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Hemoglobin Affinity for O2 1

Hemoglobin Affinity for O2

Hemoglobin is the most important molecule in
erythrocytes (red blood cells)
It has evolved to carry O2 from the lungs and remove CO2

from the tissues
For humans, the hemoglobin molecule consists mainly of
two α and two β polypeptide chains
Each polypeptide chain contains a porphyrin ring with iron
near the active binding site
The four polypeptide chains fold into a quaternary
structure that has evolved to very efficiently bind up to
four molecules of O2
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Hemoglobin Affinity for O2 2

Hemoglobin Affinity for O2

Oxygen is required by all of our cells
Hemoglobin uses cooperative binding to effectively load
and unload O2 molecules

Binding of one molecule facilitates the binding of one or
more other molecules
Cooperative binding is often seen where a steep dissociation
curve is needed

It is a variant of the Michaelis-Menten velocity curve
with a characteristic S-shape
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Hemoglobin Affinity for O2 – Cooperative Binding

The protein has more of an on/off function
The steepness in the dissociation curve is needed for
effective O2 exchange

A small partial pressure difference in the concentration of
O2 results in easy unloading of O2 at the tissues
In the lungs, the O2 readily loads onto the hemoglobin
molecules
A different dissociation curve allows the removal of CO2

The dissociation curve for hemoglobin is highly sensitive to
pH, temperature, and other factors

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉 Lecture Notes – Quotient Rule — (5/44)

Hemoglobin
Quotient Rule

Dissociation Curve for Hemoglobin
Mitotic Model

Genetic Control – Repression

Background
Cooperative binding
Model for Hemoglobin Saturation

Hemoglobin Affinity for O2 4

Hemoglobin Affinity for O2 – Cooperative Binding

Oxygen affinity is expressed by a dissociation function that
measures the percent of hemoglobin in the blood saturated
with O2 as a function of the partial pressure of O2

The fraction of hemoglobin saturated with O2 satisfies the
function

y(P ) =
Pn

K + Pn

y is the fraction of hemoglobin saturated with O2

P is the partial pressure of O2 measured in torrs
The Hill coefficient n represents the number of molecules
binding to the protein, typically measured between 2.7-3.2
K is the binding equilibrium constant
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Hemoglobin Affinity for O2 5

Hemoglobin Affinity for O2: Fraction of hemoglobin

y(P ) =
Pn

K + Pn

Experimental measurements show that the values of n = 3 and
K = 19, 100
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Hemoglobin Affinity for O2 – Cooperative Binding

Where the dissociation curve is steepest, the O2 binds and
unbinds to hemoglobin over the narrowest changes in
partial pressure of O2

This allows the most efficient exchange of O2 in the tissues
The steepest part of the dissociation curve is where the
derivative is at its maximum
This is the point of inflection

The curve is defined by a rational function, so we need a
quotient rule to find its derivative
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Quotient Rule

Quotient Rule: Let f(x) and g(x) be two differentiable
functions

The quotient rule for finding the derivative of the quotient of
these two functions is given by

d

dx

(
f(x)
g(x)

)
=

g(x)f ′(x) − f(x)g ′(x)
(g(x))2

where f ′(x) and g ′(x) are the derivatives of the respective
functions

The quotient rule says that the derivative of the quotient
is the bottom times the derivative of the top minus the
top times the derivative of the bottom all over the
bottom squared
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Example – Quotient Function 1

Example: Consider the function

f(x) =
x2 − 2x + 1
x2 − x − 2

Skip Example

Find any intercepts
Find any asymptotes
Find critical points and extrema
Sketch the graph of f(x)
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Example – Quotient Function 2

Solution: The function

f(x) =
x2 − 2x + 1
x2 − x − 2

The y-intercept is given by y = f(0) = −1
2

The x-intercept solves f(x) = 0
Set the numerator equal to zero

x2 − 2x + 1 = (x − 1)2 = 0

The x-intercept is x = 1
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Example – Quotient Function 3

Solution (cont): The function

f(x) =
x2 − 2x + 1
x2 − x − 2

=
(x − 1)2

(x + 1)(x − 2)

The vertical asymptotes are when the denominator is
zero

The vertical asymptotes are

x = −1 and x = 2

The horizontal asymptote examines f(x) for large
values of x

The largest exponents in the numerator are both 2
For large x, f(x) behaves like x2

x2 = 1
The horizontal asymptote is y = 1
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Solution (cont): Extrema

f(x) =
x2 − 2x + 1
x2 − x − 2

The derivative uses the quotient rule:

f ′(x) =
(x2 − x − 2)(2x − 2) − (x2 − 2x + 1)(2x − 1)

(x2 − x − 2)2

=
x2 − 6x + 5

(x2 − x − 2)2

=
(x − 1)(x − 5)
(x2 − x − 2)2
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Solution (cont): Critical Points

f ′(x) =
(x − 1)(x − 5)
(x2 − x − 2)2

The critical points are found by setting the derivative
equal to zero
Set the numerator equal to zero or

(x − 1)(x − 5) = 0

The critical points are xc = 1 and xc = 5
Evaluating the function f(x) at these critical points

Local maximum at (1, 0)
Local minimum at (5, 8

9 )
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Example – Quotient Function 6

Solution (cont): Graph of f(x)

f(x) =
x2 − 2x + 1
x2 − x − 2
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Example – Differentiation

Example: Differentiate the function

f(x) =
x

x2 + 1

Skip Example

Solution: Apply the quotient rule to f(x)

f ′(x) =
(x2 + 1) · 1 − x · 2x

(x2 + 1)2

f ′(x) =
1 − x2

(x2 + 1)2

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉 Lecture Notes – Quotient Rule — (16/44)



Hemoglobin
Quotient Rule

Dissociation Curve for Hemoglobin
Mitotic Model

Genetic Control – Repression

Examples

Example – Rational Function 1

Example: Consider the function

f(x) =
x2 − 6x + 9

x − 2

Skip Example

Find any intercepts
Find any asymptotes
Find critical points and extrema
Sketch the graph of f(x)
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Example – Rational Function 2

Solution: The function

f(x) =
x2 − 6x + 9

x − 2

The y-intercept is given by y = f(0) = −9
2

The x-intercept solves f(x) = 0
Set the numerator equal to zero

x2 − 6x + 9 = (x − 3)2 = 0

The x-intercept is x = 3
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Example – Rational Function 3

Solution (cont): The function

f(x) =
x2 − 6x + 9

x − 2

Asymptotes:

The vertical asymptote is when the denominator is zero
The vertical asymptote is

x = 2

Horizontal asymptotes
The power of the numerator exceeds the power of the
denominator
There are no horizontal asymptotes
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Example – Rational Function 4

Solution (cont): Extrema

f(x) =
x2 − 6x + 9

x − 2

The derivative uses the quotient rule:

f ′(x) =
(x − 2)(2x − 6) − (x2 − 6x + 9) · 1

(x − 2)2

=
x2 − 4x + 3

(x − 2)2

=
(x − 1)(x − 3)

(x − 2)2
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Example – Rational Function 5

Solution (cont): Critical Points

f ′(x) =
(x − 1)(x − 3)

(x − 2)2

The critical points are found by setting the derivative
equal to zero
Set the numerator equal to zero or

(x − 1)(x − 3) = 0

The critical points are xc = 1 and xc = 3
Evaluating the function f(x) at these critical points

Local maximum at (1,−4)
Local minimum at (3, 0)
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Example – Rational Function 6

Solution (cont): Graph of f(x)

f(x) =
x2 − 6x + 9

x − 2
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Dissociation Curve for Hemoglobin 1

Dissociation Curve for Hemoglobin: The dissociation curve
for O2 with hemoglobin shown above uses the specific function

y(P ) =
P 3

19, 100 + P 3

Compute the derivative using the quotient rule

y ′(P ) =
3P 2(19, 100 + P 3) − P 3(3P 2)

(19, 100 + P 3)2

y ′(P ) =
57, 300P 2

(19, 100 + P 3)2
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Dissociation Curve for Hemoglobin 2

Derivative of Dissociation Curve for Hemoglobin:

y ′(P ) =
57, 300P 2

(19, 100 + P 3)2
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Dissociation Curve for Hemoglobin 3

Maximum of the Derivative: The maximum derivative
occurs at about PO2 = 21 torrs, where the second derivative
is zero

y ′(P ) =
57, 300P 2

19, 1002 + 38, 200P 3 + P 6

The second derivative is

y
′′
(P ) =

114, 600P (19, 1002 + 38, 200P3 + P6) − 57, 300P2(114, 600P2 + 6P5)

(19, 1002 + 38, 200P3 + P6)2

With some algebra or Maple

y ′′(P ) = −229, 200P (P 3 − 9, 550)
(19, 100 + P 3)3
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Dissociation Curve for Hemoglobin 4

Maximum of the Derivative: The second derivative is

y ′′(P ) = −229, 200P (P 3 − 9, 550)
(19, 100 + P 3)3

The second derivative is equal to zero when

P = 0 or P = 95501/3 = 21.22

The point of inflection occurs at Pp = 21.22
y(Pp) = 0.333 or about 1/3 of the hemoglobin is saturated
by O2
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Mitotic Model 1

Mitotic Model: Multicellular organisms
Skip Example

First cells grow exponentially (Malthusian growth)
Cell growth regulated to develop particular patterns and
shapes
Cells differentiate into organs with specific functions
Adult organisms maintain a constant number of cells
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Mitotic Model 2

Mitosis

Mitosis is the process of cellular division
Cancer is the breakdown of control in cellular division
How does a cell recognize when it should divide?

Cells must recognize their neighboring environment of other
cells
For example, a skin cell obviously needs to undergo mitosis
when either wear or damage of the skin requires
replacement cells
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Chalones

The regulation of mitosis

One controversial biochemical theory (late 1960s) was that
cells communicated with neighboring cells by tissue-specific
inhibitors known as chalones

Chalones are released by cells and diffuse in the
environment
With sufficient quantities of chalones, cells are inhibited
from undergoing mitosis
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Mathematical Model for Mitosis

Theory assumes that chalones bind specifically to certain
proteins involved in mitosis
The chalones inactivate the mitotic proteins, leaving the
cell in a quiescent state
The inhibition process of effector molecules binding to a
protein is often modeled using a Hill function
Let Pn represent a cell density at a particular time n

Pn+1 = f(Pn) =
2Pn

1 + (bPn)c

b and c are parameters that fit the data based on chalone
kinetics
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Mitotic Model 5

Mathematical Model for Mitosis

The discrete dynamical model is

Pn+1 = f(Pn) =
2Pn

1 + (bPn)c

The function f(Pn) is known as an updating function

When the cell density Pn is very low, then the denominator
of the model is insignificant

Pn+1 = 2Pn

For low density the population doubles in each time period
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Example – Mitotic Model 1

Example – Model for Mitosis

Consider the discrete mitotic model

Pn+1 = f(Pn) =
2Pn

1 + (0.01Pn)4
=

2Pn

1 + 10−8P 4
n

Determine what the cell density is at equilibrium
Graph the updating function f(Pn)
Give some biological interpretations
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Example – Mitotic Model 2

Solution: Equilibria of the Mitotic Model are found by letting
Pn+1 = Pn = Pe

From the model

Pe =
2Pe

1 + 10−8P 4
e

Pe(1 + 10−8P 4
e ) = 2Pe

Pe(10−8P 4
e − 1) = 0

The equilibria are Pe = 0 or Pe = 100
First equilibrium is the trivial equilibrium (no cells exist)
The second equilibrium is the preferred density of cells in a
particular tissue
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Example – Mitotic Model 3

Solution (cont): Graphing the Mitotic Updating
Function

f(Pn) =
2Pn

1 + 10−8P 4
n

The only intercept is (0, 0), the origin
The denominator is always positive, so no vertical
asymptotes
Since the power of Pn in the denominator is 4, which
exceeds the power of Pn in the numerator, there is a
horizontal asymptote at y = 0
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Example – Mitotic Model 4

Solution (cont): Extrema for the Updating Function

f(P ) =
2P

1 + 10−8P 4

With the quotient rule

f ′(P ) = 2
(1 + 10−8P 4) − P · 4 × 10−8P 3

(1 + 10−8P 4)2

f ′(P ) = 2
1 − 3 × 10−8P 4

(1 + 10−8P 4)2

Setting this derivative equal to zero

1 − 3 × 10−8P 4 = 0

P 4 =
108

3
or P = 75.98
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Example – Mitotic Model 5

Solution (cont): Extrema for the Updating Function
From above there is a maximum at (75.98, 113.98)

The graph of the updating function
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Example – Mitotic Model 6

Solution (cont): Graph of the Mitotic Updating
Function

f(Pn) =
2Pn

1 + 10−8P 4
n

The greatest production of cells occurs at a cell density of 75.98,
producing 113.98 cells in the next generation

At a cell density of Pn = 100, the production equals the number
dying - the model is at equilibrium (Note: f ′(100) = −1)

At high density, this model predicts a toxic effect from crowding

This gives a major die-off so that the next time period has a very
low density

This model is very simplistic, but it does demonstrate some of
the important concepts behind biochemical inhibition
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Genetic Control – Repression 1

Genetic Control – Repression

In 1960, Jacob and Monod won a Nobel prize for their
theory of induction and repression in genetic control

Many metabolic pathways in cells use endproduct
repression of the gene or negative feedback to control
important biochemical substances
The biochemical kinetics of repression of a substance x
satisfies a rate function

R(x) =
a

K + xn
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Genetic Control – Repression 2

Example: Genetic Repression

Consider the specific rate function

R(x) =
90

27 + x2

Differentiate this rate function
Find all intercepts, any asymptotes, and any extrema for
the rate function and its derivative
Sketch a graph of this rate function and its derivative
When is the rate function decreasing most rapidly?
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Genetic Control – Repression 3

Solution: Genetic Repression: Rate function

R(x) =
90

27 + x2

The rate function has an R-intercept, R(0) = 90
27 = 10

3

There is a horizontal asymptote of R = 0
Quotient rule gives

R ′(x) =
(27 + x2) · 0 − 90(2x)

(27 + x2)2
= − 180x

(27 + x2)2

For x > 0, the derivative of the rate function is negative
(decreasing)
There is clearly a maximum at x = 0
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Genetic Control – Repression 4

Solution (cont): Genetic Repression Graph of

R(x) =
90

27 + x2
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Genetic Control – Repression 5

Derivative of Genetic Repression Rate function

R ′(x) = − 180x

(27 + x2)2
= − 180x

(272 + 54x2 + x4)

The second derivative is

R ′′(x) = −180
(272 + 54x2 + x4) − x(108x + 4x3)

(272 + 54x2 + x4)2

=
540(x2 − 9)
(27 + x2)3

This second derivative is zero when x = 3
x = −3 is outside the domain
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Derivative of Genetic Repression Rate function

R ′(x) = − 180x

(272 + 54x2 + x4)

The derivative has an intercept at (0, 0)
Since second derivative is

R ′′(x) =
540(x2 − 9)
(27 + x2)3

,

R ′(x) has a minimum at (3,− 5
12)

The original rate function is decreasing most rapidly at
x = 3 (Point of Inflection)
There is a horizontal asymptote, R ′(x) = 0
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Derivative of Genetic Repression Rate function Graph of

R ′(x) = − 180x

(272 + 54x2 + x4)
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