Calculus for the Life Sciences I Lecture Notes – Quotient Rule

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/{\sim}jmahaffy$

Spring 2013

-(1/44)

Outline

- Background
- Cooperative binding
- Model for Hemoglobin Saturation

Dissociation Curve for Hemoglobin

5 Genetic Control – Repression

Background Cooperative binding Model for Hemoglobin Saturation

(日) (四) (日) (日) (日)

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O_2

• **Hemoglobin** is the most important molecule in erythrocytes (red blood cells)

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- **Hemoglobin** is the most important molecule in erythrocytes (red blood cells)
- It has evolved to carry O₂ from the lungs and remove CO₂ from the tissues

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- **Hemoglobin** is the most important molecule in erythrocytes (red blood cells)
- It has evolved to carry O₂ from the lungs and remove CO₂ from the tissues
- For humans, the hemoglobin molecule consists mainly of two α and two β polypeptide chains

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- **Hemoglobin** is the most important molecule in erythrocytes (red blood cells)
- It has evolved to carry O₂ from the lungs and remove CO₂ from the tissues
- For humans, the hemoglobin molecule consists mainly of two α and two β polypeptide chains
- Each polypeptide chain contains a porphyrin ring with iron near the active binding site

Background Cooperative binding Model for Hemoglobin Saturation

(日) (四) (日) (日) (日)

Hemoglobin Affinity for O_2

- **Hemoglobin** is the most important molecule in erythrocytes (red blood cells)
- It has evolved to carry O₂ from the lungs and remove CO₂ from the tissues
- For humans, the hemoglobin molecule consists mainly of two α and two β polypeptide chains
- Each polypeptide chain contains a porphyrin ring with iron near the active binding site
- The four polypeptide chains fold into a quaternary structure that has evolved to very efficiently bind up to four molecules of O₂

Background Cooperative binding Model for Hemoglobin Saturation

(日) (四) (日) (日) (日)

Hemoglobin Affinity for O_2

2

Hemoglobin Affinity for O_2

• Oxygen is required by all of our cells

Background **Cooperative binding** Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen is required by all of our cells
- Hemoglobin uses **cooperative binding** to effectively load and unload O₂ molecules

Background **Cooperative binding** Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen is required by all of our cells
- Hemoglobin uses **cooperative binding** to effectively load and unload O₂ molecules
 - Binding of one molecule facilitates the binding of one or more other molecules

Background **Cooperative binding** Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen is required by all of our cells
- Hemoglobin uses **cooperative binding** to effectively load and unload O₂ molecules
 - Binding of one molecule facilitates the binding of one or more other molecules
 - Cooperative binding is often seen where a steep dissociation curve is needed

Background **Cooperative binding** Model for Hemoglobin Saturation

- Oxygen is required by all of our cells
- Hemoglobin uses **cooperative binding** to effectively load and unload O₂ molecules
 - Binding of one molecule facilitates the binding of one or more other molecules
 - Cooperative binding is often seen where a steep dissociation curve is needed
- It is a variant of the Michaelis-Menten velocity curve with a characteristic S-shape

Background Cooperative binding Model for Hemoglobin Saturation

3

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O₂ – Cooperative Binding

• The protein has more of an **on/off function**

Background Cooperative binding Model for Hemoglobin Saturation

3

Hemoglobin Affinity for O_2

- The protein has more of an **on/off function**
- The steepness in the dissociation curve is needed for effective O₂ exchange

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- The protein has more of an **on/off function**
- The steepness in the dissociation curve is needed for effective O₂ exchange
 - A small partial pressure difference in the concentration of O₂ results in easy unloading of O₂ at the tissues

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- The protein has more of an **on/off function**
- The steepness in the dissociation curve is needed for effective O₂ exchange
 - A small partial pressure difference in the concentration of O₂ results in easy unloading of O₂ at the tissues
 - In the lungs, the O₂ readily loads onto the hemoglobin molecules

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- The protein has more of an **on/off function**
- The steepness in the dissociation curve is needed for effective O₂ exchange
 - A small partial pressure difference in the concentration of O₂ results in easy unloading of O₂ at the tissues
 - In the lungs, the O₂ readily loads onto the hemoglobin molecules
 - $\bullet\,$ A different dissociation curve allows the removal of $\rm CO_2$

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- The protein has more of an **on/off function**
- The steepness in the dissociation curve is needed for effective O₂ exchange
 - A small partial pressure difference in the concentration of O₂ results in easy unloading of O₂ at the tissues
 - In the lungs, the O₂ readily loads onto the hemoglobin molecules
 - A different dissociation curve allows the removal of CO₂
- The dissociation curve for hemoglobin is highly sensitive to pH, temperature, and other factors

Background Cooperative binding Model for Hemoglobin Saturation

・ロト ・同ト ・ヨト ・ヨト

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O_2 – Cooperative Binding

• Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂

Background Cooperative binding Model for Hemoglobin Saturation

・ロト ・四ト ・ヨト ・ヨト

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O_2 – Cooperative Binding

- Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂
- The fraction of hemoglobin saturated with O₂ satisfies the function

$$y(P) = \frac{P^n}{K + P^n}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (6/44)

Background Cooperative binding Model for Hemoglobin Saturation

・ロト ・四ト ・ヨト ・ヨト

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O_2 – Cooperative Binding

- Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂
- The fraction of hemoglobin saturated with O₂ satisfies the function

$$y(P) = \frac{P^n}{K + P^n}$$

• y is the fraction of hemoglobin saturated with O_2

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂
- The fraction of hemoglobin saturated with O₂ satisfies the function

$$y(P) = \frac{P^n}{K + P^n}$$

- y is the fraction of hemoglobin saturated with O_2
- P is the partial pressure of O_2 measured in torrs

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂
- The fraction of hemoglobin saturated with O₂ satisfies the function

$$y(P) = \frac{P^n}{K + P^n}$$

- y is the fraction of hemoglobin saturated with O_2
- P is the partial pressure of O_2 measured in torrs
- The Hill coefficient *n* represents the number of molecules binding to the protein, typically measured between 2.7-3.2

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Oxygen affinity is expressed by a dissociation function that measures the percent of hemoglobin in the blood saturated with O₂ as a function of the partial pressure of O₂
- The fraction of hemoglobin saturated with O₂ satisfies the function

$$y(P) = \frac{P^n}{K + P^n}$$

- y is the fraction of hemoglobin saturated with O_2
- P is the partial pressure of O_2 measured in torrs
- The Hill coefficient *n* represents the number of molecules binding to the protein, typically measured between 2.7-3.2
- K is the binding equilibrium constant

Background Cooperative binding Model for Hemoglobin Saturation

(日) (四) (日) (日) (日)

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O₂: Fraction of hemoglobin

$$y(P) = \frac{P^n}{K + P^n}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (7/44)

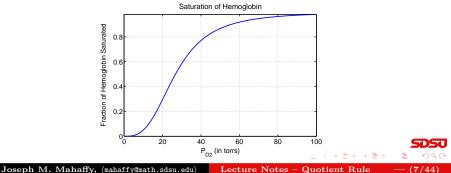
Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O₂: Fraction of hemoglobin

$$y(P) = \frac{P^n}{K + P^n}$$

Experimental measurements show that the values of n = 3 and K = 19,100



Background Cooperative binding Model for Hemoglobin Saturation

6

Hemoglobin Affinity for O_2

Hemoglobin Affinity for O₂ – Cooperative Binding

• Where the dissociation curve is steepest, the O₂ binds and unbinds to hemoglobin over the narrowest changes in partial pressure of O₂

Background Cooperative binding Model for Hemoglobin Saturation

6

Hemoglobin Affinity for O_2

- Where the dissociation curve is steepest, the O₂ binds and unbinds to hemoglobin over the narrowest changes in partial pressure of O₂
- This allows the most efficient exchange of O₂ in the tissues

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Where the dissociation curve is steepest, the O₂ binds and unbinds to hemoglobin over the narrowest changes in partial pressure of O₂
- This allows the most efficient exchange of O₂ in the tissues
- The steepest part of the dissociation curve is where the derivative is at its maximum

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Where the dissociation curve is steepest, the O₂ binds and unbinds to hemoglobin over the narrowest changes in partial pressure of O₂
- This allows the most efficient exchange of O₂ in the tissues
- The steepest part of the dissociation curve is where the derivative is at its maximum
- This is the **point of inflection**

Background Cooperative binding Model for Hemoglobin Saturation

Hemoglobin Affinity for O_2

- Where the dissociation curve is steepest, the O₂ binds and unbinds to hemoglobin over the narrowest changes in partial pressure of O₂
- This allows the most efficient exchange of O₂ in the tissues
- The steepest part of the dissociation curve is where the derivative is at its maximum
- This is the **point of inflection**
- The curve is defined by a rational function, so we need a **quotient rule** to find its derivative

Hemoglobin Quotient Rule Dissociation Curve for Hemoglobin Mitotic Model Genetic Control – Repression	

Quotient Rule

Quotient Rule: Let f(x) and g(x) be two differentiable functions

▲□→ < □→ < □→</p>

Hemoglobin Quotient Rule Dissociation Curve for Hemoglobin Mitotic Model Genetic Control – Repression	

Quotient Rule

Quotient Rule: Let f(x) and g(x) be two differentiable functions

The **quotient rule** for finding the derivative of the quotient of these two functions is given by

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

where f'(x) and g'(x) are the derivatives of the respective functions

Hemoglobin Quotient Rule Dissociation Curve for Hemoglobin Mitotic Model Genetic Control – Repression	

Quotient Rule

Quotient Rule: Let f(x) and g(x) be two differentiable functions

The **quotient rule** for finding the derivative of the quotient of these two functions is given by

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

where f'(x) and g'(x) are the derivatives of the respective functions

The quotient rule says that the derivative of the quotient is the bottom times the derivative of the top minus the top times the derivative of the bottom all over the bottom squared

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Examples

Example – Quotient Function

Example: Consider the function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Skip Example

イロト イポト イヨト イヨト

Examples

Example – Quotient Function

Example: Consider the function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Skip Example

• Find any intercepts

Examples

Example – Quotient Function

Example: Consider the function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes

《曰》 《聞》 《臣》 《臣》

Examples

Example – Quotient Function

Example: Consider the function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes
- Find critical points and extrema

Examples

Example – Quotient Function

Example: Consider the function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes
- Find critical points and extrema
- Sketch the graph of f(x)

Examples

Example – Quotient Function

Solution: The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Examples

Example – Quotient Function

Solution: The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

• The *y*-intercept is given by
$$y = f(0) = -\frac{1}{2}$$

Examples

Example – Quotient Function

Solution: The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

- The y-intercept is given by $y = f(0) = -\frac{1}{2}$
- The x-intercept solves f(x) = 0

Examples

Example – Quotient Function

Solution: The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

- The *y*-intercept is given by $y = f(0) = -\frac{1}{2}$
- The x-intercept solves f(x) = 0
 - Set the numerator equal to zero

$$x^2 - 2x + 1 = (x - 1)^2 = 0$$

Examples

Example – Quotient Function

Solution: The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

- The *y*-intercept is given by $y = f(0) = -\frac{1}{2}$
- The *x*-intercept solves f(x) = 0
 - Set the numerator equal to zero

$$x^2 - 2x + 1 = (x - 1)^2 = 0$$

・ロト ・同ト ・ヨト ・ヨト

• The x-intercept is x = 1

Examples

3

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

(日) (四) (日) (日) (日)

Examples

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

• The **vertical asymptotes** are when the denominator is zero

Examples

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

- The **vertical asymptotes** are when the denominator is zero
 - The vertical asymptotes are

$$x = -1$$
 and $x = 2$

(日) (四) (日) (日) (日)

Examples

3

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

- The **vertical asymptotes** are when the denominator is zero
 - The vertical asymptotes are

$$x = -1$$
 and $x = 2$

・ロト ・同ト ・ヨト ・ヨト

• The horizontal asymptote examines f(x) for large values of x

Examples

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

- The **vertical asymptotes** are when the denominator is zero
 - The vertical asymptotes are

$$x = -1$$
 and $x = 2$

- The horizontal asymptote examines f(x) for large values of x
 - The largest exponents in the numerator are both 2

・ロト ・同ト ・ヨト ・ヨト

Examples

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

- The **vertical asymptotes** are when the denominator is zero
 - The vertical asymptotes are

$$x = -1$$
 and $x = 2$

- The horizontal asymptote examines f(x) for large values of x
 - The largest exponents in the numerator are both 2
 - For large x, f(x) behaves like $\frac{x^2}{x^2} = 1$

Examples

Example – Quotient Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2} = \frac{(x - 1)^2}{(x + 1)(x - 2)}$$

- The **vertical asymptotes** are when the denominator is zero
 - The vertical asymptotes are

$$x = -1$$
 and $x = 2$

- The horizontal asymptote examines f(x) for large values of x
 - The largest exponents in the numerator are both 2
 - For large x, f(x) behaves like $\frac{x^2}{x^2} = 1$
 - The horizontal asymptote is y = 1

Examples

Example – Quotient Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

Examples

Example – Quotient Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

The derivative uses the quotient rule:

$$f'(x) = \frac{(x^2 - x - 2)(2x - 2) - (x^2 - 2x + 1)(2x - 1)}{(x^2 - x - 2)^2}$$

Examples

Example – Quotient Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

The **derivative** uses the **quotient rule**:

$$f'(x) = \frac{(x^2 - x - 2)(2x - 2) - (x^2 - 2x + 1)(2x - 1)}{(x^2 - x - 2)^2}$$
$$= \frac{x^2 - 6x + 5}{(x^2 - x - 2)^2}$$

Examples

Example – Quotient Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$

The derivative uses the quotient rule:

$$f'(x) = \frac{(x^2 - x - 2)(2x - 2) - (x^2 - 2x + 1)(2x - 1)}{(x^2 - x - 2)^2}$$
$$= \frac{x^2 - 6x + 5}{(x^2 - x - 2)^2}$$
$$= \frac{(x - 1)(x - 5)}{(x^2 - x - 2)^2}$$

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

<ロ> (四) (四) (三) (三) (三)

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

• The **critical points** are found by setting the derivative equal to zero

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-5) = 0$$

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-5) = 0$$

• The critical points are $x_c = 1$ and $x_c = 5$

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-5) = 0$$

- The critical points are $x_c = 1$ and $x_c = 5$
- Evaluating the function f(x) at these critical points

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-5) = 0$$

- The critical points are $x_c = 1$ and $x_c = 5$
- Evaluating the function f(x) at these critical points
 - Local maximum at (1,0)

Examples

Example – Quotient Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-5)}{(x^2 - x - 2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-5) = 0$$

- The critical points are $x_c = 1$ and $x_c = 5$
- Evaluating the function f(x) at these critical points
 - Local maximum at (1,0)
 - Local minimum at $(5, \frac{8}{9})$

・ロト ・同ト ・ヨト ・ヨト

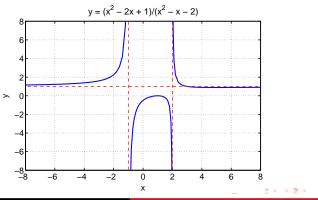
-(14/44)

Examples

Example – Quotient Function

Solution (cont): Graph of f(x)

$$f(x) = \frac{x^2 - 2x + 1}{x^2 - x - 2}$$



Lecture Notes – Quotient Rule

— (15/44)

6

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Example – Differentiation

Example: Differentiate the function

$$f(x) = \frac{x}{x^2 + 1}$$

Skip Example

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule (16/44)

Example – Differentiation

Example: Differentiate the function

$$f(x) = \frac{x}{x^2 + 1}$$

Skip Example

Solution: Apply the quotient rule to f(x)

Example – Differentiation

Example: Differentiate the function

$$f(x) = \frac{x}{x^2 + 1}$$

Skip Example

Solution: Apply the quotient rule to f(x)

$$f'(x) = \frac{(x^2+1)\cdot 1 - x \cdot 2x}{(x^2+1)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (16/44)

Example – Differentiation

Example: Differentiate the function

$$f(x) = \frac{x}{x^2 + 1}$$

Skip Example

Solution: Apply the quotient rule to f(x)

$$f'(x) = \frac{(x^2+1) \cdot 1 - x \cdot 2x}{(x^2+1)^2}$$
$$f'(x) = \frac{1-x^2}{(x^2+1)^2}$$

Examples

Example – Rational Function

Example: Consider the function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Skip Example

<ロ> (四) (四) (三) (三) (三)

Examples

Example – Rational Function

Example: Consider the function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Skip Example

• Find any intercepts

Examples

Example – Rational Function

Example: Consider the function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes

Examples

Example – Rational Function

Example: Consider the function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes
- Find critical points and extrema

《曰》 《聞》 《臣》 《臣》

Examples

Example – Rational Function

Example: Consider the function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Skip Example

- Find any intercepts
- Find any asymptotes
- Find critical points and extrema
- Sketch the graph of f(x)

《曰》 《聞》 《臣》 《臣》

Examples

2

Example – Rational Function

Solution: The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (18/44)

イロト イポト イヨト イヨト

Examples

Example – Rational Function

Solution: The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

• The *y*-intercept is given by
$$y = f(0) = -\frac{9}{2}$$

イロト イポト イヨト イヨト

Examples

Example – Rational Function

Solution: The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

- The y-intercept is given by $y = f(0) = -\frac{9}{2}$
- The x-intercept solves f(x) = 0

イロト イポト イヨト イヨト

Examples

Example – Rational Function

Solution: The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

- The *y*-intercept is given by $y = f(0) = -\frac{9}{2}$
- The *x*-intercept solves f(x) = 0
 - Set the numerator equal to zero

$$x^2 - 6x + 9 = (x - 3)^2 = 0$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (18/44)

Examples

Example – Rational Function

Solution: The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

- The *y*-intercept is given by $y = f(0) = -\frac{9}{2}$
- The x-intercept solves f(x) = 0
 - Set the numerator equal to zero

$$x^2 - 6x + 9 = (x - 3)^2 = 0$$

イロト イポト イヨト イヨト

• The x-intercept is x = 3

Examples

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

Examples

3

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

• The **vertical asymptote** is when the denominator is zero

(日) (四) (日) (日) (日)

Examples

3

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

- The **vertical asymptote** is when the denominator is zero
 - The vertical asymptote is

x = 2

(日) (四) (日) (日) (日)

Examples

3

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

- The **vertical asymptote** is when the denominator is zero
 - The vertical asymptote is

x = 2

・ロト ・同ト ・ヨト ・ヨト

• Horizontal asymptotes

Examples

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

- The **vertical asymptote** is when the denominator is zero
 - The vertical asymptote is

x = 2

• Horizontal asymptotes

• The power of the numerator exceeds the power of the denominator

Examples

Example – Rational Function

Solution (cont): The function

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Asymptotes:

- The **vertical asymptote** is when the denominator is zero
 - The vertical asymptote is

x = 2

- 4 同 6 - 4 三 6 - 4 三 6

• Horizontal asymptotes

- The power of the numerator exceeds the power of the denominator
- There are no horizontal asymptotes

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (19/44)

Examples

Example – Rational Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

Examples

Example – Rational Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

The derivative uses the quotient rule:

$$f'(x) = \frac{(x-2)(2x-6) - (x^2 - 6x + 9) \cdot 1}{(x-2)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (20/44)

Examples

Example – Rational Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

The derivative uses the quotient rule:

$$f'(x) = \frac{(x-2)(2x-6) - (x^2 - 6x + 9) \cdot 1}{(x-2)^2}$$
$$= \frac{x^2 - 4x + 3}{(x-2)^2}$$

Examples

Example – Rational Function

Solution (cont): Extrema

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$

The derivative uses the quotient rule:

$$f'(x) = \frac{(x-2)(2x-6) - (x^2 - 6x + 9) \cdot 1}{(x-2)^2}$$
$$= \frac{x^2 - 4x + 3}{(x-2)^2}$$
$$= \frac{(x-1)(x-3)}{(x-2)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

(20/44)

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (21/44)

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

• The **critical points** are found by setting the derivative equal to zero

(日) (四) (日) (日) (日)

Examples

5

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-3) = 0$$

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-3) = 0$$

• The critical points are $x_c = 1$ and $x_c = 3$

・ロト ・(部)ト ・(ヨト ・(ヨト

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-3) = 0$$

- The critical points are $x_c = 1$ and $x_c = 3$
- Evaluating the function f(x) at these critical points

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-3) = 0$$

- The critical points are $x_c = 1$ and $x_c = 3$
- Evaluating the function f(x) at these critical points
 - Local maximum at (1, -4)

Examples

Example – Rational Function

Solution (cont): Critical Points

$$f'(x) = \frac{(x-1)(x-3)}{(x-2)^2}$$

- The **critical points** are found by setting the derivative equal to zero
- Set the numerator equal to zero or

$$(x-1)(x-3) = 0$$

- The critical points are $x_c = 1$ and $x_c = 3$
- Evaluating the function f(x) at these critical points
 - Local maximum at (1, -4)
 - Local minimum at (3,0)

-(21/44)

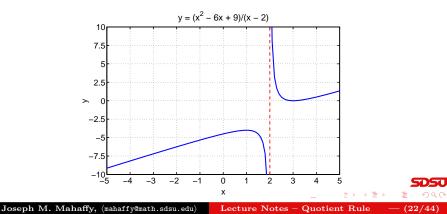
Examples

6

Example – Rational Function

Solution (cont): Graph of f(x)

$$f(x) = \frac{x^2 - 6x + 9}{x - 2}$$



Dissociation Curve for Hemoglobin

Dissociation Curve for Hemoglobin: The dissociation curve for O_2 with hemoglobin shown above uses the specific function

$$y(P) = \frac{P^3}{19,100 + P^3}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (23/44)

< ロ > < 部 > < き > < き >

Dissociation Curve for Hemoglobin

Dissociation Curve for Hemoglobin: The dissociation curve for O_2 with hemoglobin shown above uses the specific function

$$y(P) = \frac{P^3}{19,100 + P^3}$$

Compute the derivative using the quotient rule

$$y'(P) = \frac{3P^2(19,100+P^3) - P^3(3P^2)}{(19,100+P^3)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (23/44)

Dissociation Curve for Hemoglobin

Dissociation Curve for Hemoglobin: The dissociation curve for O_2 with hemoglobin shown above uses the specific function

$$y(P) = \frac{P^3}{19,100 + P^3}$$

Compute the derivative using the quotient rule

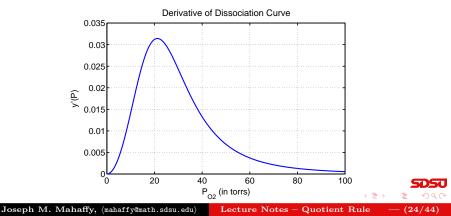
$$y'(P) = \frac{3P^2(19,100+P^3) - P^3(3P^2)}{(19,100+P^3)^2}$$
$$y'(P) = \frac{57,300P^2}{(19,100+P^3)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (23/44)

Dissociation Curve for Hemoglobin

Derivative of Dissociation Curve for Hemoglobin:

$$y'(P) = \frac{57,300P^2}{(19,100+P^3)^2}$$



Dissociation Curve for Hemoglobin

Maximum of the Derivative: The maximum derivative occurs at about $P_{O2} = 21$ torrs, where the second derivative is zero

 $y'(P) = \frac{57,300P^2}{19,100^2 + 38,200P^3 + P^6}$

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The maximum derivative occurs at about $P_{O2} = 21$ torrs, where the second derivative is zero

$$y'(P) = \frac{57,300P^2}{19,100^2 + 38,200P^3 + P^6}$$

The second derivative is

 $y''(P) = \frac{114,600P(19,100^2+38,200P^3+P^6) - 57,300P^2(114,600P^2+6P^5)}{(19,100^2+38,200P^3+P^6)^2}$

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The maximum derivative occurs at about $P_{O2} = 21$ torrs, where the second derivative is zero

$$y'(P) = \frac{57,300P^2}{19,100^2 + 38,200P^3 + P^6}$$

The second derivative is

$$y''(P) = \frac{114,600P(19,100^2+38,200P^3+P^6) - 57,300P^2(114,600P^2+6P^5)}{(19,100^2+38,200P^3+P^6)^2}$$

With some algebra or Maple

$$y''(P) = -\frac{229,200P(P^3 - 9,550)}{(19,100 + P^3)^3}$$

≣⇒

(25/44)

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The second derivative is

$$y''(P) = -\frac{229,200P(P^3 - 9,550)}{(19,100 + P^3)^3}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (26/44)

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The second derivative is

$$y''(P) = -\frac{229,200P(P^3 - 9,550)}{(19,100 + P^3)^3}$$

• The second derivative is equal to zero when

$$P = 0$$
 or $P = 9550^{1/3} = 21.22$

< ロ > < 部 > < き > < き >

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The second derivative is

$$y''(P) = -\frac{229,200P(P^3 - 9,550)}{(19,100 + P^3)^3}$$

• The second derivative is equal to zero when

$$P = 0$$
 or $P = 9550^{1/3} = 21.22$

• The point of inflection occurs at $P_p = 21.22$

・ロト ・同ト ・ヨト ・ヨト

Dissociation Curve for Hemoglobin

Maximum of the Derivative: The second derivative is

$$y''(P) = -\frac{229,200P(P^3 - 9,550)}{(19,100 + P^3)^3}$$

• The second derivative is equal to zero when

$$P = 0$$
 or $P = 9550^{1/3} = 21.22$

- The point of inflection occurs at $P_p = 21.22$
- $y(P_p) = 0.333$ or about 1/3 of the hemoglobin is saturated by O₂

・ロト ・同ト ・ヨト ・ヨト

Mitotic Model: Multicellular organisms

Skip Example

(日) (四) (日) (日) (日)

Mitotic Model: Multicellular organisms

Skip Example

• First cells grow exponentially (Malthusian growth)

Mitotic Model: Multicellular organisms

Skip Example

- First cells grow exponentially (Malthusian growth)
- Cell growth regulated to develop particular patterns and shapes

Mitotic Model: Multicellular organisms

Skip Example

- First cells grow exponentially (Malthusian growth)
- Cell growth regulated to develop particular patterns and shapes
- Cells differentiate into organs with specific functions

Mitotic Model: Multicellular organisms

Skip Example

- First cells grow exponentially (Malthusian growth)
- Cell growth regulated to develop particular patterns and shapes
- Cells differentiate into organs with specific functions
- Adult organisms maintain a constant number of cells

イロト イポト イヨト イヨト

Mitotic Model

2

Mitosis

Mitosis

• Mitosis is the process of cellular division

Mitosis

- Mitosis is the process of cellular division
- Cancer is the breakdown of control in cellular division

(日) (四) (日) (日) (日)

Mitosis

- Mitosis is the process of cellular division
- Cancer is the breakdown of control in cellular division
- How does a cell recognize when it should divide?

《曰》 《聞》 《臣》 《臣》

Mitotic Model

Mitosis

- Mitosis is the process of cellular division
- Cancer is the breakdown of control in cellular division
- How does a cell recognize when it should divide?
 - Cells must recognize their neighboring environment of other cells

Mitotic Model

Mitosis

- Mitosis is the process of cellular division
- Cancer is the breakdown of control in cellular division
- How does a cell recognize when it should divide?
 - Cells must recognize their neighboring environment of other cells
 - For example, a skin cell obviously needs to undergo mitosis when either wear or damage of the skin requires replacement cells

Mitotic Model

3

Chalones

Chalones

• The regulation of mitosis

(日) (四) (日) (日) (日)

Chalones

- The regulation of mitosis
- One controversial biochemical theory (late 1960s) was that cells communicated with neighboring cells by tissue-specific inhibitors known as **chalones**

Chalones

- The regulation of mitosis
- One controversial biochemical theory (late 1960s) was that cells communicated with neighboring cells by tissue-specific inhibitors known as **chalones**
- Chalones are released by cells and diffuse in the environment

イロト イポト イヨト イヨト

Chalones

- The regulation of mitosis
- One controversial biochemical theory (late 1960s) was that cells communicated with neighboring cells by tissue-specific inhibitors known as **chalones**
- Chalones are released by cells and diffuse in the environment
- With sufficient quantities of chalones, cells are inhibited from undergoing mitosis

イロト イポト イヨト イヨト

Mitotic Model

Mathematical Model for Mitosis

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (30/44)

4

Mitotic Model

Mathematical Model for Mitosis

• Theory assumes that chalones bind specifically to certain proteins involved in mitosis

《曰》 《聞》 《臣》 《臣》

Mitotic Model

Mathematical Model for Mitosis

- Theory assumes that chalones bind specifically to certain proteins involved in mitosis
- The chalones inactivate the mitotic proteins, leaving the cell in a quiescent state

《曰》 《聞》 《臣》 《臣》

Mitotic Model

Mathematical Model for Mitosis

- Theory assumes that chalones bind specifically to certain proteins involved in mitosis
- The chalones inactivate the mitotic proteins, leaving the cell in a quiescent state
- The inhibition process of effector molecules binding to a protein is often modeled using a **Hill function**

イロト イポト イヨト イヨト

Mitotic Model

Mathematical Model for Mitosis

- Theory assumes that chalones bind specifically to certain proteins involved in mitosis
- The chalones inactivate the mitotic proteins, leaving the cell in a quiescent state
- The inhibition process of effector molecules binding to a protein is often modeled using a **Hill function**
- Let P_n represent a cell density at a particular time n

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

イロト イポト イヨト イヨト

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (30/44)

Mitotic Model

Mathematical Model for Mitosis

- Theory assumes that chalones bind specifically to certain proteins involved in mitosis
- The chalones inactivate the mitotic proteins, leaving the cell in a quiescent state
- The inhibition process of effector molecules binding to a protein is often modeled using a **Hill function**
- Let P_n represent a cell density at a particular time n

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

• b and c are parameters that fit the data based on chalone kinetics

-(30/44)

Mathematical Model for Mitosis

(日) (四) (日) (日) (日)

Mitotic Model

Mathematical Model for Mitosis

• The discrete dynamical model is

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (31/44)

Mathematical Model for Mitosis

• The discrete dynamical model is

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

• The function $f(P_n)$ is known as an **updating function**

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (31/44)

(日) (四) (日) (日) (日)

Mathematical Model for Mitosis

• The discrete dynamical model is

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

- The function $f(P_n)$ is known as an **updating function**
- When the cell density P_n is very low, then the denominator of the model is insignificant

$$P_{n+1} = 2P_n$$

・ロト ・同ト ・ヨト ・ヨト

Mathematical Model for Mitosis

• The discrete dynamical model is

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (bP_n)^c}$$

- The function $f(P_n)$ is known as an **updating function**
- When the cell density P_n is very low, then the denominator of the model is insignificant

$$P_{n+1} = 2P_n$$

• For low density the population doubles in each time period

Example – Mitotic Model

Example – Model for Mitosis

(日) (四) (日) (日) (日)

Example – Mitotic Model

Example – Model for Mitosis

• Consider the discrete mitotic model

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (0.01P_n)^4} = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (32/44)

Example – Mitotic Model

Example – Model for Mitosis

• Consider the discrete mitotic model

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (0.01P_n)^4} = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

• Determine what the cell density is at equilibrium

Example – Mitotic Model

Example – Model for Mitosis

• Consider the discrete mitotic model

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (0.01P_n)^4} = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- Determine what the cell density is at equilibrium
- Graph the updating function $f(P_n)$

・ロト ・同ト ・ヨト ・ヨト

Example – Mitotic Model

Example – Model for Mitosis

• Consider the **discrete mitotic model**

$$P_{n+1} = f(P_n) = \frac{2P_n}{1 + (0.01P_n)^4} = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- Determine what the cell density is at equilibrium
- Graph the updating function $f(P_n)$
- Give some biological interpretations

イロト イポト イヨト イヨト

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (33/44)

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$
$$P_e(1+10^{-8}P_e^4) = 2P_e$$

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$
$$P_e(1+10^{-8}P_e^4) = 2P_e$$
$$P_e(10^{-8}P_e^4 - 1) = 0$$

<ロ> (四) (四) (三) (三) (三)

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$
$$P_e(1+10^{-8}P_e^4) = 2P_e$$
$$P_e(10^{-8}P_e^4-1) = 0$$

• The equilibria are $P_e = 0$ or $P_e = 100$

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$
$$P_e(1+10^{-8}P_e^4) = 2P_e$$
$$P_e(10^{-8}P_e^4-1) = 0$$

• The equilibria are $P_e = 0$ or $P_e = 100$

• First equilibrium is the trivial equilibrium (no cells exist)

・ロト ・(部)ト ・(ヨト ・(ヨト

Example – Mitotic Model

Solution: Equilibria of the Mitotic Model are found by letting $P_{n+1} = P_n = P_e$

From the model

$$P_e = \frac{2P_e}{1+10^{-8}P_e^4}$$
$$P_e(1+10^{-8}P_e^4) = 2P_e$$
$$P_e(10^{-8}P_e^4-1) = 0$$

• The equilibria are $P_e = 0$ or $P_e = 100$

- First equilibrium is the trivial equilibrium (no cells exist)
- The second equilibrium is the preferred density of cells in a particular tissue

・ロト ・同ト ・ヨト ・ヨト

Example – Mitotic Model

Solution (cont): Graphing the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

3

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (34/44)

Example – Mitotic Model

Solution (cont): Graphing the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

• The only intercept is (0,0), the origin

Example – Mitotic Model

Solution (cont): Graphing the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

3

- The only intercept is (0,0), the origin
- The denominator is always positive, so no vertical asymptotes

Example – Mitotic Model

Solution (cont): Graphing the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- The only intercept is (0,0), the origin
- The denominator is always positive, so no vertical asymptotes
- Since the power of P_n in the denominator is 4, which exceeds the power of P_n in the numerator, there is a horizontal asymptote at y = 0

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function

$$f(P) = \frac{2P}{1 + 10^{-8}P^4}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (35/44)

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function

$$f(P) = \frac{2P}{1 + 10^{-8}P^4}$$

With the quotient rule

$$f'(P) = 2\frac{(1+10^{-8}P^4) - P \cdot 4 \times 10^{-8}P^3}{(1+10^{-8}P^4)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (35/44)

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function

$$f(P) = \frac{2P}{1 + 10^{-8}P^4}$$

With the quotient rule

$$f'(P) = 2\frac{(1+10^{-8}P^4) - P \cdot 4 \times 10^{-8}P^3}{(1+10^{-8}P^4)^2}$$
$$f'(P) = 2\frac{1-3 \times 10^{-8}P^4}{(1+10^{-8}P^4)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (35/44)

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function

$$f(P) = \frac{2P}{1 + 10^{-8}P^4}$$

With the quotient rule

$$f'(P) = 2\frac{(1+10^{-8}P^4) - P \cdot 4 \times 10^{-8}P^3}{(1+10^{-8}P^4)^2}$$
$$f'(P) = 2\frac{1-3 \times 10^{-8}P^4}{(1+10^{-8}P^4)^2}$$

Setting this derivative equal to zero

$$1 - 3 \times 10^{-8} P^4 = 0$$

・ロト ・同ト ・ヨト ・ヨト

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function

$$f(P) = \frac{2P}{1 + 10^{-8}P^4}$$

With the quotient rule

$$f'(P) = 2\frac{(1+10^{-8}P^4) - P \cdot 4 \times 10^{-8}P^3}{(1+10^{-8}P^4)^2}$$
$$f'(P) = 2\frac{1-3 \times 10^{-8}P^4}{(1+10^{-8}P^4)^2}$$

Setting this derivative equal to zero

$$1 - 3 \times 10^{-8} P^4 = 0$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P^4 = \frac{10^8}{3} \quad \text{or} \quad P = 75.98$$

$$P = 75.98$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Lecture Notes – Quotient Rule

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function From above there is a maximum at (75.98, 113.98)

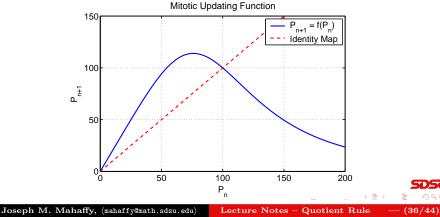
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (36/44)

《曰》 《聞》 《臣》 《臣》

Example – Mitotic Model

Solution (cont): Extrema for the Updating Function From above there is a maximum at (75.98, 113.98)

The graph of the **updating function**



Example – Mitotic Model

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

Example – Mitotic Model

6

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

• The greatest production of cells occurs at a cell density of 75.98, producing 113.98 cells in the next generation

Example – Mitotic Model

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- The greatest production of cells occurs at a cell density of 75.98, producing 113.98 cells in the next generation
- At a cell density of $P_n = 100$, the production equals the number dying the model is at **equilibrium** (Note: f'(100) = -1)

・ロト ・(部)ト ・(ヨト ・(ヨト

Example – Mitotic Model

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- The greatest production of cells occurs at a cell density of 75.98, producing 113.98 cells in the next generation
- At a cell density of $P_n = 100$, the production equals the number dying the model is at **equilibrium** (Note: f'(100) = -1)
- At high density, this model predicts a toxic effect from crowding

・ロト ・(部)ト ・(ヨト ・(ヨト

Example – Mitotic Model

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- The greatest production of cells occurs at a cell density of 75.98, producing 113.98 cells in the next generation
- At a cell density of $P_n = 100$, the production equals the number dying the model is at **equilibrium** (Note: f'(100) = -1)
- At high density, this model predicts a toxic effect from crowding
- This gives a major die-off so that the next time period has a very low density

・ロト ・ 同ト ・ ヨト ・ ヨト

Example – Mitotic Model

Solution (cont): Graph of the Mitotic Updating Function

$$f(P_n) = \frac{2P_n}{1 + 10^{-8}P_n^4}$$

- The greatest production of cells occurs at a cell density of 75.98, producing 113.98 cells in the next generation
- At a cell density of $P_n = 100$, the production equals the number dying the model is at **equilibrium** (Note: f'(100) = -1)
- At high density, this model predicts a toxic effect from crowding
- This gives a major die-off so that the next time period has a very low density
- This model is very simplistic, but it does demonstrate some of the important concepts behind **biochemical inhibition**

ロト 세례ト 세르ト 세르ト

-(37/44)

Genetic Control – Repression

Genetic Control – **Repression**

Genetic Control – Repression

Genetic Control – Repression

• In 1960, Jacob and Monod won a Nobel prize for their theory of **induction** and **repression** in **genetic control**

Genetic Control – Repression

Genetic Control – Repression

- In 1960, Jacob and Monod won a Nobel prize for their theory of **induction** and **repression** in **genetic control**
- Many metabolic pathways in cells use **endproduct repression** of the gene or **negative feedback** to control important biochemical substances

(日) (同) (目) (日)

Genetic Control – Repression

Genetic Control – Repression

- In 1960, Jacob and Monod won a Nobel prize for their theory of **induction** and **repression** in **genetic control**
- Many metabolic pathways in cells use **endproduct repression** of the gene or **negative feedback** to control important biochemical substances
- The biochemical kinetics of repression of a substance x satisfies a rate function

$$R(x) = \frac{a}{K + x^n}$$

Genetic Control – Repression

Example: Genetic Repression

(日) (四) (日) (日) (日)

Genetic Control – Repression

Example: Genetic Repression

• Consider the specific rate function

$$R(x) = \frac{90}{27 + x^2}$$

2

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (39/44)

Genetic Control – Repression

Example: Genetic Repression

• Consider the specific rate function

$$R(x) = \frac{90}{27 + x^2}$$

• Differentiate this rate function

Genetic Control – Repression

Example: Genetic Repression

• Consider the specific rate function

$$R(x) = \frac{90}{27 + x^2}$$

- Differentiate this rate function
- Find all intercepts, any asymptotes, and any extrema for the rate function and its derivative

Genetic Control – Repression

Example: Genetic Repression

• Consider the specific rate function

$$R(x) = \frac{90}{27 + x^2}$$

- Differentiate this rate function
- Find all intercepts, any asymptotes, and any extrema for the rate function and its derivative
- Sketch a graph of this rate function and its derivative

・ロト ・何ト ・ヨト ・ヨト

Genetic Control – Repression

Example: Genetic Repression

• Consider the specific rate function

$$R(x) = \frac{90}{27 + x^2}$$

- Differentiate this rate function
- Find all intercepts, any asymptotes, and any extrema for the rate function and its derivative
- Sketch a graph of this rate function and its derivative
- When is the rate function decreasing most rapidly?

・ロト ・何ト ・ヨト ・ヨト

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

3

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (40/44)

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

3

• The rate function has an *R*-intercept, $R(0) = \frac{90}{27} = \frac{10}{3}$

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

3

- The rate function has an *R*-intercept, $R(0) = \frac{90}{27} = \frac{10}{3}$
- There is a **horizontal asymptote** of R = 0

《曰》 《聞》 《臣》 《臣》

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

- The rate function has an *R*-intercept, $R(0) = \frac{90}{27} = \frac{10}{3}$
- There is a **horizontal asymptote** of R = 0
- Quotient rule gives

$$R'(x) = \frac{(27+x^2) \cdot 0 - 90(2x)}{(27+x^2)^2} = -\frac{180x}{(27+x^2)^2}$$

《曰》 《聞》 《臣》 《臣》

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (40/44)

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

- The rate function has an *R*-intercept, $R(0) = \frac{90}{27} = \frac{10}{3}$
- There is a **horizontal asymptote** of R = 0
- Quotient rule gives

$$R'(x) = \frac{(27+x^2) \cdot 0 - 90(2x)}{(27+x^2)^2} = -\frac{180x}{(27+x^2)^2}$$

• For x > 0, the derivative of the rate function is negative (decreasing)

Genetic Control – Repression

Solution: Genetic Repression: Rate function

$$R(x) = \frac{90}{27 + x^2}$$

- The rate function has an *R*-intercept, $R(0) = \frac{90}{27} = \frac{10}{3}$
- There is a **horizontal asymptote** of R = 0
- Quotient rule gives

$$R'(x) = \frac{(27+x^2) \cdot 0 - 90(2x)}{(27+x^2)^2} = -\frac{180x}{(27+x^2)^2}$$

- For x > 0, the derivative of the rate function is negative (decreasing)
- There is clearly a maximum at x = 0

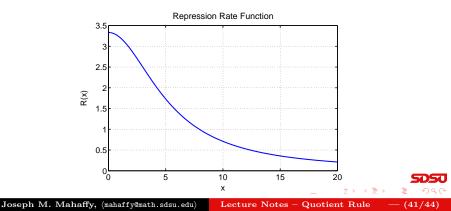
・ 同 ト ・ ヨ ト ・ ヨ ト

-(40/44)

Genetic Control – Repression

Solution (cont): Genetic Repression Graph of

$$R(x) = \frac{90}{27 + x^2}$$



Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27+x^2)^2} = -\frac{180x}{(27^2+54x^2+x^4)}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (42/44)

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27+x^2)^2} = -\frac{180x}{(27^2+54x^2+x^4)}$$

• The second derivative is

$$R''(x) = -180 \frac{(27^2 + 54x^2 + x^4) - x(108x + 4x^3)}{(27^2 + 54x^2 + x^4)^2}$$
$$= \frac{540(x^2 - 9)}{(27 + x^2)^3}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (42/44)

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27+x^2)^2} = -\frac{180x}{(27^2+54x^2+x^4)}$$

• The second derivative is

$$R''(x) = -180 \frac{(27^2 + 54x^2 + x^4) - x(108x + 4x^3)}{(27^2 + 54x^2 + x^4)^2}$$
$$= \frac{540(x^2 - 9)}{(27 + x^2)^3}$$

• This second derivative is zero when x = 3

・ロト ・同ト ・ヨト ・ヨト

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27+x^2)^2} = -\frac{180x}{(27^2+54x^2+x^4)}$$

• The second derivative is

$$R''(x) = -180 \frac{(27^2 + 54x^2 + x^4) - x(108x + 4x^3)}{(27^2 + 54x^2 + x^4)^2}$$
$$= \frac{540(x^2 - 9)}{(27 + x^2)^3}$$

- This second derivative is zero when x = 3
- x = -3 is outside the domain

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (42/44)

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

6

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Quotient Rule - (43/44)

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

6

• The derivative has an intercept at (0,0)

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

6

- The derivative has an intercept at (0,0)
- Since second derivative is

$$R''(x) = \frac{540(x^2 - 9)}{(27 + x^2)^3},$$

R'(x) has a minimum at $(3, -\frac{5}{12})$

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

- The derivative has an intercept at (0,0)
- Since second derivative is

$$R''(x) = \frac{540(x^2 - 9)}{(27 + x^2)^3}$$

R'(x) has a minimum at $(3, -\frac{5}{12})$

• The original rate function is decreasing most rapidly at x = 3 (Point of Inflection)

・ロト ・ 同ト ・ ヨト ・ ヨト

Genetic Control – Repression

Derivative of Genetic Repression Rate function

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

- The derivative has an intercept at (0,0)
- Since second derivative is

$$R''(x) = \frac{540(x^2 - 9)}{(27 + x^2)^3}$$

R'(x) has a minimum at $(3, -\frac{5}{12})$

• The original rate function is decreasing most rapidly at x = 3 (Point of Inflection)

• There is a **horizontal asymptote**, R'(x) = 0

ロト ・ ア・ ・ マト・ ・ マト

Genetic Control – Repression

Derivative of Genetic Repression Rate function Graph of

$$R'(x) = -\frac{180x}{(27^2 + 54x^2 + x^4)}$$

