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Pulse and Weight

Obtained data from Altman and Dittmer for the pulse and
weight of mammals

The pulse, P , as a function of the weight, w, are
approximated by the relationship

P = 200w−1/4

The pulse is in beats/min, and the weight is in kilograms
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Pulse and Weight

The graph shows an initial steep decrease in the pulse as
weight increases

Can one quantify how fast the pulse rate changes as a
function of weight?

For small animals the pulse rate changes more rapidly than
for large animals

The derivative of this allometric or power law model
provides more details on the rate of change in pulse rate as
a function of weight
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Biodiversity and Area

Data are collected on the number of species of
herpatofauna, N , on Caribbean islands with area, A

An allometric model approximates this biodiversity

N = 3A1/3

A model of this sort is important for obtaining information
about biodiversity
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Biodiversity and Area

Can we use this model to determine the rate of change of
numbers of species with respect to a given increase in area?

Again the derivative is used to help quantify the rate of
change of the dependent variable, N , with respect to the
independent variable, A
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Notation for the Derivative

There are several standard notations for the derivative

For the function f(x), the notation that Leibnitz used was

df(x)

dx

The Newtonian notation for the derivative is written as
follows:

f ′(x)

We will use these notations interchangeably
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The power rule for differentiation is given by the formula

d(xn)

dx
= nxn−1, for n 6= 0
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The derivative is
f ′(x) = 5x4

If f(x) = x−3

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(12/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Examples of the Power Rule

Examples: Differentiate the following functions:

If f(x) = x5

The derivative is
f ′(x) = 5x4

If f(x) = x−3

The derivative is
f ′(x) = −3 x−4

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(12/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Examples of the Power Rule

Examples: Differentiate the following functions:

If f(x) = x5

The derivative is
f ′(x) = 5x4

If f(x) = x−3

The derivative is
f ′(x) = −3 x−4

If f(x) = x1/3

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(12/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Examples of the Power Rule

Examples: Differentiate the following functions:

If f(x) = x5

The derivative is
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The derivative is
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Examples: Differentiate the following functions:

If f(x) = 1
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Examples of the Power Rule

Examples: Differentiate the following functions:

If f(x) = 1

x4 , then f(x) = x−4

The derivative is
f ′(x) = −4x−5

If f(x) = 1√
x
, then f(x) = x−1/2

The derivative is

f ′(x) = −1

2
x−3/2

If f(x) = 3

Since n = 0, the power rule does not apply
However, we know the derivative of a constant is

f ′(x) = 0
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Assume that k is a constant and f(x) is a differentiable
function, then

d

dx
(k · f(x)) = k · d
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f(x)
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Assume that k is a constant and f(x) is a differentiable
function, then
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Assume that k is a constant and f(x) is a differentiable
function, then

d

dx
(k · f(x)) = k · d

dx
f(x)

Example: Let f(x) = 12x3

The derivative of f(x) satisfies

f ′(x) =
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dx
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Scalar Multiplication Rule

Assume that k is a constant and f(x) is a differentiable
function, then

d

dx
(k · f(x)) = k · d

dx
f(x)

Example: Let f(x) = 12x3

The derivative of f(x) satisfies

f ′(x) =
d

dx
(12x3) = 12

d

dx
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Additive Rule

Assume that f(x) and g(x) are differentiable functions, then

d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x))
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Assume that f(x) and g(x) are differentiable functions, then

d

dx
(f(x) + g(x)) =

d

dx
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dx
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Assume that f(x) and g(x) are differentiable functions, then

d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x))

Example: Let f(x) = 2x1/2 + x4

The derivative of f(x) satisfies

f ′(x) =
d

dx
(2x1/2) +

d

dx
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Additive Rule

Assume that f(x) and g(x) are differentiable functions, then

d

dx
(f(x) + g(x)) =

d

dx
(f(x)) +

d

dx
(g(x))

Example: Let f(x) = 2x1/2 + x4

The derivative of f(x) satisfies

f ′(x) =
d

dx
(2x1/2) +

d

dx
(x4) = x−1/2 + 4x3
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Linear Approximation

Linear Approximation

Recall that the tangent line gives a linear
approximation of a function near the point of tangency
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Linear Approximation

Linear Approximation

Recall that the tangent line gives a linear
approximation of a function near the point of tangency

The derivative give the slope of this tangent line
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Linear Approximation

Linear Approximation

Recall that the tangent line gives a linear
approximation of a function near the point of tangency

The derivative give the slope of this tangent line
A point on the curve gives the point of tangency
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Linear Approximation

Linear Approximation

Recall that the tangent line gives a linear
approximation of a function near the point of tangency

The derivative give the slope of this tangent line
A point on the curve gives the point of tangency

This provides easy approximations of a function near a
given point
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Linear Approximation

Linear Approximation

Recall that the tangent line gives a linear
approximation of a function near the point of tangency

The derivative give the slope of this tangent line
A point on the curve gives the point of tangency

This provides easy approximations of a function near a
given point
This technique is often used in Error Analysis
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Pulse and Weight Example 1

Pulse and Weight Example
The model on pulse rate is,

P = 200w−0.25
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Pulse and Weight Example 1

Pulse and Weight Example
The model on pulse rate is,

P = 200w−0.25

The power law of differentiation gives

dP

dt
= −50 w−5/4
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Pulse and Weight Example 1

Pulse and Weight Example
The model on pulse rate is,

P = 200w−0.25

The power law of differentiation gives

dP

dt
= −50 w−5/4

The negative sign shows the decrease in the pulse rate with
increasing weight
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Pulse and Weight Example 2

Example for Linear Approximation: Suppose we want to
approximate the pulse of a 17 kg animal using our model

P = 200w−0.25
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Pulse and Weight Example 2

Example for Linear Approximation: Suppose we want to
approximate the pulse of a 17 kg animal using our model

P = 200w−0.25

An animal at 16 kg by the allometric model would have a
pulse of about 100 (since P (16) = 200(16)−1/4 = 100)
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Pulse and Weight Example 2

Example for Linear Approximation: Suppose we want to
approximate the pulse of a 17 kg animal using our model

P = 200w−0.25

An animal at 16 kg by the allometric model would have a
pulse of about 100 (since P (16) = 200(16)−1/4 = 100)

The power law of differentiation gives

dP

dt
= −50 w−5/4
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Pulse and Weight Example 2

Example for Linear Approximation: Suppose we want to
approximate the pulse of a 17 kg animal using our model

P = 200w−0.25

An animal at 16 kg by the allometric model would have a
pulse of about 100 (since P (16) = 200(16)−1/4 = 100)

The power law of differentiation gives

dP

dt
= −50 w−5/4

The derivative at w = 16 is

P ′(16) = −50(16)−5/4 = −50

32
≈ −1.56
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Pulse and Weight Example 3

Example for Linear Approximation (cont):

The tangent line approximation, PL(w), near w = 16 is

PL(w) = −50

32
(w − 16) + 100
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Pulse and Weight Example 3

Example for Linear Approximation (cont):

The tangent line approximation, PL(w), near w = 16 is

PL(w) = −50

32
(w − 16) + 100

It follows that a 17 kg animal should have a pulse near

PL(17) = −50

32
(1) + 100 ≈ 98.44 beats/min
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Pulse and Weight Example 3

Example for Linear Approximation (cont):

The tangent line approximation, PL(w), near w = 16 is

PL(w) = −50

32
(w − 16) + 100

It follows that a 17 kg animal should have a pulse near

PL(17) = −50

32
(1) + 100 ≈ 98.44 beats/min

Note that the Allometric model gives

P (17) = 200(17)−1/4 = 98.50 beats/min
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Biodiversity Example 1

Biodiversity Example
The model on diversity is,

N = 3A1/3
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Biodiversity Example 1

Biodiversity Example
The model on diversity is,

N = 3A1/3

The power law of differentiation gives

dN

dt
= A−2/3
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Biodiversity Example 1

Biodiversity Example
The model on diversity is,

N = 3A1/3

The power law of differentiation gives

dN

dt
= A−2/3

This shows the rate of change of numbers of species with respect
to the island area is increasing as the derivative is positive
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Biodiversity Example 1

Biodiversity Example
The model on diversity is,

N = 3A1/3

The power law of differentiation gives

dN

dt
= A−2/3

This shows the rate of change of numbers of species with respect
to the island area is increasing as the derivative is positive

The increase gets smaller with increasing island area, since the
area has the power −2/3, which puts the area in the
denominator of this expression for the derivative

Skip Linear Approximation
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Biodiversity Example 2

Example for Linear Approximation: Suppose we want to
approximate the number of species on an island with 950 sq mi

N = 3A1/3
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Biodiversity Example 2

Example for Linear Approximation: Suppose we want to
approximate the number of species on an island with 950 sq mi

N = 3A1/3

An island with 1000 sq mi by the allometric model would
have approximately 30 species (since
N(1000) = 3(1000)1/3 = 30)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(21/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Biodiversity Example 2

Example for Linear Approximation: Suppose we want to
approximate the number of species on an island with 950 sq mi

N = 3A1/3

An island with 1000 sq mi by the allometric model would
have approximately 30 species (since
N(1000) = 3(1000)1/3 = 30)
The power law of differentiation gives

dN

dt
= A−2/3
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Biodiversity Example 2

Example for Linear Approximation: Suppose we want to
approximate the number of species on an island with 950 sq mi

N = 3A1/3

An island with 1000 sq mi by the allometric model would
have approximately 30 species (since
N(1000) = 3(1000)1/3 = 30)
The power law of differentiation gives

dN

dt
= A−2/3

The derivative at A = 1000 is

N ′(1000) = (1000)−2/3 = 0.01
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Biodiversity Example 3

Example for Linear Approximation (cont):

The tangent line approximation, NL(A), near A = 1000 is

NL(A) = 0.01(A − 1000) + 30
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Biodiversity Example 3

Example for Linear Approximation (cont):

The tangent line approximation, NL(A), near A = 1000 is

NL(A) = 0.01(A − 1000) + 30

It follows that an island with an area of 950 sq mi should
have approximately

NL(950) = 0.01(950 − 1000) + 30 = 29.5 species
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Biodiversity Example 3

Example for Linear Approximation (cont):

The tangent line approximation, NL(A), near A = 1000 is

NL(A) = 0.01(A − 1000) + 30

It follows that an island with an area of 950 sq mi should
have approximately

NL(950) = 0.01(950 − 1000) + 30 = 29.5 species

Note that the Allometric model gives

N(950) = 3(950)1/3 = 29.49 species
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Height of Ball

Height of Ball Suppose a ball is thrown vertically with an
initial velocity of v0 and an initial height h(0) = 0

Assume the only acceleration is due to gravity, g and air
resistance ignored
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Height of Ball

Height of Ball Suppose a ball is thrown vertically with an
initial velocity of v0 and an initial height h(0) = 0

Assume the only acceleration is due to gravity, g and air
resistance ignored

The equation for the height satisfies:

h(t) = v0t −
gt2

2
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2

The velocity is the derivative of h(t)

v(t) = h′(t) = v0 − gt
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2

The velocity is the derivative of h(t)

v(t) = h′(t) = v0 − gt

This uses our 3 rules of differentiation to date
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2

The velocity is the derivative of h(t)

v(t) = h′(t) = v0 − gt

This uses our 3 rules of differentiation to date

The additive property of derivatives allows consideration of
each of the terms in the height function separately
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2

The velocity is the derivative of h(t)

v(t) = h′(t) = v0 − gt

This uses our 3 rules of differentiation to date

The additive property of derivatives allows consideration of
each of the terms in the height function separately
Each term has a scalar multiple
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Velocity of Ball

With the equation for the height

h(t) = v0t −
gt2

2

The velocity is the derivative of h(t)

v(t) = h′(t) = v0 − gt

This uses our 3 rules of differentiation to date

The additive property of derivatives allows consideration of
each of the terms in the height function separately
Each term has a scalar multiple
Power rule can be applied to the t and t2 terms
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Differentiation of Polynomials
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Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

f(x) = x4 + 3x3 − 8x2 + 10x − 7
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Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

f(x) = x4 + 3x3 − 8x2 + 10x − 7

From our rules above, the derivative is

f ′(x) = 4x3 + 9x2 − 16x + 10

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(25/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

f(x) = x4 + 3x3 − 8x2 + 10x − 7

From our rules above, the derivative is

f ′(x) = 4x3 + 9x2 − 16x + 10

Example: Other additive powers are handled similarly

f(x) = x2 +
3

x2
− 8

√
x + 13
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Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

f(x) = x4 + 3x3 − 8x2 + 10x − 7

From our rules above, the derivative is

f ′(x) = 4x3 + 9x2 − 16x + 10

Example: Other additive powers are handled similarly

f(x) = x2 +
3

x2
− 8

√
x + 13 = x2 + 3x−2 − 8x1/2 + 13
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Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

f(x) = x4 + 3x3 − 8x2 + 10x − 7

From our rules above, the derivative is

f ′(x) = 4x3 + 9x2 − 16x + 10

Example: Other additive powers are handled similarly

f(x) = x2 +
3

x2
− 8

√
x + 13 = x2 + 3x−2 − 8x1/2 + 13

From our rules above, the derivative is

f ′(x) = 2x − 6x−3 − 4x−1/2
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Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2
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Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2

Sketch a graph of the height of the ball, h(t), as a function
of time, t
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Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2

Sketch a graph of the height of the ball, h(t), as a function
of time, t

Find the maximum height of the ball and determine when
the ball hits the ground
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Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2

Sketch a graph of the height of the ball, h(t), as a function
of time, t

Find the maximum height of the ball and determine when
the ball hits the ground

Give an expression for the velocity, v(t), as a function of
time, t
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2

Sketch a graph of the height of the ball, h(t), as a function
of time, t

Find the maximum height of the ball and determine when
the ball hits the ground

Give an expression for the velocity, v(t), as a function of
time, t

Find the velocity at the times t = 0, t = 1, and t = 2
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 1

Example: A ball, thrown vertically from a platform without
air resistance, satisfies the equation

h(t) = 80 + 64 t − 16 t2

Sketch a graph of the height of the ball, h(t), as a function
of time, t

Find the maximum height of the ball and determine when
the ball hits the ground

Give an expression for the velocity, v(t), as a function of
time, t

Find the velocity at the times t = 0, t = 1, and t = 2

What is the velocity of the ball just before it hits the
ground?
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Velocity of a Ball 2

Height of the ball
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 2

Height of the ball

Factoring h(t) = −16(t + 1)(t − 5), so the ball hits the ground at
t = 5
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 2

Height of the ball

Factoring h(t) = −16(t + 1)(t − 5), so the ball hits the ground at
t = 5

The vertex of the parabola occurs at t = 2 with h(2) = 144 ft
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
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Velocity of a Ball 2

Height of the ball

Factoring h(t) = −16(t + 1)(t − 5), so the ball hits the ground at
t = 5

The vertex of the parabola occurs at t = 2 with h(2) = 144 ft

The h-intercept is h(0) = 80 ft
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 2

Height of the ball

Factoring h(t) = −16(t + 1)(t − 5), so the ball hits the ground at
t = 5

The vertex of the parabola occurs at t = 2 with h(2) = 144 ft

The h-intercept is h(0) = 80 ft
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Applications with Power Law
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Power Rule
Scalar Multiplication Rule
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Velocity of a Ball 3

Since the height is given by

h(t) = 80 + 64 t − 16 t2
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Velocity of a Ball 3

Since the height is given by

h(t) = 80 + 64 t − 16 t2

so the velocity is

v(t) = h′(t) = 64 − 32 t

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(28/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 3

Since the height is given by

h(t) = 80 + 64 t − 16 t2

so the velocity is

v(t) = h′(t) = 64 − 32 t

It follows that

v(0) = 64 ft/sec, v(1) = 32 ft/sec, v(2) = 0 ft/sec
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Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
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Velocity of a Ball 3

Since the height is given by

h(t) = 80 + 64 t − 16 t2

so the velocity is

v(t) = h′(t) = 64 − 32 t

It follows that

v(0) = 64 ft/sec, v(1) = 32 ft/sec, v(2) = 0 ft/sec

The velocity at the maximum is v(2) = 0 ft/sec
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball 3

Since the height is given by

h(t) = 80 + 64 t − 16 t2

so the velocity is

v(t) = h′(t) = 64 − 32 t

It follows that

v(0) = 64 ft/sec, v(1) = 32 ft/sec, v(2) = 0 ft/sec

The velocity at the maximum is v(2) = 0 ft/sec

The ball hits the ground with velocity v(5) = −96 ft/sec
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 1

A common model in population biology is the logistic growth
model given by

Pn+1 = Pn + rPn

(

1 − Pn

M

)
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Applications with Power Law
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Differentiation

Power Rule
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Logistic Growth Model 1

A common model in population biology is the logistic growth
model given by

Pn+1 = Pn + rPn

(

1 − Pn

M

)

Studied the discrete Malthusian growth model
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
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Differentiation of Polynomials
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Logistic Growth Model 1

A common model in population biology is the logistic growth
model given by

Pn+1 = Pn + rPn

(

1 − Pn

M

)

Studied the discrete Malthusian growth model

The growth of the population is proportional to the existing
population, Pn+1 = Pn + rPn

Malthusian growth model is based on unlimited resources
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Logistic Growth Model 1

A common model in population biology is the logistic growth
model given by

Pn+1 = Pn + rPn

(

1 − Pn

M

)

Studied the discrete Malthusian growth model

The growth of the population is proportional to the existing
population, Pn+1 = Pn + rPn

Malthusian growth model is based on unlimited resources

As the population increases, the growth rate of most organisms
slows
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 1

A common model in population biology is the logistic growth
model given by

Pn+1 = Pn + rPn

(

1 − Pn

M

)

Studied the discrete Malthusian growth model

The growth of the population is proportional to the existing
population, Pn+1 = Pn + rPn

Malthusian growth model is based on unlimited resources

As the population increases, the growth rate of most organisms
slows

Crowding (lack of space to reproduce)
Lack of resources (limited food supply)
Build up of waste (toxicity)
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
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Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)

First part is same as Malthusian growth model
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
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Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)

First part is same as Malthusian growth model

Quadratic term reflects slowing of growth with increasing
population, growth function, G(Pn)
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)

First part is same as Malthusian growth model

Quadratic term reflects slowing of growth with increasing
population, growth function, G(Pn)

Nonlinear model, which can have complicated behavior (observe
later in Lab)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(30/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
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Maximum Growth

Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)

First part is same as Malthusian growth model

Quadratic term reflects slowing of growth with increasing
population, growth function, G(Pn)

Nonlinear model, which can have complicated behavior (observe
later in Lab)

For low r values, model gives classic S-shaped curve
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 2

The logistic growth model

Pn+1 = Pn + rPn

(

1 − Pn

M

)

= Pn + G(Pn)

First part is same as Malthusian growth model

Quadratic term reflects slowing of growth with increasing
population, growth function, G(Pn)

Nonlinear model, which can have complicated behavior (observe
later in Lab)

For low r values, model gives classic S-shaped curve

Population reaches an equilibrium, the carrying capacity
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 3

Example of Logistic Growth Function: Suppose a culture
of yeast has the growth function

G(P ) = rP

(

1 − P

M

)

where P is the density of yeast (×1000/cc)
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Logistic Growth Model 3

Example of Logistic Growth Function: Suppose a culture
of yeast has the growth function

G(P ) = rP

(

1 − P

M

)

where P is the density of yeast (×1000/cc)

Suppose experimental measurements find the growth
parameters
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
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Logistic Growth Model 3

Example of Logistic Growth Function: Suppose a culture
of yeast has the growth function

G(P ) = rP

(

1 − P

M

)

where P is the density of yeast (×1000/cc)

Suppose experimental measurements find the growth
parameters

The Malthusian growth rate r = 0.1
The parameter M = 500
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 4

The population is at equilibrium when the growth function is
zero

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Rules of Differentiation —
(32/35)



Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
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Logistic Growth Model 4

The population is at equilibrium when the growth function is
zero

G(P ) = 0.1 P

(

1 − P

500

)

= 0

This quadratic growth function is in factored form, so
equilibria are easily found
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
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Logistic Growth Model 4

The population is at equilibrium when the growth function is
zero

G(P ) = 0.1 P

(

1 − P

500

)

= 0

This quadratic growth function is in factored form, so
equilibria are easily found

The extinction equilibrium, Pe = 0
The carrying capacity, Pe = M = 500
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
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Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 5

The maximum growth occurs at the vertex of the growth
function
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Additive Rule
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Logistic Growth Model 5

The maximum growth occurs at the vertex of the growth
function

Also, the maximum is when the slope of the tangent line is
zero or the derivative is zero
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 5

The maximum growth occurs at the vertex of the growth
function

Also, the maximum is when the slope of the tangent line is
zero or the derivative is zero

Since

G(P ) = 0.1 P − 0.1 P 2

500
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Applications with Power Law
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Differentiation

Power Rule
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Additive Rule
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Logistic Growth Model 5

The maximum growth occurs at the vertex of the growth
function

Also, the maximum is when the slope of the tangent line is
zero or the derivative is zero

Since

G(P ) = 0.1 P − 0.1 P 2

500

the derivative is

G ′(P ) = 0.1 − 0.2 P

500
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 5

The maximum growth occurs at the vertex of the growth
function

Also, the maximum is when the slope of the tangent line is
zero or the derivative is zero

Since

G(P ) = 0.1 P − 0.1 P 2

500

the derivative is

G ′(P ) = 0.1 − 0.2 P

500

G ′(P ) = 0 when P = 250
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Applications with Power Law
Notation for the Derivative

Differentiation

Power Rule
Scalar Multiplication Rule
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Differentiation of Polynomials
Maximum Growth

Logistic Growth Model 6
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Logistic Growth Function
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Applications with Power Law
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Logistic Growth Model 6
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Logistic Growth Function

This model gives equilibria at Pe = 0 and
Pe = 500 (×1000) yeast/cc
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Applications with Power Law
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Logistic Growth Model 6
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Logistic Growth Function

This model gives equilibria at Pe = 0 and
Pe = 500 (×1000) yeast/cc

Maximum population growth occurs at
Pv = 250 (×1000) yeast/cc
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Applications with Power Law
Notation for the Derivative
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Logistic Growth Model 6
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Logistic Growth Function

This model gives equilibria at Pe = 0 and
Pe = 500 (×1000) yeast/cc

Maximum population growth occurs at
Pv = 250 (×1000) yeast/cc

Since G(250) = 12.5, when the density of yeast is
250 (×1000) yeast/cc, the maximum production is
12.5 (×1000) yeast/cc/hr
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Applications with Power Law
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Logistic Growth Model 7

Suppose the population begins with P0 = 50 (×1000) yeast/cc
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Logistic Growth Model 7

Suppose the population begins with P0 = 50 (×1000) yeast/cc

Below shows the simulation of

Pn+1 = Pn + 0.1Pn

(

1 − Pn

500

)

for 0 ≤ n ≤ 80 hr
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Simulation of Logistic Growth
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Logistic Growth Model 7

Suppose the population begins with P0 = 50 (×1000) yeast/cc

Below shows the simulation of

Pn+1 = Pn + 0.1Pn

(

1 − Pn

500

)

for 0 ≤ n ≤ 80 hr

Simulation shows the population approaching the carrying
capacity of 500 and the maximum growth near n = 25
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Simulation of Logistic Growth
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