourier Series
Method of Eigenfunction Expansion
Gibbs Phenomenon hod of Eigenfunction Expansion

Gibbs Phenomenon

We examine the graphs for $n=40$（ 20 nonzero terms）and $n=200$ （100 nonzero terms）for

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { with } \quad B_{n}=\left\{\begin{array}{cc}
\frac{400}{n \pi}, & n \text { odd } \\
0, & n \text { even } .
\end{array}\right.
$$

$n=40$

$n=200$

Gibbs Phenomenon

The Fourier series for the $2 L$－periodic，odd extension of $f(x)=100$ ，

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { with } \quad B_{n}=\left\{\begin{array}{cc}
\frac{400}{n \pi}, & n \text { odd } \\
0, & n \text { even }
\end{array}\right.
$$

It is clear that the Fourier series converges to $\mathbf{0}$ at $x=0$ as every term in the series is $\mathbf{0}$ ．

Similarly，the Fourier series converges to $\mathbf{0}$ at any $x=n L$ for $n=0, \pm 1, \pm 2, \ldots$, as every term in the series is also 0 ．

The Fourier Convergence Theorem claims that the series converges to $\mathbf{1 0 0}$ for each $0<x<L$ ．

Fourier Sine and Cosine Series
Differentiation of Fourier Series
Method of Eigenfunction Expansion
Gibbs Phenomenon
Continuous Fourier Series
Gibbs Phenomenon

The $2 L$－periodic，odd extension of $f(x)=100$ ，

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \text { with } \quad B_{n}=\left\{\begin{array}{cc}
\frac{400}{n \pi}, & n \text { odd } \\
0, & n \text { even }
\end{array}\right.
$$

by the Fourier Convergence Theorem converges to $\mathbf{1 0 0}$ for $0<x<L$ ，which is hard to show for most values of x ．

Consider $x=\frac{L}{2}$ ，

$$
\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{2}\right)=\frac{400}{\pi}\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)
$$

Euler＇s formula gives $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$ ，（which is a very inefficient way to compute π ，as it is an alternating series that does not converge absolutely）

Gibbs Phenomenon

Harder to show convergence for other values of $x \in(0, L)$ ．
Convergence easily visualized as worst near jump discontinuity
For any finite sum in the series near $x=0$ ，the solution starts at $\mathbf{0}$ ， then shoots up beyond 100 ，the primary overshoot

Examine previous $f(x)$
Figure（close up）with $n=1000$（or 500 nonzero terms）
The overshoot is about 20%

The maximum occurs at （0．01，117．898）

Theorem（Fourier Series）
For a piecewise smooth $f(x)$ ，the Fourier series of $f(x)$ is continuous and converges to $f(x)$ for $x \in[-L, L]$ if and only if $f(x)$ is continuous and $f(-L)=f(L)$ ．

Theorem（Fourier Cosine Series）

For a piecewise smooth $f(x)$ ，the Fourier cosine series of $f(x)$ is continuous and converges to $f(x)$ for $x \in[0, L]$ if and only if $f(x)$ is continuous．

Theorem（Fourier Sine Series）

For a piecewise smooth $f(x)$ ，the Fourier sine series of $f(x)$ is continuous and converges to $f(x)$ for $x \in[0, L]$ if and only if $f(x)$ is continuous and both $f(0)=0$ and $f(L)=0$ ．

This overshoot is an example of the Gibbs phenomenon
For large n ，in general，there is an overshoot of approximately 9% of the jump discontinuity
Note the previous example had a jump of 200，and we saw the maximum of $\mathbf{1 1 7 . 8 9 8}$ ，which is 9% of the jump

The Gibbs phenomenon only occurs for a finite series at a jump discontinuity

Previously，we solved
PDF：$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, \quad$ BC：$u(0, t)=0$,

$$
u(L, t)=0 .
$$

IC：$u(x, 0)=f(x)$ ，
and obtained the solution

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-\frac{k n^{2} \pi^{2} t}{L^{2}} t} \sin \left(\frac{n \pi x}{L}\right) .
$$

The Superposition principle justified this solution for any finite series，but can it be extended to the infinite series？

If $f(x)$ is piecewise smooth，then the Fourier Convergence Theorem shows that the Fourier series converges to the Initial Conditions

Differentiation Counterexample：Consider the Fourier sine series for $f(x)=x$ with $x \in[0, L]$ ：

$$
x \sim \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

The Fourier coefficients satisfy

$$
\begin{aligned}
b_{n} & =\frac{2}{L} \int_{0}^{L} x \sin \left(\frac{n \pi x}{L}\right) \\
& =\left.\frac{2 L}{n^{2} \pi^{2}}\left(\sin \left(\frac{n \pi x}{L}\right)-\frac{n \pi x}{L} \cos \left(\frac{n \pi x}{L}\right)\right)\right|_{0} ^{L} \\
& =-\frac{2 L}{n \pi} \cos (n \pi)=\frac{2 L}{n \pi}(-1)^{n+1}
\end{aligned}
$$

It follows that our solution above satisfies the heat equation：

$$
u_{t}=k u_{x x} .
$$

Fourier Sine and Cosine Series Differentiation of Fourier Series	Differentiation of Fourier Series Differentiation of Cosine Series Differentiation of Sine Series
Differentiation Oigenfunction Expansion	

When is term－by－term differentiation justified？

Theorem（Term－by－Term Differentiation）
A Fourier series that is continuous can be differentiated term－by－term if $f^{\prime}(x)$ is piecewise smooth．

Corollary

If $f(x)$ is piecewise smooth，then the Fourier series of a continuous function，$f(x)$ can be differentiated term－by－term if $f(-L)=f(L)$ ．

However，the series above is clearly not the cosine series for $f^{\prime}(x)=1$ （the derivative of x ）
This series fails to converge anywhere，since the $n^{\text {th }}$ term doesn＇t approach zero！

Differentiation of Fourier Cosine Series

From our earlier result，if $f(x)$ is continuous，then its Fourier cosine series is continuous，avoiding jump discontinuities where difficulties occur for term－by－term differentiation

Theorem（Cosine Series Term－by－Term Differentiation）

If $f^{\prime}(x)$ is piecewise smooth，then a continuous Fourier cosine series of $f(x)$ can be differentiated term－by－term．

Corollary（Cosine Series Term－by－Term Differentiation）

If $f^{\prime}(x)$ is piecewise smooth，then the Fourier cosine series of a continuous function $f(x)$ can be differentiated term－by－term．

Differentiation of Fourier Series Differentiation of Fourier Series Method of Eigenfunction Expansion

Differentiation of Cosine Series
Differentiation of Sine Series

Fourier Sine and Cosine Series Differentiation of Fourier Series	Differentiation of Fourier Series Differentiation of Cosine Series Differentiation of Sine Series
Cosine Exam of Eigenfunction Expansion	

Example：Consider $f(x)=x$ on $0 \leq x \leq L$ ．Create an even extension，then make this $2 L$－periodic as seen in the graph．

The function has a continuous， piecewise smooth Fourier cosine series．

By our theorem，this Fourier series converges

The Fourier coefficients are

$$
A_{0}=\frac{1}{L} \int_{0}^{L} x d x=\left.\frac{x^{2}}{2 L}\right|_{0} ^{L}=\frac{L}{2}
$$

and

$$
\begin{aligned}
A_{n} & =\frac{2}{L} \int_{0}^{L} x \cos \left(\frac{n \pi x}{L}\right) d x=\left.\left(\frac{2 L}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{L}\right)+\frac{2 x}{n \pi} \sin \left(\frac{n \pi x}{L}\right)\right)\right|_{0} ^{L} \\
& =\frac{2 L}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

Similar results hold for the sine series with more conditions

Theorem

Sine Series Term－by－Term Differentiationl If $f^{\prime}(x)$ is piecewise smooth，then a continuous Fourier sine series of $f(x)$ can be differentiated term－by－term．

Corollary（Sine Series Term－by－Term Differentiation）

If $f^{\prime}(x)$ is piecewise smooth，then the Fourier sine series of a continuous function $f(x)$ can be differentiated term－by－term if $f(0)=0$ and $f(L)=0$ ．

Differentiation of Fourier Series
Sine Series Term－by－Term Differentiation
Proof（cont）：Need to verify that

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n} \cos \left(\frac{n \pi x}{L}\right) .
$$

The Fundamental Theorem of Calculus gives：

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f^{\prime}(x) d x=\frac{1}{L}(f(L)-f(0)) .
$$

Integrating by parts，

$$
\begin{aligned}
A_{n} & =\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& =\frac{2}{L}\left[\left.f(x) \cos \left(\frac{n \pi x}{L}\right)\right|_{0} ^{L}+\frac{n \pi}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x\right]
\end{aligned}
$$

Proof：We prove term－by－term differentiation of the Fourier sine series of a continuous function $f(x)$ ，when $f^{\prime}(x)$ is piecewise smooth and $f(0)=0=f(L)$ ：

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right),
$$

where B_{n} are expressed later．Equality holds if $f(0)=0=f(L)$ ． If $f^{\prime}(x)$ is piecewise smooth，then $f^{\prime}(x)$ has a Fourier cosine series

$$
f^{\prime}(x) \sim A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

where A_{0} and A_{n} are expressed later．
This series will not converge to $f^{\prime}(x)$ at points of discontinuity．

Proof（cont）：However，B_{n} ，the Fourier sine series coefficient of $f(x)$ is

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

so for $n \neq 0$

$$
A_{n}=\frac{n \pi}{L} B_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right]
$$

It follows that we need $f(0)=0=f(L)$ for both $A_{0}=0$ and $A_{n}=\frac{n \pi}{L} B_{n}$ ，completing the proof．
However，this proof gives us more information about differentiating the Fourier sine series．

Sine Series Term－by－Term Differentiation

The more general theorem for differentiating the Fourier sine series is below：

Theorem

If $f^{\prime}(x)$ is piecewise smooth，then the Fourier sine series of a continuous function $f(x)$ ，

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

cannot，in general be differentiated term－by－term．However，

$$
f^{\prime}(x) \sim \frac{1}{L}[f(L)-f(0)]+\sum_{n=1}^{\infty}\left(\frac{n \pi}{L} B_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right]\right) \cos \left(\frac{n \pi x}{L}\right) .
$$

Sine Series Term－by－Term Differentiation

Example：Previously considered $f(x)=x$ with a Fourier sine series and showed this could not be differentiated term－by－term． The Fourier sine series satisfies：

$$
f(x)=x \sim 2 \sum_{n=1}^{\infty} \frac{L(-1)^{n+1}}{n \pi} \sin \left(\frac{n \pi x}{L}\right) .
$$

Since $f(0)=0$ and $f(L)=L$ ，from the general formula above：

$$
A_{0}=\frac{1}{L}(f(L)-f(0))=1 .
$$

and

$$
\begin{aligned}
A_{n} & =\frac{n \pi}{L} B_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right] \\
& =2(-1)^{n+1}+2(-1)^{n}=0
\end{aligned}
$$

It follows that we obtain the correct derivative

$$
f^{\prime}(x)=1 .
$$

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Fourier Series

> Fourier Sine and Cosine Series Differentiation of Fourier Series Method of Eigenfunction Expansion

Method of Eigenfunction Expansion

Want to apply techniques of differentiating a Fourier series term－by－term to PDEs

Use an alternative method of eigenfunction expansion，which can be applied to nonhomogeneous BCs

Consider an eigenfunction expansion of the form

$$
u(x, t) \sim \sum_{n=1}^{\infty} B_{n}(t) \sin \left(\frac{n \pi x}{L}\right),
$$

where the Fourier sine coefficients depend on time，t

Method of Eigenfunction Expansion

If $u(x, t)$ is continuous，then the Fourier sine series can be differentiated term－by－term provided

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0
$$

（homogeneous BCs）
The result is

$$
\frac{\partial u}{\partial x} \sim \sum_{n=1}^{\infty} \frac{n \pi}{L} B_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

which is a Fourier cosine series
Provided $\frac{\partial u}{\partial x}$ is continuous，it can be differentiated term－by－term：

$$
\frac{\partial^{2} u}{\partial x^{2}} \sim-\sum_{n=1}^{\infty} \frac{n^{2} \pi^{2}}{L^{2}} B_{n}(t) \sin \left(\frac{n \pi x}{L}\right),
$$

Method of Eigenfunction Expansion

Theorem

The Fourier series of a continuous function $u(x, t)$

$$
u(x, t)=a_{0}(t)+\sum_{n=1}^{\infty}\left(a_{n}(t) \cos \left(\frac{n \pi x}{L}\right)+b_{n}(t) \sin \left(\frac{n \pi x}{L}\right)\right),
$$

can be differentiated term－by－term with respect to t

$$
\frac{\partial u(x, t)}{\partial t}=a_{0}^{\prime}(t)+\sum_{n=1}^{\infty}\left(a_{n}^{\prime}(t) \cos \left(\frac{n \pi x}{L}\right)+b_{n}^{\prime}(t) \sin \left(\frac{n \pi x}{L}\right)\right),
$$

if $\frac{\partial u}{\partial t}$ is piecewise smooth．
This theorem justifies the use of separation of variables and our solution．

Theorem

A Fourier series of a piecewise smooth $f(x)$ can always be integrated term－by－term and the result is a convergent infinite series that always converges to the integral of $f(x)$ for $-L \leq x \leq L$（even if the original Fourier series has jump discontinuities．

