
Math 124 Review Exam 2 - Solutions

1. a. The next two years satisfy

F1 = 0.86(100) + 280 = 366 and F2 = 0.86(366) + 280 = 594.8.

At equilibrium, Fe = 0.86Fe + 280 or Fe = 2000. This is a stable equilibrium. (The slope
a = 0.86 < 1.)

b. The F -intercept is 100, and there is a horizontal asymptote at F = 2000. Below is the graph
of this function.
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c. Since F (6) = 1227.5176 and F (5) = 1102.50355, then the slope of the secant line is given by

F (6)− F (5)

6− 5
= 125.01.

Since F (5.1) = 1115.8655 and F (5) = 1102.50355, then the slope of the secant line is given by

F (5.1) − F (5)

5.1 − 5
= 133.62.

2. a. The average velocity over the for t ∈ [0, 2] is 16 ft/sec. The average velocity over the for
t ∈ [1, 1.2] is 12.8 ft/sec. The average velocity over the for t ∈ [1, 1.01] is 15.84 ft/sec.

b. The ball hits the ground at 5 sec with an approximate velocity of vave = h(5)−h(4.999)
0.001 =

−111.984 ft/sec. The graph is below.
3. a. Asymptotically, the leopard shark can reach 2.1 m. The length of the leopard shark at birth
is 0.2 m, at 1 yr is 0.62 m, at 5 yr is 1.56 m, and at 10 yr is 1.94 m. The maximum length is 2.1 m.
The shark reaches 90% of its maximum length at t = 8.81 yr. The graph is below.

b. The average growth rate for t ∈ [1, 5] is gave = 0.2338 m/yr. The average growth rate for
t ∈ [5, 10] is gave = 0.07768 m/yr. The average growth rate for t ∈ [5, 6] is gave = 0.1204 m/yr.
The average growth rate for t ∈ [5, 5.01] is gave = 0.1359 m/yr. This last approximation is the best
approximation to the derivative (which has the value of L′(5) = 0.1361 m/yr).
4. a. The serval can catch any bird flying at heights from 16 to 25 ft or up to 9 ft above the serval.
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b. The average velocity of the serval for t ∈ [0, 14 ] is vave = 20 ft/sec. The average velocity
of the serval for t ∈ [12 , 1] is vave = 0 ft/sec. The average velocity of the serval for t ∈ [1, 54 ] is
vave = −12 ft/sec.

c. The velocity satisfies:
v(t) = h ′(t) = 24− 32 t.

Thus, v(1) = −8 ft/sec.

d. The serval hits the ground at t = 2. The velocity when it hits the ground is v(2) = −40 ft/sec.
A graph of the height of the serval is below.

5. a. The vertical velocity is v0 = 420
√
2 ≃ 593.97 cm/sec. The impala is in the air for t = 6

√
2

7 ≃
1.21218 sec.

b. The average velocity for the impala between t = 0 and t = 0.5 is vave = 420
√
2 − 245 ≃

348.97 cm/sec.

6. a. The slope of the secant line is

m(h) =
f(2 + h)− f(2)

h
=

2+h−2
2(2+h)+2 − 0

h
=

1

6 + 2h
.
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b. The slope of the tangent line

lim
h→0

1

6 + 2h
=

1

6
.

The equation of the tangent line is

y − 0 =
1

6
(x− 2) or y =

1

6
x− 1

3
.

c. The x-intercept is x = 2, and the y-intercept is y = −1. There is a vertical asymptote at
x = −1 and a horizontal asymptote at y = 1

2 . Below is the graph of the function and the tangent
line.

Problem 10

7. a. Write f(x) as powers of x as much as possible (remove denominators), so

f(x) = 6x3 + 2x−2 − e2x(x2 − 9).

Apply power rules, product rule, and the rules for exponential yielding

f ′(x) = 6(3x2) + 2(−2x−3)−
(

e2x(2x) + 2e2x(x2 − 9)
)

= 18x2 − 4

x3
− 2e2x(x2 + x− 9)



b. Use the properties of logarithms to write

g(x) = 2e−3x + 2 ln(x)− 5.

Use the rules of differentiation of exponentials and logarithms to give

g ′(x) = 2(−3)e−3x +
2

x

=
2

x
− 6e−3x

c. Leave h(x) in the form,

h(x) = 2x6 ln(x)− esin(2x) +
1

2
e−4x.

Apply power rules, product rule, chain rule, and the rules for exponentials and logarithms yielding

h ′(x) = 2

(

(6x5) ln(x) + x6
(

1

x

))

− esin(2x)(2 cos(2x)) +
−4

2
e−4x

= 12x5 ln(x) + 2x5 − 2 cos(2x)esin(2x) − 2e−4x

d. Given:
b(x) = ln(cos(3x))− ex

2+4x.

Apply power rule, chain rule, and the rules for exponentials and logarithms yielding

b ′(x) = −3 sin(3x)

cos(3x)
− ex

2+4x(2x+ 4).

e. Write

q(x) =
2 + e2x

x2 − 3
− (x2 − sin3(x2))4.

Apply power rule, quotient rule, chain rule, and the rules for exponentials and trig functions yielding

q ′(x) =
(x2 − 3)(2e2x)− (2 + e2x)(2x)

(x2 − 3)2
− 4(x2 − sin3(x2))3(2x− 6x sin2(x2) cos(x2)).

f. Write k(t) in the following form:

k(t) =
1

4
t2 − 4(cos(t2 + 2))−1 + 4t−

1

2 .

Apply power rules, the chain rule, and trig function rule yielding

k ′(t) =
1

2
t+ 4(cos(t2 + 2))−2(− sin(t2 + 2))2t − 2t−

3

2

=
1

2
t− 8t sin(t2 + 2)

(cos(t2 + 2))2
− 2t−

3

2



g. Write r(x) as follows:

r(x) = e2x(x3 − 5x+ 7)4 − e−x cos(2x).

Apply the product and chain rules with rules for exponentials and cosine to obtain

r ′(x) =
(

e2x4(x3 − 5x+ 7)3(3x2 − 5) + 2e2x(x3 − 5x+ 7)4
)

+e−x(2 sin(2x) + cos(2x)).

h. Write as

w(x) =
x4 + e−2x

x3 + cos(4x)
+ 7x(x2 + 2x+ 5)−

1

2 .

Apply the quotient, product, and chain rules:

w ′(x) =
(x3 + cos(4x))(4x3 − 2e−2x)− (x4 + e−2x)(3x2 − 4 sin(4x))

(x3 + cos(4x))2

−7x

2
(x2 + 2x+ 5)−

3

2 (2x+ 2) + 7(x2 + 2x+ 5)−
1

2 .

8. a. y = 27x− x3

Domain is all x.
y-intercept: y(0) = 0, so (0, 0).
x-intercepts: 27x− x3 = x(27− x2) = 0, so x = 0 and x = ±

√
27 = ±3

√
3.

No asymptotes
Derivative y ′(x) = 27− 3x2

Extrema are where y ′(x) = −3(x2 − 9) = 0, so x = ±3. With y(−3) = 27(−3) − (−3)3 = −54 and
y(3) = 54. Thus, (3, 54) is a maximum, and (−3,−54) is a minimum.
Second derivative y ′′(x) = −3(2)x = −6x.
Point of inflection (y ′′ = 0): At x = 0 or (0, 0).

–40

–20

0

20

40

y

–6 –4 –2 2 4 6

x

–150

–100

–50

50

y

–4 –2 2 4
x

Problem 12a Problem 12b

b. y = 18x2 − x4

Domain is all x.
y-intercept: y(0) = 0, so (0, 0).



x-intercept: x2(18− x2) = −x2(x+ 3
√
2)(x− 3

√
2) = 0, so x = 0 and x = ±3

√
2.

No asymptotes
Derivative y ′(x) = 36x− 4x3 = 4x(9− x2)
Critical points satisfy y ′(x) = −4x(x2 − 9) = 0, so x = 0,±3. With y(0) = 0, (0, 0) is a minimum.
When x = ±3,y(±3) = 81, so there are local maxima at (−3, 81) and (3, 81).
Second derivative y ′′(x) = 36− 12x2 = 12(3 − x2).
Point of inflection (y ′′ = 0): At x = ±

√
3, giving (±

√
3, 45).

c. y = 4xe−0.02x

Domain is all x.
y-intercept: y(0) = 0, so (0, 0), which is also, the only x-intercept.
Horizontal asymptote: As x → ∞, y → 0, so y = 0 is a horizontal asymptote (looking to the right).
Derivative: By the product rule, y ′(x) = 4x(−0.02)e−0.02x + 4e−0.02x = 4e−0.02x(1− 0.02x)
Critical points satisfy y ′(x) = 0, so 1 − 0.02x = 0 or x = 50. With y(50) = 200e−1 ≃ 73.576,
(50, 73.576) is a maximum.
Second derivative y ′′(x) = 4e−0.02x(−0.02)+4(−0.02)e−0.02x(1− 0.02x) = −0.16(1− 0.01x)e−0.02x .
Point of inflection (y ′′ = 0): At x = 100, y(100) = 400e−2 ≃ 54.134. Thus, (100, 54.134).
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Problem 12c Problem 12d

d. y = (x+ 3) ln(x+ 3)
Domain is x > −3. The y-intercept is 3 ln(3) ≃ 3.2958.
x-intercept: Where (x+ 3) ln(x+ 3) = 0, which occurs when ln(x+ 3) = 0 or x = −2.
There are no asymptotes. (It can be shown that as x → −3, y → 0.)
Derivative: By the product rule, y ′(x) = x+3

x+3 + ln(x+ 3) = 1 + ln(x+ 3).

Critical points satisfy y ′(x) = 0, so ln(x+3) = −1 or x+3 = e−1 ≃ 0.3679, so x ≃ −2.6321. When
x = e−1 − 3, y = −e−1 and is a minimum.
Second derivative y ′′(x) = 1

x+3 > 0 for x > −3. There is no point of inflection, and the function is
concave up.

e. y = (x− 4)e2x

Domain is all x.
y-intercept: y(0) = −4, so (0,−4).
x-intercept: Since the exponential function is not zero, y = 0 when x = 4.
Horizontal asymptote: As x → −∞, y → 0, so y = 0 is a horizontal asymptote (looking to the left).
Derivative: By the product rule, y ′(x) = 2(x− 4)e2x + e2x = (2x− 7)e2x.
Critical points satisfy y ′(x) = 0, so 2x − 7 = 0 or x = 3.5. With y(3.5) = −0.5e7 ≃ −548.3,
(3.5,−548.3) is a minimum.
Second derivative y ′′(x) = 2(2x − 7)e2x + 2e2x = 4(x− 3)e2x.



Point of inflection (y ′′ = 0): At x = 3, y(3) = −e6 ≃ −403.4. Thus, (3,−402.4).
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Problem 12e Problem 12f

f. y =
10(x− 2)

(1 + 0.5x)3

Domain is all x 6= −2.
y-intercept: y(0) = −20, so (0,−20).
x-intercept: Numerator equal to zero, so x = 2 or (2, 0)
Vertical asymptote: x = −2.
Horizontal asymptote: The power of the denominator exceeds the power of the numerator, so y = 0
is a horizontal asymptote

Derivative: By the quotient rule, y ′(x) = 10 (1+0.5x)3−(x−2)3(1+0.5x)2(0.5)
(1+0.5x)6 = 10(4−x)

(1+0.5x)4 .

Critical points satisfy y ′(x) = 0, so 4 − x = 0 or x = 4. With y(4) = 20
27 ≃ 0.7407, (4, 0.7407) is a

relative maximum.
Second derivative y ′′(x) = 10−(1+0.5x)4−(4−x)4(1+0.5x)3(0.5)

(1+0.5x)8 = 15(x−6)
(1+0.5x)5 .

Since y ′′(x) = 0 and x = 6, there is a point of inflection at (6, 58 ).

g. y = x+
4

x
= x+ 4x−1

Domain is all x 6= 0.
Since there is a vertical asymptote at x = 0, there is no y-intercept.
We solve y = x2+4

x = 0 or x2 + 4 = 0, so no x-intercepts.

Derivative y ′(x) = 1− 4x−2 = x2−4
x2

Critical points satisfy y ′(x) = 0, so x2 − 4 = 0 or x = ±2. With y(−2) = −4, (−2,−4) is a local
maximum. With y(2) = 4, (2, 4) is a local minimum.
Second derivative y ′′(x) = 8x−3, which is never zero, so no points of inflection.

h. y =
4x2

x+ 3
Domain all x 6= −3
x and y-intercept: (0, 0).
Vertical asymptote: x = −3

Derivative: By the quotient rule, y ′(x) = 4(2x(x+3)−x2)
(x+3)2

= 4x(x+6)
(x+3)2

.

Critical points satisfy y ′(x) = 0, so x = 0 and x = −6. When x = 0, y = 0 and is a minimum.
When x = −6, y = −48 and is a maximum.

Second derivative y ′′(x) = 4((x2+6x+9)(2x+6)−(x2+6x)(2x+6))
(x+3)4

= 36(2x+6)
(x+3)4

. There is no point of inflec-
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Problem 12g Problem 12h

tion, as y ′′(x) = 0 at x = −3, the vertical asymptote.

9. a. The temperature is given by T (t) = 0.002t3 − 0.09t2 + 1.2t + 32, which upon differentiation
becomes

dT

dt
= 0.006 t2 − 0.18 t + 1.2.

At noon, T ′(12) = 0.006(144) − 0.18(12) = −0.096 ◦C/hr.

b. To find extrema, solve T ′(t) = 0.006(t2 − 30t+ 2000) = 0.006(t − 10)(t − 20) = 0. It follows
t = 10 and t = 20, so T (10) = 2 − 9 + 12 + 32 = 37 and T (20) = 16 − 36 + 24 + 32 = 36. The
maximum temperature of the subject occurs at 10 AM with a temperature of 37 ◦C, while the
minimum temperature of the subject occurs at 8 PM (t = 20) with a temperature of 36 ◦C.

10. By the product rule, the derivative is P ′(r) = 0.04e−0.2r − 0.008re−0.2r .The maximum prob-
ability occurs when the derivative is zero, 0.04e−0.2r − 0.008re−0.2r = 0.04e−0.2r(1 − 0.2r) or
0.2r = 1. Thus, the maximum probability of a seed landing occurs at r = 5 m with a proba-
bility of P (5) = 0.0736. The graph of the probability density function has an intercept at (0, 0)
(P (0) = 0), a horizontal asymptote of P = 0 (since for large r, P becomes arbitrarily small), and
a local maximum of (5, 0.0736).
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11. a. The equilibrium satisfies Ne(0.8 − 0.04 ln(Ne)) = 0. Since N = 0 is not in the domain.
Thus, the equilibrium satisfies 0.04 ln(Ne) = 0.8 or ln(Ne) = 20. It follows that the equilibrium is
Ne = 4.852 × 108.

b. By the product rule, the derivative is G′(N) = −N(0.04/N) + (0.8 − 0.04 ln(N)) = 0.76 −
0.04 ln(N). The maximum growth rate satisfies 0.76 − 0.04 ln(N) = 0 or ln(N) = 19. Thus, the



maximum rate of growth occurs at Nmax = e19 = 1.785 × 108 with a maximum growth rate of
G(Nmax) = 7.139 × 106.

c. Evaluating G(2 × 108) = 7.089 × 106, so the tumor is growing with this population of cells.
Evaluating G ′(2 × 108) = −0.004553, so the rate of growth of the tumor is decreasing with this
population of cells.

12. a. The concentration of glucose is given by g(t) = 80 + 150e−0.8t sin(t), so for it to reach
80 mg/100 ml of blood after t > 0, we need 80 = 80+150e−0.8t sin(t) or 0 = sin(t) or t = nπ, n =
0, 1, ... The next time is t1 = π ≈ 3.14 hr.

b. The rate of change of glucose per hour is

dg

dt
= 150

(

(−0.8)e−0.8t sin(t) + e−0.8t cos(t)
)

= 150 e−0.8t(cos(t)− 0.8 sin(t)).

At t = 1, g′(1) = 150 e−0.8(cos(1) − 0.8 sin(1)) = −8.9557 mg/100 ml of blood/hour. To find the
absolute maximum, we solve g ′(tmax) = 0, so

150 e−0.8tmax (cos(tmax)− 0.8 sin(tmax)) = 0,

cos(tmax) = 0.8 sin(tmax),

tan(tmax) = 1.25,

tmax = arctan(1.25) ≈ 0.8961 hr.

The absolute maximum is g(tmax) = 137.19 mg/100 ml of blood. The absolute minimum occurs
at tmin = tmax + π = 4.0376 with g(tmin) = 75.367 mg/100 ml of blood. The graph for the
concentration of glucose in the blood is below.

c. The level of insulin satisfies the function i(t) = 10(e−0.4t − e−0.5t), so

i′(t) = 10(−0.4e−0.4t + 0.5e−0.5t) = 5e−0.5t − 4e−0.4t.

The concentration is maximum where i′(t) = 0, so 5e−0.5t = 4e−0.4t or 5
4 = e−0.4te0.5t = e0.1t. It

follows that t = 10 ln
(

5
4

)

= 2.23 hr. The maximum concentration is i(2.23) = 10(e−0.4(2.23) −
e−0.5(2.23)) = 0.819. This graph starts at (0, 0) and asymptotically approaches zero for large time.
A graph of the insulin concentration is below also.

d. The rate of change of insulin per hour was computed above (i′(t)). The rate of change at
t = 1 is i′(1) = 5e−0.5 − 4e−0.4 = 0.351 units/hour.
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13. a. From the von Bertalanffy equation, it is easy to see that the graph passes through the origin,
giving the t and L-intercepts to both be 0. As t → ∞, L(t) → 16, so there is a horizontal asymptote
of L = 16. The graph of the length of the sculpin is below to the left.

b. The composite function satisfies:

W (t) = 0.07
(

16(1 − e−0.4t)
)3

= 286.72(1 − e−0.4t)3.

This function again passes through the origin, and it is easy to see that it has a horizontal asymptote
at W = 286.72.
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c. We apply the chain rule to differentiate W (t). The result is

W ′(t) = 3 · 286.72(1 − e−0.4t)2(0.4)e−0.4t = 344.064(1 − e−0.4t)2e−0.4t.

The second derivative combines the product rule and the chain rule, giving:

W ′′(t) = 344.064
(

−0.4(1 − e−0.4t)2e−0.4t + 2(1− e−0.4t)0.4e−0.4te−0.4t
)

= 137.6256(1 − e−0.4t)e−0.4t
(

−(1− e−0.4t) + 2e−0.4t
)

= 137.6256(1 − e−0.4t)e−0.4t
(

3e−0.4t − 1
)

.

The point of inflection is when the sculpin has its maximum weight gain, and this occurs when

W ′′(t) = 137.6256(1 − e−0.4t)e−0.4t
(

3e−0.4t − 1
)

= 0.

or

(3e−0.4t − 1) = 0 or e0.4t = 3 or t =
5 ln(3)

2
≃ 2.7465.

The maximum weight gain is
W ′(2.7465) = 50.97 g/yr.

14. a. The derivative is given by

f ′(t) =
2 cos(2t) cos(2t) + 2 sin(2t) sin(2t)

cos2(2t)
=

2

cos2(2t)
,

since sin2(2t) + cos2(2t) = 1. It follows that f ′(0) = 2
cos2(0) = 2. Notice that since the denominator

is squared, it follows that the derivative is always positive for all t that the derivative is defined.



b. f(t) is zero when sin(2t) = 0. The sine function is zero when its argument is an integer
multiple of π. For t ∈ [0, 2π], f(t) = 0 at t = 0, π/2, π, 3π/2, 2π. The cosine function is zero when
its argument is π/2 + nπ for n an integer. Thus, the vertical asymptotes occur halfway between
zeroes of f , so at t = π/4, 3π/4, 5π/4, 7π/4.

c. The graph of f(t) for t ∈ [0, 2π] is below to the left.

0 π/2 π 3π/2 2π
−10

−5

0

5

10

t (hr)

y
(t
)
(u
n
it
s)

0 2 4 6 8 10
−2

−1

0

1

2

t (hr)

y
(t
)
(u
n
it
s)

f(t) = tan(2x) Damped Spring

15. The vertical shift is A = 0+12
2 = 6, while the amplitude is B = 12 − 6 = 6. The frequency

satisfies ω = 2π
24 ≈ 0.2618. Since this model uses the cosine function the phase shift φ matches the

time of the maximum or φ = 14. It follows that the model is

W (t) = 6 + 6 cos

(

π

12
(t− 14)

)

.

It follows that the derivative is

W ′(t) = −π

2
sin

(

π

12
(t− 14)

)

.

The maximum increase in wind is when W ′(t) is at a maximum, which occurs when

π

12
(tmax − 14) = −π

2
or tmax = 8.

The maximum increase is

W ′(8) = −π

2
sin

(

π

12
(8− 14)

)

=
π

2
≈ 1.5708 m/sec/hr.

16. a. The damped spring-mass system, y(t) = 2e−0.2t sin(4t), has y(tn) = 0 when 4tn = nπ, n =
0, 1, ... or tn = nπ

4 .
b. The velocity satisfies:

v(t) = y ′(t) = 8e−0.2t cos(4t) − 0.4e−0.2t sin(4t)

= 4e−0.2t(2 cos(4t)− 0.1 sin(4t))

c. The absolute maximum occurs when 2 cos(4t) = 0.1 sin(4t) or tan(4tmax) = 20. It follows
that tmax = 1

4 arctan(20) ≈ 0.3802 sec. Thus, the maximum is

y(tmax) = 2e−0.2tmax sin(4tmax) ≈ 1.8512.



The absolute minimum occurs at tmin = tmax +
π
4 ≈ 1.1656 sec. It follows that the minimum is

y(tmin) = 2e−0.2tmin sin(4tmin) ≈ −1.5821.

The graph is above to the right.

17. a. The basilar fiber satisfies the equation z(t) = 20e−0.5t sin(10t) and vibrates through zero
when the argument of sin(10t) equals nπ for n an integer. It follows that the zeroes occur when
t = nπ

10 , n = 0, 1, ....

b. The velocity is given by

v(t) = z ′(t) = 200e−0.5t cos(10t) − 10e−0.5t sin(10t)

= 10e−0.5t (20 cos(10t) − sin(10t))

c. The absolute maximum occurs when 20 cos(10t) = sin(10t), so tan(10t) = 20 or tmax =
0.1 arctan(20) ≈ 0.1521 msec. Thus, there is an absolute maximum at tmax with

z(tmax) = 20e−0.5tmax sin(10tmax) ≈ 18.512 µm.

This is followed by the absolute minimum at tmin = tmax +
π
10 ≈ 0.4662 msec. with

z(tmin) = 20e−0.5tmin sin(10tmin) ≈ −15.821 µm.

The graph of z(t) for t ∈ [0, 1] is shown below.
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18. The volume of the open box satisfies the Objective function

V (x, y) = x2y.

The Constraint condition on the surface area of this box is given by

SA = x2 + 4xy = 600.

This constraint condition yields y = 600−x2

4x , which when substituted into the objective function
produces a function of one variable:

V (x) = x2
(

600− x2

4x

)

=
1

4
(600x − x3).



Differentiating this quantity, we obtain

dV

dx
=

1

4
(600 − 3x2),

which when set equal to zero gives x = 10
√
2 cm. (Take only the positive root.) This value of x

gives the optimal length of one side of the base, which when substituted into the formula above
gives y = 5

√
2 cm. It follows that the maximum volume for this box is V (x) = 1000

√
2 cm3.

19. Combining the number of drops with the energy function, we have

E(h) = hN(h) = h

(

1 +
10

h− 1

)

= h

(

h− 1 + 10

h− 1

)

=
h2 + 9h

h− 1
.

This is differentiated to give

E ′(h) =
(h− 1)(2h + 9)− (h2 + 9h)

(h− 1)2
=

h2 − 2h− 9

(h− 1)2
.

A minimum occurs when h2 − 2h− 9 = 0, so

h = 1±
√
10 = −2.1623, 4.1623.

It follows that the minimum energy occurs when h = 1 +
√
10 = 4.1623 m, which give the height

that a crow should fly to minimize the energy needed to break open a walnut. At this height the
average number of drops required by the crow will be:

N(4.1623) ≈ 4.1623.

20. The area of the brochure is A = xy = 125, where x is the width of the page and y is the length
of the page. The area of the printed page, which is to be maximized is given by

P = (x− 4)(y − 5).

From the constraint on the page area, we have y = 125/x, which when substituted above gives

P (x) = (x− 4)

(

125

x
− 5

)

= 125 − 500

x
− 5x+ 20 = 145− 500x−1 − 5x.

The maximum is found by differentiation, which gives

P ′(x) = 500x−2 − 5 =
5(100 − x2)

x2
.

This is zero when x = 10. It follows that y = 12.5. So the brochure has the dimensions 10×12.5
with the printed region having dimensions 6×7.5 or 45 in2.

21. a. The time as a function of x is given by

T (x) =
50− x

15
+

(x2 + 1600)1/2

9
.

b. We differentiate T (x) to find the minimum time,

T ′(x) = − 1

15
+

1

9

(

1

2
(x2 + 1600)−1/22x

)

= − 1

15
+

x

9(x2 + 1600)1/2
.



Setting this derivative equal to zero gives

x

9(x2 + 1600)1/2
=

1

15

5x = 3(x2 + 1600)1/2

25x2 = 9(x2 + 1600)

16x2 = 14400

x2 = 900

This implies x = 30 m produces the minimum time. T (30) = 20
15 + 50

9 = 62
9 = 6.89 sec. We check

the endpoints T (0) = 70
9 = 7.778 sec and T (50) = 10

√
41

9 = 7.11 sec, confirming the optimal escape
strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.

22. a. At rest, V (t) = −70 = 50t(t− 2)(t − 3) − 70, so 50t(t − 2)(t − 3) = 0. Thus, the membrane
is at rest when t = 0, 2, and 3.

b. To find the extrema, we first write V (t) = 50(t3 − 5t2 + 6t) − 70, then the derivative is

V ′(t) = 50(3t2 − 10t + 6). By the quadratic formula, t = 5
3 ±

√
7
3 = 0.7847, 2.5486. Substituting

these values into the membrane equation gives the peak of the action potential at t = 0.7847 with a
membrane potential of V (0.7847) = 35.63 mV, while the minimum potential (most hyperpolarized
state) occurs at t = 2.5486 with a membrane potential of V (2.5486) = −101.56 mV. Below is a
graph for this model of membrane potential.

23. The objective function is given by:

S(x, y) = 2x2 + 7xy.

The constraint condition is given by:

V = x2y = 50, 000 cm3, so, y =
50, 000

x2
.

Thus,

S(x) = 2x2 +
350, 000

x
.

Differentiating we have,

S′(x) = 4x− 350, 000

x2
.

Solving S′(x) = 0, so x3 = 350,000
4 = 87, 500 or x = 44.395. It follows y = 25.37. Thus, the

minimum amount of material needed is S(44.395) = 11, 825.6 cm2.


