Calculus for the Life Sciences I
 Lecture Notes－Rules of Differentiation

Joseph M．Mahaffy， \langle mahaffy＠math．sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

$$
\text { Spring } 2013
$$

```
Applications with Power Law
    Notation for the Derivative
    Differentiation
```


Outline

(1) Applications with Power Law

- Pulse and Weight
- Biodiversity
(2) Notation for the Derivative
(3) Differentiation
- Power Rule
- Examples
- Scalar Multiplication Rule
- Additive Rule
- Linear Approximation
- Height of Ball
- Differentiation of Polynomials
- Maximum Growth

Introduction

- The previous section showed the definition of a derivative

Introduction

- The previous section showed the definition of a derivative
- Using the definition of the derivative is not an efficient way to find derivatives

Introduction

- The previous section showed the definition of a derivative
- Using the definition of the derivative is not an efficient way to find derivatives
- Develop some rules for differentiation

Introduction

- The previous section showed the definition of a derivative
- Using the definition of the derivative is not an efficient way to find derivatives
- Develop some rules for differentiation
- Basic power rule for differentiation

Introduction

- The previous section showed the definition of a derivative
- Using the definition of the derivative is not an efficient way to find derivatives
- Develop some rules for differentiation
- Basic power rule for differentiation
- Additive and scalar multiplication rules

Introduction

- The previous section showed the definition of a derivative
- Using the definition of the derivative is not an efficient way to find derivatives
- Develop some rules for differentiation
- Basic power rule for differentiation
- Additive and scalar multiplication rules
- Applications to polynomials

Pulse and Weight
Biodiversity

Applications with Power Law

Pulse and Weight

Pulse and Weight
Biodiversity

Applications with Power Law

Pulse and Weight

- Obtained data from Altman and Dittmer for the pulse and weight of mammals

Applications with Power Law

Pulse and Weight

- Obtained data from Altman and Dittmer for the pulse and weight of mammals
- The pulse, P, as a function of the weight, w, are approximated by the relationship

$$
P=200 w^{-1 / 4}
$$

Applications with Power Law

Pulse and Weight

- Obtained data from Altman and Dittmer for the pulse and weight of mammals
- The pulse, P, as a function of the weight, w, are approximated by the relationship

$$
P=200 w^{-1 / 4}
$$

- The pulse is in beats/min, and the weight is in kilograms

Pulse and Weight
Biodiversity

Pulse and Weight

Pulse and Weight

Pulse and Weight
Biodiversity

Pulse and Weight

Pulse and Weight

- The graph shows an initial steep decrease in the pulse as weight increases

```
Pulse and Weight
Biodiversity
```


Pulse and Weight

Pulse and Weight

- The graph shows an initial steep decrease in the pulse as weight increases
- Can one quantify how fast the pulse rate changes as a function of weight?

Pulse and Weight

Pulse and Weight

- The graph shows an initial steep decrease in the pulse as weight increases
- Can one quantify how fast the pulse rate changes as a function of weight?
- For small animals the pulse rate changes more rapidly than for large animals

Pulse and Weight

Pulse and Weight

- The graph shows an initial steep decrease in the pulse as weight increases
- Can one quantify how fast the pulse rate changes as a function of weight?
- For small animals the pulse rate changes more rapidly than for large animals
- The derivative of this allometric or power law model provides more details on the rate of change in pulse rate as a function of weight

Applications with Power Law
Notation for the Derivative Differentiation

Pulse and Weight
Biodiversity

Biodiversity and Area

Biodiversity and Area

Pulse and Weight
Biodiversity

Biodiversity and Area

Biodiversity and Area

- Data are collected on the number of species of herpatofauna, N, on Caribbean islands with area, A

Pulse and Weight
Biodiversity

Biodiversity and Area

Biodiversity and Area

- Data are collected on the number of species of herpatofauna, N, on Caribbean islands with area, A
- An allometric model approximates this biodiversity

$$
N=3 A^{1 / 3}
$$

Biodiversity and Area

Biodiversity and Area

- Data are collected on the number of species of herpatofauna, N, on Caribbean islands with area, A
- An allometric model approximates this biodiversity

$$
N=3 A^{1 / 3}
$$

- A model of this sort is important for obtaining information about biodiversity

Pulse and Weight
Biodiversity

Biodiversity and Area

Biodiversity and Area

Pulse and Weight
Biodiversity

Biodiversity and Area

Biodiversity and Area

- Can we use this model to determine the rate of change of numbers of species with respect to a given increase in area?

Biodiversity and Area

Biodiversity and Area

- Can we use this model to determine the rate of change of numbers of species with respect to a given increase in area?
- Again the derivative is used to help quantify the rate of change of the dependent variable, N, with respect to the independent variable, A

Notation for the Derivative

Notation for the Derivative

- There are several standard notations for the derivative

Notation for the Derivative

Notation for the Derivative

- There are several standard notations for the derivative
- For the function $f(x)$, the notation that Leibnitz used was

$$
\frac{d f(x)}{d x}
$$

Notation for the Derivative

Notation for the Derivative

- There are several standard notations for the derivative
- For the function $f(x)$, the notation that Leibnitz used was

$$
\frac{d f(x)}{d x}
$$

- The Newtonian notation for the derivative is written as follows:

$$
f^{\prime}(x)
$$

Notation for the Derivative

Notation for the Derivative

- There are several standard notations for the derivative
- For the function $f(x)$, the notation that Leibnitz used was

$$
\frac{d f(x)}{d x}
$$

- The Newtonian notation for the derivative is written as follows:

$$
f^{\prime}(x)
$$

- We will use these notations interchangeably

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Power Rule

Power Rule

The power rule for differentiation is given by the formula

$$
\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}, \quad \text { for } \quad n \neq 0
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples：Differentiate the following functions：

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$
The derivative is

$$
f^{\prime}(x)=5 x^{4}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$
The derivative is

$$
f^{\prime}(x)=5 x^{4}
$$

If $f(x)=x^{-3}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$
The derivative is

$$
f^{\prime}(x)=5 x^{4}
$$

If $f(x)=x^{-3}$
The derivative is

$$
f^{\prime}(x)=-3 x^{-4}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$
The derivative is

$$
f^{\prime}(x)=5 x^{4}
$$

If $f(x)=x^{-3}$
The derivative is

$$
f^{\prime}(x)=-3 x^{-4}
$$

If $f(x)=x^{1 / 3}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=x^{5}$
The derivative is

$$
f^{\prime}(x)=5 x^{4}
$$

If $f(x)=x^{-3}$
The derivative is

$$
f^{\prime}(x)=-3 x^{-4}
$$

If $f(x)=x^{1 / 3}$
The derivative is

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$,

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$,

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$, then $f(x)=x^{-1 / 2}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$, then $f(x)=x^{-1 / 2}$
The derivative is

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$, then $f(x)=x^{-1 / 2}$
The derivative is

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

If $f(x)=3$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$, then $f(x)=x^{-1 / 2}$
The derivative is

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

If $f(x)=3$
Since $n=0$, the power rule does not apply

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Examples of the Power Rule

Examples: Differentiate the following functions:
If $f(x)=\frac{1}{x^{4}}$, then $f(x)=x^{-4}$
The derivative is

$$
f^{\prime}(x)=-4 x^{-5}
$$

If $f(x)=\frac{1}{\sqrt{x}}$, then $f(x)=x^{-1 / 2}$
The derivative is

$$
f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}
$$

If $f(x)=3$
Since $n=0$, the power rule does not apply
However, we know the derivative of a constant is

$$
f^{\prime}(x)=0
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Scalar Multiplication Rule

Scalar Multiplication Rule

Assume that k is a constant and $f(x)$ is a differentiable function, then

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x} f(x)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Scalar Multiplication Rule

Scalar Multiplication Rule

Assume that k is a constant and $f(x)$ is a differentiable function, then

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x} f(x)
$$

Example: Let $f(x)=12 x^{3}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Scalar Multiplication Rule

Scalar Multiplication Rule

Assume that k is a constant and $f(x)$ is a differentiable function, then

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x} f(x)
$$

Example: Let $f(x)=12 x^{3}$
The derivative of $f(x)$ satisfies

$$
f^{\prime}(x)=\frac{d}{d x}\left(12 x^{3}\right)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Scalar Multiplication Rule

Scalar Multiplication Rule

Assume that k is a constant and $f(x)$ is a differentiable function, then

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x} f(x)
$$

Example: Let $f(x)=12 x^{3}$
The derivative of $f(x)$ satisfies

$$
f^{\prime}(x)=\frac{d}{d x}\left(12 x^{3}\right)=12 \frac{d}{d x}\left(x^{3}\right)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Scalar Multiplication Rule

Scalar Multiplication Rule

Assume that k is a constant and $f(x)$ is a differentiable function, then

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x} f(x)
$$

Example: Let $f(x)=12 x^{3}$
The derivative of $f(x)$ satisfies

$$
f^{\prime}(x)=\frac{d}{d x}\left(12 x^{3}\right)=12 \frac{d}{d x}\left(x^{3}\right)=36 x^{2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Additive Rule

Additive Rule

Assume that $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$$

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule

Additive Rule

Assume that $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$$

Example: Let $f(x)=2 x^{1 / 2}+x^{4}$

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule

Additive Rule

Assume that $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$$

Example: Let $f(x)=2 x^{1 / 2}+x^{4}$
The derivative of $f(x)$ satisfies

$$
f^{\prime}(x)=\frac{d}{d x}\left(2 x^{1 / 2}\right)+\frac{d}{d x}\left(x^{4}\right)
$$

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule

Additive Rule

Assume that $f(x)$ and $g(x)$ are differentiable functions, then

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$$

Example: Let $f(x)=2 x^{1 / 2}+x^{4}$
The derivative of $f(x)$ satisfies

$$
f^{\prime}(x)=\frac{d}{d x}\left(2 x^{1 / 2}\right)+\frac{d}{d x}\left(x^{4}\right)=x^{-1 / 2}+4 x^{3}
$$

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Linear Approximation

Linear Approximation

- Recall that the tangent line gives a linear approximation of a function near the point of tangency

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Linear Approximation

Linear Approximation

- Recall that the tangent line gives a linear approximation of a function near the point of tangency
- The derivative give the slope of this tangent line

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Linear Approximation

Linear Approximation

- Recall that the tangent line gives a linear approximation of a function near the point of tangency
- The derivative give the slope of this tangent line
- A point on the curve gives the point of tangency

Applications with Power Law

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Linear Approximation

Linear Approximation

- Recall that the tangent line gives a linear approximation of a function near the point of tangency
- The derivative give the slope of this tangent line
- A point on the curve gives the point of tangency
- This provides easy approximations of a function near a given point

Applications with Power Law

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Linear Approximation

Linear Approximation

- Recall that the tangent line gives a linear approximation of a function near the point of tangency
- The derivative give the slope of this tangent line
- A point on the curve gives the point of tangency
- This provides easy approximations of a function near a given point
- This technique is often used in Error Analysis


```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Pulse and Weight Example
The model on pulse rate is,

$$
P=200 w^{-0.25}
$$

Pulse and Weight Example

Pulse and Weight Example
The model on pulse rate is,

$$
P=200 w^{-0.25}
$$

The power law of differentiation gives

$$
\frac{d P}{d t}=-50 w^{-5 / 4}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Pulse and Weight Example
The model on pulse rate is,

$$
P=200 w^{-0.25}
$$

The power law of differentiation gives

$$
\frac{d P}{d t}=-50 w^{-5 / 4}
$$

The negative sign shows the decrease in the pulse rate with increasing weight

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation：Suppose we want to approximate the pulse of a 17 kg animal using our model

$$
P=200 w^{-0.25}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation: Suppose we want to approximate the pulse of a 17 kg animal using our model

$$
P=200 w^{-0.25}
$$

- An animal at 16 kg by the allometric model would have a pulse of about 100 (since $\left.P(16)=200(16)^{-1 / 4}=100\right)$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation: Suppose we want to approximate the pulse of a 17 kg animal using our model

$$
P=200 w^{-0.25}
$$

- An animal at 16 kg by the allometric model would have a pulse of about 100 (since $\left.P(16)=200(16)^{-1 / 4}=100\right)$
- The power law of differentiation gives

$$
\frac{d P}{d t}=-50 w^{-5 / 4}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation: Suppose we want to approximate the pulse of a 17 kg animal using our model

$$
P=200 w^{-0.25}
$$

- An animal at 16 kg by the allometric model would have a pulse of about 100 (since $\left.P(16)=200(16)^{-1 / 4}=100\right)$
- The power law of differentiation gives

$$
\frac{d P}{d t}=-50 w^{-5 / 4}
$$

- The derivative at $w=16$ is

$$
P^{\prime}(16)=-50(16)^{-5 / 4}=-\frac{50}{32} \approx-1.56
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation (cont):

- The tangent line approximation, $P_{L}(w)$, near $w=16$ is

$$
P_{L}(w)=-\frac{50}{32}(w-16)+100
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation (cont):

- The tangent line approximation, $P_{L}(w)$, near $w=16$ is

$$
P_{L}(w)=-\frac{50}{32}(w-16)+100
$$

- It follows that a 17 kg animal should have a pulse near

$$
P_{L}(17)=-\frac{50}{32}(1)+100 \approx 98.44 \text { beats } / \mathrm{min}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Pulse and Weight Example

Example for Linear Approximation (cont):

- The tangent line approximation, $P_{L}(w)$, near $w=16$ is

$$
P_{L}(w)=-\frac{50}{32}(w-16)+100
$$

- It follows that a 17 kg animal should have a pulse near

$$
P_{L}(17)=-\frac{50}{32}(1)+100 \approx 98.44 \text { beats } / \mathrm{min}
$$

- Note that the Allometric model gives

$$
P(17)=200(17)^{-1 / 4}=98.50 \text { beats } / \mathrm{min}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Biodiversity Example The model on diversity is,

$$
N=3 A^{1 / 3}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Biodiversity Example The model on diversity is,

$$
N=3 A^{1 / 3}
$$

The power law of differentiation gives

$$
\frac{d N}{d t}=A^{-2 / 3}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Biodiversity Example
The model on diversity is,

$$
N=3 A^{1 / 3}
$$

The power law of differentiation gives

$$
\frac{d N}{d t}=A^{-2 / 3}
$$

- This shows the rate of change of numbers of species with respect to the island area is increasing as the derivative is positive

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Biodiversity Example

The model on diversity is,

$$
N=3 A^{1 / 3}
$$

The power law of differentiation gives

$$
\frac{d N}{d t}=A^{-2 / 3}
$$

- This shows the rate of change of numbers of species with respect to the island area is increasing as the derivative is positive
- The increase gets smaller with increasing island area, since the area has the power $-2 / 3$, which puts the area in the denominator of this expression for the derivative

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation: Suppose we want to approximate the number of species on an island with 950 sq mi

$$
N=3 A^{1 / 3}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation: Suppose we want to approximate the number of species on an island with 950 sq mi

$$
N=3 A^{1 / 3}
$$

- An island with 1000 sq mi by the allometric model would have approximately 30 species (since

$$
\left.N(1000)=3(1000)^{1 / 3}=30\right)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation: Suppose we want to approximate the number of species on an island with 950 sq mi

$$
N=3 A^{1 / 3}
$$

- An island with 1000 sq mi by the allometric model would have approximately 30 species (since

$$
\left.N(1000)=3(1000)^{1 / 3}=30\right)
$$

- The power law of differentiation gives

$$
\frac{d N}{d t}=A^{-2 / 3}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation: Suppose we want to approximate the number of species on an island with 950 sq mi

$$
N=3 A^{1 / 3}
$$

- An island with 1000 sq mi by the allometric model would have approximately 30 species (since

$$
\left.N(1000)=3(1000)^{1 / 3}=30\right)
$$

- The power law of differentiation gives

$$
\frac{d N}{d t}=A^{-2 / 3}
$$

- The derivative at $A=1000$ is

$$
N^{\prime}(1000)=(1000)^{-2 / 3}=0.01
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation (cont):

- The tangent line approximation, $N_{L}(A)$, near $A=1000$ is

$$
N_{L}(A)=0.01(A-1000)+30
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Biodiversity Example

Example for Linear Approximation (cont):

- The tangent line approximation, $N_{L}(A)$, near $A=1000$ is

$$
N_{L}(A)=0.01(A-1000)+30
$$

- It follows that an island with an area of 950 sq mi should have approximately

$$
N_{L}(950)=0.01(950-1000)+30=29.5 \text { species }
$$

Applications with Power Law
Notation for the Derivative
Differentiation

Additive Rule
Linear Approximation Height of Ball
Differentiation of Polynomials
Maximum Growth

Biodiversity Example

Example for Linear Approximation (cont):

- The tangent line approximation, $N_{L}(A)$, near $A=1000$ is

$$
N_{L}(A)=0.01(A-1000)+30
$$

- It follows that an island with an area of 950 sq mi should have approximately

$$
N_{L}(950)=0.01(950-1000)+30=29.5 \text { species }
$$

- Note that the Allometric model gives

$$
N(950)=3(950)^{1 / 3}=29.49 \text { species }
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Height of Ball

Height of Ball Suppose a ball is thrown vertically with an initial velocity of v_{0} and an initial height $h(0)=0$

Assume the only acceleration is due to gravity, g and air resistance ignored

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Height of Ball

Height of Ball Suppose a ball is thrown vertically with an initial velocity of v_{0} and an initial height $h(0)=0$

Assume the only acceleration is due to gravity, g and air resistance ignored

The equation for the height satisfies:

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

The velocity is the derivative of $h(t)$

$$
v(t)=h^{\prime}(t)=v_{0}-g t
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

The velocity is the derivative of $h(t)$

$$
v(t)=h^{\prime}(t)=v_{0}-g t
$$

- This uses our 3 rules of differentiation to date

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

The velocity is the derivative of $h(t)$

$$
v(t)=h^{\prime}(t)=v_{0}-g t
$$

- This uses our 3 rules of differentiation to date
- The additive property of derivatives allows consideration of each of the terms in the height function separately

Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

The velocity is the derivative of $h(t)$

$$
v(t)=h^{\prime}(t)=v_{0}-g t
$$

- This uses our 3 rules of differentiation to date
- The additive property of derivatives allows consideration of each of the terms in the height function separately
- Each term has a scalar multiple

Velocity of Ball

With the equation for the height

$$
h(t)=v_{0} t-\frac{g t^{2}}{2}
$$

The velocity is the derivative of $h(t)$

$$
v(t)=h^{\prime}(t)=v_{0}-g t
$$

- This uses our 3 rules of differentiation to date
- The additive property of derivatives allows consideration of each of the terms in the height function separately
- Each term has a scalar multiple
- Power rule can be applied to the t and t^{2} terms

```
Power Rule
Scalar Multiplication Rule
```

Applications with Power Law
Notation for the Derivative Differentiation

Differentiation of Polynomials

Differentiation of Polynomials

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}-8 x^{2}+10 x-7
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}-8 x^{2}+10 x-7
$$

From our rules above, the derivative is

$$
f^{\prime}(x)=4 x^{3}+9 x^{2}-16 x+10
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}-8 x^{2}+10 x-7
$$

From our rules above, the derivative is

$$
f^{\prime}(x)=4 x^{3}+9 x^{2}-16 x+10
$$

Example: Other additive powers are handled similarly

$$
f(x)=x^{2}+\frac{3}{x^{2}}-8 \sqrt{x}+13
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}-8 x^{2}+10 x-7
$$

From our rules above, the derivative is

$$
f^{\prime}(x)=4 x^{3}+9 x^{2}-16 x+10
$$

Example: Other additive powers are handled similarly

$$
f(x)=x^{2}+\frac{3}{x^{2}}-8 \sqrt{x}+13=x^{2}+3 x^{-2}-8 x^{1 / 2}+13
$$

Differentiation of Polynomials

Differentiation of Polynomials

Consider the polynomial

$$
f(x)=x^{4}+3 x^{3}-8 x^{2}+10 x-7
$$

From our rules above, the derivative is

$$
f^{\prime}(x)=4 x^{3}+9 x^{2}-16 x+10
$$

Example: Other additive powers are handled similarly

$$
f(x)=x^{2}+\frac{3}{x^{2}}-8 \sqrt{x}+13=x^{2}+3 x^{-2}-8 x^{1 / 2}+13
$$

From our rules above, the derivative is

$$
f^{\prime}(x)=2 x-6 x^{-3}-4 x^{-1 / 2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

- Sketch a graph of the height of the ball, $h(t)$, as a function of time, t

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

- Sketch a graph of the height of the ball, $h(t)$, as a function of time, t
- Find the maximum height of the ball and determine when the ball hits the ground

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

- Sketch a graph of the height of the ball, $h(t)$, as a function of time, t
- Find the maximum height of the ball and determine when the ball hits the ground
- Give an expression for the velocity, $v(t)$, as a function of time, t

Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth

Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

- Sketch a graph of the height of the ball, $h(t)$, as a function of time, t
- Find the maximum height of the ball and determine when the ball hits the ground
- Give an expression for the velocity, $v(t)$, as a function of time, t
- Find the velocity at the times $t=0, t=1$, and $t=2$

Velocity of a Ball

Example: A ball, thrown vertically from a platform without air resistance, satisfies the equation

$$
h(t)=80+64 t-16 t^{2}
$$

- Sketch a graph of the height of the ball, $h(t)$, as a function of time, t
- Find the maximum height of the ball and determine when the ball hits the ground
- Give an expression for the velocity, $v(t)$, as a function of time, t
- Find the velocity at the times $t=0, t=1$, and $t=2$
- What is the velocity of the ball just before it hits the ground?

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Height of the ball

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Height of the ball

- Factoring $h(t)=-16(t+1)(t-5)$, so the ball hits the ground at $t=5$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Height of the ball

- Factoring $h(t)=-16(t+1)(t-5)$, so the ball hits the ground at $t=5$
- The vertex of the parabola occurs at $t=2$ with $h(2)=144 \mathrm{ft}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Height of the ball

- Factoring $h(t)=-16(t+1)(t-5)$, so the ball hits the ground at $t=5$
- The vertex of the parabola occurs at $t=2$ with $h(2)=144 \mathrm{ft}$
- The h-intercept is $h(0)=80 \mathrm{ft}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Height of the ball

- Factoring $h(t)=-16(t+1)(t-5)$, so the ball hits the ground at $t=5$
- The vertex of the parabola occurs at $t=2$ with $h(2)=144 \mathrm{ft}$
- The h-intercept is $h(0)=80 \mathrm{ft}$


```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Since the height is given by

$$
h(t)=80+64 t-16 t^{2}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Since the height is given by

$$
h(t)=80+64 t-16 t^{2}
$$

so the velocity is

$$
v(t)=h^{\prime}(t)=64-32 t
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Since the height is given by

$$
h(t)=80+64 t-16 t^{2}
$$

so the velocity is

$$
v(t)=h^{\prime}(t)=64-32 t
$$

- It follows that

$$
v(0)=64 \mathrm{ft} / \mathrm{sec}, \quad v(1)=32 \mathrm{ft} / \mathrm{sec}, \quad v(2)=0 \mathrm{ft} / \mathrm{sec}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Since the height is given by

$$
h(t)=80+64 t-16 t^{2}
$$

so the velocity is

$$
v(t)=h^{\prime}(t)=64-32 t
$$

- It follows that

$$
v(0)=64 \mathrm{ft} / \mathrm{sec}, \quad v(1)=32 \mathrm{ft} / \mathrm{sec}, \quad v(2)=0 \mathrm{ft} / \mathrm{sec}
$$

- The velocity at the maximum is $v(2)=0 \mathrm{ft} / \mathrm{sec}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Velocity of a Ball

Since the height is given by

$$
h(t)=80+64 t-16 t^{2}
$$

so the velocity is

$$
v(t)=h^{\prime}(t)=64-32 t
$$

- It follows that

$$
v(0)=64 \mathrm{ft} / \mathrm{sec}, \quad v(1)=32 \mathrm{ft} / \mathrm{sec}, \quad v(2)=0 \mathrm{ft} / \mathrm{sec}
$$

- The velocity at the maximum is $v(2)=0 \mathrm{ft} / \mathrm{sec}$
- The ball hits the ground with velocity $v(5)=-96 \mathrm{ft} / \mathrm{sec}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

A common model in population biology is the logistic growth model given by

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

A common model in population biology is the logistic growth model given by

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)
$$

- Studied the discrete Malthusian growth model

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

A common model in population biology is the logistic growth model given by

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)
$$

- Studied the discrete Malthusian growth model
- The growth of the population is proportional to the existing population, $P_{n+1}=P_{n}+r P_{n}$
- Malthusian growth model is based on unlimited resources

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

A common model in population biology is the logistic growth model given by

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)
$$

- Studied the discrete Malthusian growth model
- The growth of the population is proportional to the existing population, $P_{n+1}=P_{n}+r P_{n}$
- Malthusian growth model is based on unlimited resources
- As the population increases, the growth rate of most organisms slows

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

A common model in population biology is the logistic growth model given by

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)
$$

- Studied the discrete Malthusian growth model
- The growth of the population is proportional to the existing population, $P_{n+1}=P_{n}+r P_{n}$
- Malthusian growth model is based on unlimited resources
- As the population increases, the growth rate of most organisms slows
- Crowding (lack of space to reproduce)
- Lack of resources (limited food supply)
- Build up of waste (toxicity)

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

- First part is same as Malthusian growth model

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

- First part is same as Malthusian growth model
- Quadratic term reflects slowing of growth with increasing population, growth function, $G\left(P_{n}\right)$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

- First part is same as Malthusian growth model
- Quadratic term reflects slowing of growth with increasing population, growth function, $G\left(P_{n}\right)$
- Nonlinear model, which can have complicated behavior (observe later in Lab)

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

- First part is same as Malthusian growth model
- Quadratic term reflects slowing of growth with increasing population, growth function, $G\left(P_{n}\right)$
- Nonlinear model, which can have complicated behavior (observe later in Lab)
- For low r values, model gives classic S-shaped curve

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The logistic growth model

$$
P_{n+1}=P_{n}+r P_{n}\left(1-\frac{P_{n}}{M}\right)=P_{n}+G\left(P_{n}\right)
$$

- First part is same as Malthusian growth model
- Quadratic term reflects slowing of growth with increasing population, growth function, $G\left(P_{n}\right)$
- Nonlinear model, which can have complicated behavior (observe later in Lab)
- For low r values, model gives classic \mathbf{S}-shaped curve
- Population reaches an equilibrium, the carrying capacity

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

Example of Logistic Growth Function: Suppose a culture of yeast has the growth function

$$
G(P)=r P\left(1-\frac{P}{M}\right)
$$

where P is the density of yeast $(\times 1000 / c \mathrm{c})$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

Example of Logistic Growth Function: Suppose a culture of yeast has the growth function

$$
G(P)=r P\left(1-\frac{P}{M}\right)
$$

where P is the density of yeast $(\times 1000 / \mathrm{cc})$

- Suppose experimental measurements find the growth parameters

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

Example of Logistic Growth Function: Suppose a culture of yeast has the growth function

$$
G(P)=r P\left(1-\frac{P}{M}\right)
$$

where P is the density of yeast $(\times 1000 / \mathrm{cc})$

- Suppose experimental measurements find the growth parameters
- The Malthusian growth rate $r=0.1$
- The parameter $M=500$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The population is at equilibrium when the growth function is zero

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The population is at equilibrium when the growth function is zero

$$
G(P)=0.1 P\left(1-\frac{P}{500}\right)=0
$$

- This quadratic growth function is in factored form, so equilibria are easily found

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The population is at equilibrium when the growth function is zero

$$
G(P)=0.1 P\left(1-\frac{P}{500}\right)=0
$$

- This quadratic growth function is in factored form, so equilibria are easily found
- The extinction equilibrium, $P_{e}=0$
- The carrying capacity, $P_{e}=M=500$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The maximum growth occurs at the vertex of the growth function

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The maximum growth occurs at the vertex of the growth function

Also, the maximum is when the slope of the tangent line is zero or the derivative is zero

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The maximum growth occurs at the vertex of the growth function

Also, the maximum is when the slope of the tangent line is zero or the derivative is zero

Since

$$
G(P)=0.1 P-\frac{0.1 P^{2}}{500}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The maximum growth occurs at the vertex of the growth function

Also, the maximum is when the slope of the tangent line is zero or the derivative is zero

Since

$$
G(P)=0.1 P-\frac{0.1 P^{2}}{500}
$$

the derivative is

$$
G^{\prime}(P)=0.1-\frac{0.2 P}{500}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

The maximum growth occurs at the vertex of the growth function

Also, the maximum is when the slope of the tangent line is zero or the derivative is zero

Since

$$
G(P)=0.1 P-\frac{0.1 P^{2}}{500}
$$

the derivative is

$$
G^{\prime}(P)=0.1-\frac{0.2 P}{500}
$$

$G^{\prime}(P)=0$ when $P=250$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model


```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

- This model gives equilibria at $P_{e}=0$ and

$$
P_{e}=500(\times 1000) \text { yeast } / \mathrm{cc}
$$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

- This model gives equilibria at $P_{e}=0$ and $P_{e}=500(\times 1000)$ yeast/cc
- Maximum population growth occurs at $P_{v}=250(\times 1000)$ yeast $/ \mathrm{cc}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

- This model gives equilibria at $P_{e}=0$ and $P_{e}=500(\times 1000)$ yeast/cc
- Maximum population growth occurs at $P_{v}=250(\times 1000)$ yeast/cc
- Since $G(250)=12.5$, when the density of yeast is $250(\times 1000)$ yeast/cc, the maximum production is $12.5(\times 1000)$ yeast $/ \mathrm{cc} / \mathrm{hr}$

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

－Suppose the population begins with $P_{0}=50(\times 1000)$ yeast／cc

```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

- Suppose the population begins with $P_{0}=50(\times 1000)$ yeast/cc
- Below shows the simulation of

$$
P_{n+1}=P_{n}+0.1 P_{n}\left(1-\frac{P_{n}}{500}\right)
$$

for $0 \leq n \leq 80 \mathrm{hr}$


```
Power Rule
Scalar Multiplication Rule
Additive Rule
Linear Approximation
Height of Ball
Differentiation of Polynomials
Maximum Growth
```


Logistic Growth Model

- Suppose the population begins with $P_{0}=50(\times 1000)$ yeast/cc
- Below shows the simulation of

$$
P_{n+1}=P_{n}+0.1 P_{n}\left(1-\frac{P_{n}}{500}\right)
$$

for $0 \leq n \leq 80 \mathrm{hr}$

- Simulation shows the population approaching the carrying capacity of 500 and the maximum growth near $n=25$

