1. The definite integral satisfies:

$$
\begin{aligned}
\int_{-1}^{3}\left(2-x+x^{2}\right) d x & =\left.\left(2 x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)\right|_{-1} ^{3} \\
& =\left(2(3)-\frac{(3)^{2}}{2}+\frac{(3)^{3}}{3}\right)-\left(2(-1)-\frac{(-1)^{2}}{2}+\frac{(-1)^{3}}{3}\right) \\
& =\frac{40}{3}
\end{aligned}
$$

2. The definite integral satisfies:

$$
\begin{aligned}
\int_{0}^{4}\left(x^{2}+3-e^{-x}\right) d x & =\left.\left(\frac{x^{3}}{3}+3 x+e^{-x}\right)\right|_{0} ^{4} \\
& =\left(\frac{4^{3}}{3}+3(4)+e^{-4}\right)-\left(\frac{0^{3}}{3}+3(0)+e^{-0}\right) \\
& =\frac{97}{3}+e^{-4} \approx 32.35
\end{aligned}
$$

3. We make the substitution $u=2 x+6$ with $d u=2 d x$ in definite integral. Note that when $x=-1, u=4$, and when $x=5, u=16$, so

$$
\begin{aligned}
\int_{-1}^{5} \frac{d x}{\sqrt{6+2 x}} & =\frac{1}{2} \int_{4}^{16} u^{-\frac{1}{2}} d u=\left.\frac{1}{2}\left(2 u^{\frac{1}{2}}\right)\right|_{4} ^{16} \\
& =(\sqrt{16}-\sqrt{4})=2
\end{aligned}
$$

4. The definite integral satisfies:

$$
\begin{aligned}
\int_{1}^{5} \frac{x^{2}+1}{x} d x & =\int_{1}^{5}\left(x+\frac{1}{x}\right) d x=\left.\left(\frac{x^{2}}{2}+\ln (x)\right)\right|_{1} ^{5} \\
& =\left(\frac{5^{2}}{2}+\ln (5)\right)-\left(\frac{1^{2}}{2}+\ln (1)\right)=12+\ln (5) \approx 13.61
\end{aligned}
$$

5. The definite integral satisfies:

$$
\begin{aligned}
\int_{0}^{\pi}(4 t+\cos (2 t)) d t & =\left.\left(2 t^{2}+\frac{\sin (2 t)}{2}\right)\right|_{0} ^{\pi} \\
& =\left(2(\pi)^{2}+\frac{\sin (2 \pi)}{2}\right)-\left(2(0)^{2}+\frac{\sin (0)}{2}\right)=2 \pi^{2}
\end{aligned}
$$

6. We make the substitution $u=1+\sin (x)$ with $d u=\cos (x) d x$ in definite integral. Note that when $x=0, u=1$, and when $x=\frac{\pi}{2}, u=2$, so

$$
\int_{0}^{\pi / 2} \frac{\cos (x)}{1+\sin (x)} d x=\int_{1}^{2}\left(\frac{1}{u}\right) d u=\left.(\ln (u))\right|_{1} ^{2}=(\ln (2))-(\ln (1))=\ln (2)
$$

7. We make the substitution $u=25-x^{2}$ with $d u=-2 x d x$ in definite integral. Note that when $x=3, u=16$, and when $x=4, u=9$, so

$$
\begin{aligned}
\int_{3}^{4} \frac{2 x d x}{\sqrt{25-x^{2}}} & =-\int_{16}^{9}\left(u^{-\frac{1}{2}}\right) d u=\int_{9}^{16}\left(u^{-\frac{1}{2}}\right) d u \\
& =\left.(2 \sqrt{u})\right|_{9} ^{16}=(2 \sqrt{16})-(2 \sqrt{9})=2 .
\end{aligned}
$$

8. The definite integral satisfies:

$$
\begin{aligned}
\int_{0}^{\pi}\left(9 t^{2}-\sin (4 t)\right) d t & =\left.\left(3 t^{3}+\frac{\cos (4 t)}{4}\right)\right|_{0} ^{\pi} \\
& =\left(3 \pi^{3}+\frac{\cos (4 \pi)}{4}\right)-\left(3(0)^{3}+\frac{\cos (4(0))}{4}\right)=3 \pi^{3}
\end{aligned}
$$

9. For the first term we make the substitution $u=x+3$ with $d u=d x$ in definite integral. The first integral has the limits change with $x=-2$ becoming $u=1$ and $x=2$ becoming $u=5$, so

$$
\begin{aligned}
\int_{-2}^{2}\left(\frac{1}{x+3}+e^{2 x}\right) d x & =\int_{1}^{5}\left(\frac{1}{u}\right) d u+\int_{-2}^{2}\left(e^{2 x}\right) d x=\left.(\ln (u))\right|_{1} ^{5}+\left.\left(\frac{e^{2 x}}{2}\right)\right|_{-2} ^{2} \\
& =(\ln (5)-\ln (1))+\frac{1}{2}\left(e^{4}-e^{-4}\right)=\ln (5)+\frac{e^{4}}{2}-\frac{e^{-4}}{2} \approx 28.899
\end{aligned}
$$

10. We make the substitution $u=x^{2}+1$ with $d u=2 x d x$ in definite integral. The integral has the limits change with $x=0$ becoming $u=1$ and $x=7$ becoming $u=50$, so

$$
\begin{aligned}
\int_{0}^{7} \frac{4 x}{\left(x^{2}+1\right)^{2}} d x & =2 \int_{1}^{50}\left(u^{-2}\right) d u=\left.\left(\frac{-2}{u}\right)\right|_{1} ^{50} \\
& =\left(\frac{-2}{50}\right)-\left(\frac{-2}{1}\right)=\frac{49}{25}=1.96
\end{aligned}
$$

11. The bounded area is given by the definite integral between the x-intercepts. At the x intercepts,

$$
y=0=4-x^{2}=(2+x)(2-x) \quad \text { or } \quad x= \pm 2 .
$$

Therefore the area is given by the integral

$$
\int_{-2}^{2}\left(4-x^{2}\right) d x=\left.\left(4 x-\frac{x^{3}}{3}\right)\right|_{-2} ^{2}=\left(4(2)-\frac{(2)^{3}}{3}\right)-\left(4(-2)-\frac{(-2)^{3}}{3}\right)=\frac{32}{3}
$$

The graph of the region is shown below on the left.

12. Find the area between the function $y=3 \sin (2 x)$ and the x-axis for $0 \leq x \leq \pi / 2$. The bounded area is

$$
\int_{0}^{\frac{\pi}{2}} 3 \sin (2 x) d x=\left.\left(-\frac{3}{2} \cos (2 x)\right)\right|_{0} ^{\frac{\pi}{2}}=\left(-\frac{3}{2} \cos (\pi)\right)-\left(-\frac{3}{2} \cos (0)\right)=3
$$

The graph of the region is shown above on the right.
13. Consider the curves $y=x+3$ and $y=x^{2}+x-6$.
a. The line has a slope of $m=1$. The y-intercept is $y=3$, and the x-intercept is $x=-3$.

For the parabola, the y-intercept is $y=-6$. Solving

$$
x^{2}+x-6=(x+3)(x-2)=0 \quad \text { gives } \quad x=-3,2
$$

so the x-intercepts are $(-3,0)$ and $(2,0)$. The vertex satisfies $x_{v}=-\frac{1}{2}$ and $y_{v}=-6.25$. The graph of these curves is shown below on the left.
b. For the intersections, solve $x+3=x^{2}+x-6$ or $x^{2}-9=(x+3)(x-3)=0$, so $x= \pm 3$. It follows that the points of intersection are $(-3,0)$ and $(3,6)$.
c. The area between the curves is the area under the line but over the parabola between the points of intersection. The appropriate integral is

$$
\begin{aligned}
\int_{-3}^{3}\left((x+3)-\left(x^{2}+x-6\right)\right) d x & =\int_{-3}^{3}\left(9-x^{2}\right) d x=\left.\left(9 x-\frac{x^{3}}{3}\right)\right|_{-3} ^{3} \\
& =\left(9(3)-\frac{(3)^{3}}{3}\right)-\left(9(-3)-\frac{(-3)^{3}}{3}\right)=36
\end{aligned}
$$

14. a. The average population is

$$
\frac{53+37+39+54+70+68+52}{7}=\frac{373}{7} \approx 53.286
$$

b. These data are fitted pretty well by the function

$$
P(t)=53-18 \sin \left(\frac{\pi}{3} t\right)
$$

The maximum population occurs when the sine function is at -1 , and the minimum occurs when the sine function is at 1 . Thus, the maximum occurs when

$$
\frac{\pi t}{3}=\frac{3 \pi}{2} \quad \text { or } \quad t=\frac{9}{2}
$$

so $P(9 / 2)=53+18=71$. Similarly, the minimum occurs when

$$
\frac{\pi t}{3}=\frac{\pi}{2} \quad \text { or } \quad t=\frac{3}{2},
$$

so $P(3 / 2)=53-18=35$. Thus, the maximum population is at $t_{\max }=\frac{9}{2}$ and is $P_{\max }=71$. The minimum population is at $t_{\text {min }}=\frac{3}{2}$ and is $P_{\text {min }}=35$. The graph of this curve is shown above on the right.
c. Computing the definite integral,

$$
\begin{gathered}
P_{\text {ave }}=\frac{1}{6} \int_{0}^{6} P(t) d t . \\
P_{\text {ave }}=\frac{1}{6} \int_{0}^{6} P(t) d t=\frac{1}{6} \int_{0}^{6}\left(53-18 \sin \left(\frac{\pi}{3} t\right)\right) d t=\left.\frac{1}{6}\left(53 t+\frac{18 \cdot 3}{\pi} \cos \left(\frac{\pi}{3} t\right)\right)\right|_{0} ^{6} \\
=\frac{1}{6}\left(53 \cdot 6+\frac{53}{\pi} \cos (2 \pi)\right)-\frac{1}{6}\left(53 \cdot 0+\frac{53}{\pi} \cos (0)\right)=53 .
\end{gathered}
$$

The average population from this model is 53 , which is obvious as this covers one period of this sine function.
15. a. Consider the population model

$$
P(t)=\frac{1}{4} t^{4}-3 t^{3}+9 t^{2}+12
$$

The minimum and maximum populations occur when $P^{\prime}(t)=0$, so

$$
P^{\prime}(t)=t^{3}-9 t^{2}+18 t=t\left(t^{2}-9 t+18\right)=t(t-3)(t-6)=0 .
$$

It follows that extrema occur at $t=0,3$, and 6 . The model evaluated at these values gives

$$
P(0)=12 \quad \text { and } \quad P(3)=32.25 \quad \text { and } \quad P(6)=12
$$

Thus, there are two minima at $(0,12)$ and $(6,12)$ and one maximum at $(3,32.25)$.
b. The average population satisfies:

$$
\begin{aligned}
P_{\text {ave }} & =\frac{1}{7} \int_{0}^{7}\left(\frac{1}{4} t^{4}-3 t^{3}+9 t^{2}+12\right) d t=\left.\frac{1}{7}\left(\frac{1}{20} t^{5}-\frac{3}{4} t^{4}+3 t^{3}+12 t\right)\right|_{0} ^{7} \\
& =\frac{1}{7}\left(\frac{7^{5}}{20}-\frac{3 \cdot 7^{4}}{4}+3 \cdot 7^{3}+12 \cdot 7\right)=21.8
\end{aligned}
$$

Thus, the average population using this model is 21.8.
c. The second model is:

$$
Q(t)=22-10 \cos \left(\frac{\pi}{3} t\right)
$$

The minimum and maximum populations occur when the cosine function is 1 and -1 , respectively. For $t \in[0,7]$, the cosine is 1 at $t=0$ and 2π, while it is -1 when $t=\pi$. Evaluating the population model at these times gives:

$$
Q(0)=12 \quad \text { and } \quad Q(\pi)=32 \quad \text { and } \quad P(2 \pi)=12
$$

Thus, there are two minima at $(0,12)$ and $(2 \pi, 12)$ and one maximum at $(\pi, 32)$. A graph of this curve is shown below.
15. Population

d. The average population with $Q(t)$ is

$$
\begin{aligned}
Q_{a v e} & =\frac{1}{7} \int_{0}^{7}\left(22-10 \cos \left(\frac{\pi}{3} t\right)\right) d t=\left.\frac{1}{7}\left(22 t-\frac{30}{\pi} \sin \left(\frac{\pi}{3} t\right)\right)\right|_{0} ^{7} \\
& =\frac{1}{7}\left(\left(22(7)-\frac{30}{\pi} \sin \left(\frac{\pi}{3} 7\right)\right)-\left(22(0)-\frac{30}{\pi} \sin \left(\frac{\pi}{3} 0\right)\right)\right)=22-\frac{30}{7 \pi}\left(\frac{\sqrt{3}}{2}\right) \approx 20.82
\end{aligned}
$$

The average using this model is 20.82 .

