1. a. With $n=2$ and $x \in[0,2]$, the midpoints of the subintervals are $x_{1}=\frac{1}{2}$ and $x_{2}=\frac{3}{2}$ with $\Delta x=1$, so the midpoint rule gives

$$
\int_{0}^{2}\left(4+2 x^{2}\right) d x \approx\left(\left(4+2\left(\frac{1}{2}\right)^{2}\right)+\left(4+2\left(\frac{3}{2}\right)^{2}\right)\right) \cdot 1=13 .
$$

With $n=2$, the trapezoid rule gives

$$
\int_{0}^{2}\left(4+2 x^{2}\right) d x \approx\left(\frac{1}{2}\left(4+2(0)^{2}\right)+\left(4+2(1)^{2}\right)+\frac{1}{2}\left(4+2(2)^{2}\right)\right) \cdot 1=14 .
$$

b. With $n=4$ and $x \in[0,2]$, the midpoints of the subintervals are $x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}, x_{3}=\frac{5}{4}$, $x_{4}=\frac{7}{4}$, with $\Delta x=\frac{1}{2}$, so the midpoint rule gives

$$
\begin{aligned}
\int_{0}^{2}\left(4+2 x^{2}\right) d x & \approx\left(\left(4+2\left(\frac{1}{4}\right)^{2}\right)+\left(4+2\left(\frac{3}{4}\right)^{2}\right)+\left(4+2\left(\frac{5}{4}\right)^{2}\right)+\left(4+2\left(\frac{7}{4}\right)^{2}\right)\right) \cdot \frac{1}{2} \\
& =13.25
\end{aligned}
$$

With $n=4$, the trapezoid rule gives

$$
\begin{aligned}
\int_{0}^{2}\left(4+2 x^{2}\right) d x \approx & \left(\frac{1}{2}\left(4+2(0)^{2}\right)+\left(4+2\left(\frac{1}{2}\right)^{2}\right)+\left(4+2(1)^{2}\right)\right. \\
& \left.+\left(4+2\left(\frac{3}{2}\right)^{2}\right)+\frac{1}{2}\left(4+2(2)^{2}\right)\right) \cdot \frac{1}{2}=13.5
\end{aligned}
$$

c. For $n=2$, the midpoint rule has a percent error of

$$
100\left(\frac{13-\frac{40}{3}}{\frac{40}{3}}\right)=-2.5 \% \text { error, }
$$

which is a low estimate.
For $n=2$, the trapezoid rule has a percent error of

$$
100\left(\frac{14-\frac{40}{3}}{\frac{40}{3}}\right)=5.0 \% \text { error, }
$$

which is a high estimate.
Similarly, for $n=4$, the midpoint rule has a percent error of

$$
100\left(\frac{13.25-\frac{40}{3}}{\frac{40}{3}}\right)=-0.625 \% \text { error, }
$$

which is a low estimate.

The trapezoid rule has a percent error of

$$
100\left(\frac{13.5-\frac{40}{3}}{\frac{40}{3}}\right)=1.25 \% \text { error, }
$$

which is a high estimate.
2. a. With $n=4$ and $x \in[0,2]$, the midpoints of the subintervals are $x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}, x_{3}=\frac{5}{4}$ and $x_{4}=\frac{7}{4}$ with $\Delta x=\frac{1}{2}$, so the midpoint rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{4} d x & \approx\left(\left(\frac{1}{4}\right)^{4}+\left(\frac{3}{4}\right)^{4}+\left(\frac{5}{4}\right)^{4}+\left(\frac{7}{4}\right)^{4}\right) \cdot \frac{1}{2} \\
& =6.0703125
\end{aligned}
$$

With $n=4$, the trapezoid rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{4} d x & \approx\left(\frac{1}{2}(0)^{4}+\left(\frac{1}{2}\right)^{4}+(1)^{4}+\left(\frac{3}{2}\right)^{4}+\frac{1}{2}(2)^{4}\right) \cdot \frac{1}{2} \\
& =7.0625
\end{aligned}
$$

With $n=4$, Simpson's rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{4} d x & \approx\left((0)^{4}+4\left(\frac{1}{2}\right)^{4}+2(1)^{4}+4\left(\frac{3}{2}\right)^{4}+(2)^{4}\right) \cdot \frac{1}{2 \cdot 3} \\
& =\frac{154}{24} \approx 6.416667
\end{aligned}
$$

b. For $n=4$, the midpoint rule has a percent error of

$$
100\left(\frac{6.07031-\frac{32}{5}}{\frac{32}{5}}\right)=-5.15 \% \text { error, }
$$

which is a low estimate.
The trapezoid rule has a percent error of

$$
100\left(\frac{7.0625-\frac{32}{5}}{\frac{32}{5}}\right)=10.35 \% \text { error, }
$$

which is a high estimate.
Simpson's rule has a percent error of

$$
100\left(\frac{6.4167-\frac{32}{5}}{\frac{32}{5}}\right)=0.26 \% \text { error, }
$$

which is a high estimate, but very close.
3. a. At the y-intercept, $x=0$, and $f(0)=8$. The x-intercepts occur where

$$
8+2 x-x^{2}=0 \quad \text { or } \quad(4-x)(2+x)=0
$$

or the x-intercepts are $(-2,0),(4,0)$. The vertex is midway between the two points at $x=1$, when $f(1)=8+2-1=9$. The graph is shown below.

b. With $n=4$ and $x \in[0,4]$, the midpoints of the subintervals are $x_{1}=\frac{1}{2}, x_{2}=\frac{3}{2}, x_{3}=\frac{5}{2}$ and $x_{4}=\frac{7}{2}$ with $\Delta x=1$, so the midpoint rule gives

$$
\begin{aligned}
\int_{0}^{4}\left(8+2 x-x^{2}\right) d x \approx & \left(\left(8+2\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)^{2}\right)+\left(8+2\left(\frac{3}{2}\right)-\left(\frac{3}{2}\right)^{2}\right)\right. \\
& \left.+\left(8+2\left(\frac{5}{2}\right)-\left(\frac{5}{2}\right)^{2}\right)+\left(8+2\left(\frac{7}{2}\right)-\left(\frac{7}{2}\right)^{2}\right)\right) \cdot 1=27
\end{aligned}
$$

With $n=4$, the trapezoid rule gives

$$
\begin{aligned}
\int_{0}^{4}\left(8+2 x-x^{2}\right) d x \approx & \left(\frac{1}{2}(8)+\left(8+2(1)-(1)^{2}\right)+\left(8+2(2)-(2)^{2}\right)\right. \\
& \left.+\left(8+2(3)-(3)^{2}\right)+\frac{1}{2}\left(8+2(4)-(4)^{2}\right)\right) \cdot 1=26
\end{aligned}
$$

c. With $n=4$, Simpson's rule gives

$$
\begin{aligned}
\int_{0}^{4}\left(8+2 x-x^{2}\right) d x= & \left((8)+4\left(8+2(1)-(1)^{2}\right)+2\left(8+2(2)-(2)^{2}\right)\right. \\
& \left.+4\left(8+2(3)-(3)^{2}\right)+\left(8+2(4)-(4)^{2}\right)\right) \cdot \frac{1}{3}=\frac{80}{3} \approx 26.667
\end{aligned}
$$

For $n=4$, the midpoint rule has a percent error of

$$
100\left(\frac{27-\frac{80}{3}}{\frac{80}{3}}\right)=1.25 \% \text { error, }
$$

which is a high estimate.
The trapezoid rule has a percent error of

$$
100\left(\frac{26-\frac{80}{3}}{\frac{80}{3}}\right)=-2.5 \% \text { error, }
$$

which is a low estimate.
4. a. The average population is

$$
\frac{12+18+27+32+28+17+12+21}{8}=\frac{167}{8} \approx 20.875
$$

b. The trapezoid rule with $n=7$, and $\Delta x=1$

$$
P_{\text {ave }}=\frac{1}{7} \int_{0}^{7} P(t) d t=\frac{1}{7}\left(\frac{1}{2}(12)+18+27+32+28+17+12+\frac{1}{2}(21)\right) \cdot 1=21.5 .
$$

The answer is slightly higher as the endpoints are not weighed as heavily.
5. The trapezoid rule with $n=10$, and $\Delta x=1$

$$
\begin{aligned}
A_{\text {cum }} & =\int_{0}^{10} A(t) d t \\
& =\left(\frac{1}{2}(0.05)+0.46+0.87+0.54+0.43+0.36+0.28+0.21+0.16+0.12+\frac{1}{2}(0.09)\right) \cdot 1 \\
& =3.5
\end{aligned}
$$

