Calculus for the Life Sciences I
 Lecture Notes－Product Rule

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2013

Cancer and Tumor Growth：Mathematical Role
－Image Processing
－Calculating therapeutic doses
－Epidemiology of cancer in a population
－Growth of tumors
（1）Tumor Growth
－Background
－Model for Tumor Growth
－Gompertz Growth Model
－Equilibrium for Gompertz Model
（2）Product Rule
－Examples
－Maximum Growth for the Gompertz Tumor Growth Model
－Ricker Function
－Graphing Example
－Tumor Growth Example

Tumor Growth

－Tumors grow based on the nutrient supply available
－Tumor angiogenesis is the proliferation of blood vessels that penetrate into the tumor to supply nutrients and oxygen and to remove waste products
－The center of the tumor largely consists of dead cells， called the necrotic center of the tumor
－The tumor grows outward in roughly a spherical shell shape

Gompertz Growth Model

Gompertz Growth Model

－Laird（1964）showed that tumor growth satisfies Gompertz growth equations：

$$
G(N)=N(b-a \ln (N))
$$

－N is the number of tumor cells
－a and b are constants matched to the data
－This function is not defined for $N=0$
－However，can be shown that

$$
\lim _{N \rightarrow 0} G(N)=0
$$

$\lim _{N \rightarrow 0} G(N)=0$		
	Lecture Notes－Product Rule	（5／32）
	 Gompertz Growth Model	
Gompertz Growth Model		3

Mouse Tumor Growth and Gompertz Model：The best fit to the Gompertz Model is

Background
Gompertz Growth Growth Equilibrium for Gomper

Tumor Growth：Simpson－Herren and Lloyd（1970）studied the growth of tumors
－They studied the C3H Mouse Mammary tumor
－Tritiated thymidine was used to measure the cell cycles
－This gave the growth rate for these tumors
$\left.\begin{array}{|c|c} & \begin{array}{l}\text { Tumor Growth } \\ \text { Product Rule }\end{array}\end{array} \begin{array}{l}\text { Background } \\ \text { Model for Tumor Growth } \\ \text { Gompertz Growth Model } \\ \text { Equilibrium for Gompertz Model }\end{array}\right\}$

Tumor Growth and Gompertz Model：

－The growth of the tumor stops at equilibrium
－The tumor is at its maximum size supportable with the available nutrient supply
－We also want to know when the tumor is growing most rapidly
－This occurs when the derivative is zero
－Most cancer therapies attack growing cells
－Treatment has its maximum effect when maximum growth is occurring

Background
Model for Tu
Model for Tumor Growth
Equilibrium for Gompertz Model

Equilibrium for Gompertz Model

Equilibrium for Gompertz Model：The equilibrium satisfies：

$$
G(N)=N(b-a \ln (N))=0
$$

Since $N>0$ ，this occurs when $b-a \ln \left(N_{e}\right)=0$ or

$$
\begin{aligned}
\ln \left(N_{e}\right) & =\frac{b}{a} \\
N_{e} & =e^{b / a}
\end{aligned}
$$

This is the unique equilibrium of the Gompertz Model or its carrying capacity
For the mouse tumor data above

$$
N_{e}=e^{0.4126 / 0.0439}=e^{9.399}=12,072,
$$

which matches the P－intercept on the graph

Product Rule

Maximum Growth for the Gompertz Tumor G Ricker Function
Graphing Example
Tumor Growth Example

Product Rule

Product Rule：Let $f(x)$ and $g(x)$ be differentiable functions． The product rule for finding the derivative of the product of these two functions is given by：

$$
\frac{d}{d x}(f(x) g(x))=f(x) \frac{d g(x)}{d x}+\frac{d f(x)}{d x} g(x)
$$

In words，this says that the derivative of the product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function

Background

Model for Tumor Growth
Squilibrium for Gompertz Model

Maximum Growth from Gompertz Model

Maximum Growth from Gompertz Model：The Gompertz Model is

$$
G(N)=N(b-a \ln (N))
$$

－The graph shows the maximum growth occurs near where the population of tumor cells is about $4,000\left(\times 10^{6}\right)$
－Our techniques of Calculus can find the maximum－set the derivative equal to zero
－Finding the derivative of $G(N)$ presents a new problem in differentiation
－We need the product rule for differentiation to differentiate $G(N)$

Lecture Notes－Product Rule
Examples
Tumor Growth
Product Rule
Taximum Growth for the Gompertz Tumor Gro Ricker Function
Tumor Growth Example

Product Rule－Example

Product Rule Example：By the Power rule we know that if $f(x)=x^{5}$ ，then

$$
f^{\prime}(x)=5 x^{4}
$$

Let $f_{1}(x)=x^{2}$ and $f_{2}(x)=x^{3}$ ，then $f(x)=f_{1}(x) f_{2}(x)$
From the product rule

$$
\begin{aligned}
f^{\prime}(x) & =f_{1}(x) f_{2}^{\prime}(x)+f_{1}^{\prime}(x) f_{2}(x) \\
& =x^{2}\left(3 x^{2}\right)+(2 x) x^{3}=5 x^{4}
\end{aligned}
$$

Examples

 Maximum Groy Graphing Exampl Tumor Growth Example
Example－Product Rule

Example：Consider the function

$$
f(x)=\left(x^{3}-2 x\right)\left(x^{2}+5\right)
$$

Find the derivative of $f(x)$

Skip Example

Solution：From the product rule

$$
\begin{aligned}
f^{\prime}(x) & =\left(x^{3}-2 x\right)(2 x)+\left(x^{2}+5\right)\left(3 x^{2}-2\right) \\
& =2 x^{4}-4 x^{2}+3 x^{4}-2 x^{2}+15 x^{2}-10 \\
f^{\prime}(x) & =5 x^{4}+9 x^{2}-10
\end{aligned}
$$

Maximum Growth for the Gompertz Tumor Growth Model：
Apply the Product Rule to the Gompertz Growth function

$$
G(N)=N(b-a \ln (N))
$$

The derivative is

$$
\begin{aligned}
& \frac{d G}{d N}=N\left(-\frac{a}{N}\right)+(b-a \ln (N)) \\
& \frac{d G}{d N}=(b-a)-a \ln (N)
\end{aligned}
$$

	Maximum Growth for the Gompertz Tur Graphing Exampl
Maximum Growth for the Model	mpertz Tumor Growth

Maximum Growth for the Gompertz Tumor Growth

 Model：The maximum occurs when $G^{\prime}(N)=0$ or

$$
a \ln \left(N_{\max }\right)=b-a \quad \text { and } \quad N_{\max }=e^{(b / a-1)}
$$

Applied to the Gompertz model for the mouse mammary tumor，then the maximum occurs at the population

$$
N_{\max }=e^{(9.399-1)}=4,441\left(\times 10^{6}\right)
$$

Substituted into the Gompertz growth function，the maximum growth of mouse mammary tumor cells is

$$
G\left(N_{\text {max }}\right)=4441(0.4126-0.0439 \ln (4441))=195.0\left(\times 10^{6} / \text { day }\right) \text { SDSO }
$$

Ricker Function

Example－Ricker Function：Consider the Ricker function

$$
R(x)=5 x e^{-0.1 x}
$$

The function is used in modeling populations．
－Find intercepts
－Find all extrema
－Find points of inflection
－Sketch the graph

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉	Lecture Notes－Product Rule	－（17／32）
Tumor Growth Product Rule	Examples Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example	
Ricker Function		3

Solution（cont）：The derivative of the Ricker function is

$$
\frac{d R}{d x}=5 e^{-0.1 x}(1-0.1 x)
$$

The second derivative of the Ricker function is

$$
\frac{d^{2} R}{d x^{2}}=5 e^{-0.1 x}(-0.1)+5(-0.1) e^{-0.1 x}(1-0.1 x)=0.5 e^{-0.1 x}(0.1 x-2)
$$

－The point of inflection is found by solving $R^{\prime \prime}(x)=0$
－The point of inflection occurs at $x=20$

$$
\left(20,100 e^{-2}\right) \text { or }(20,13.5)
$$

Ricker Function

Solution：For the Ricker function

$$
R(x)=5 x e^{-0.1 x}
$$

The only intercept is the origin，$(\mathbf{0}, \mathbf{0})$
By the product rule，the derivative is

$$
\frac{d R}{d x}=5 x\left(-0.1 e^{-0.1 x}\right)+5 e^{-0.1 x}=5 e^{-0.1 x}(1-0.1 x)
$$

Since the exponential is never zero，the only critical point satisfies

$$
1-0.1 x=0 \quad \text { or } \quad x=10
$$

There is a maximum at

$$
\left(10,50 e^{-1}\right) \text { or }(10,18.4)
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 Lecture Notes－Product Rule

| Tumor Growth |
| :---: | :--- |
| Product Rule |\quad| Examples |
| :--- |
| Maximum Growth for the Gompertz Tumor Gro
 Ricker Function
 Graphing Example
 Tumor Growth Example |
| Ricker Function |

Solution（cont）：Graph of the Ricker function

Example－Graphing

Tumor Growth Product Rule

Example：Consider the function

$$
f(x)=x \ln (x)
$$

Skip Example

－Determine the domain of the function
－Find any intercepts
－Find critical points and extrema
－Sketch the graph of $f(x)$ for $0<x \leq 2$

Solution：For $f(x)=x \ln (x)$
－The domain of the function is $x>0$
－There is no y－intercept
－It can be shown

$$
\lim _{x \rightarrow 0^{+}} f(x)=0
$$

－The x－intercept is found by solving $f(x)=0$ ，which gives $x=1$

Example－Graphing

Solution（cont）：For $f(x)=x \ln (x)$ by the product rule the derivative is

$$
f^{\prime}(x)=x\left(\frac{1}{x}\right)+\ln (x)=1+\ln (x)
$$

－The critical point satisfies

$$
1+\ln \left(x_{c}\right)=0
$$

－Thus，the critical value of x_{c} satisfies

$$
\ln \left(x_{c}\right)=-1 \quad \text { or } \quad x_{c}=e^{-1} \approx 0.3679
$$

－The function value at the critical point is

$$
f\left(e^{-1}\right)=-e^{-1} \approx-0.3679
$$

－There is a minimum on the graph at $\left(e^{-1},-e^{-1}\right)$

Example－Graphing

Example：Consider the function

$$
f(x)=(2-x) e^{x}
$$

Skip Example

－Find any intercepts
－Find any asymptotes
－Find critical points and extrema
－Sketch the graph of $f(x)$
Solution：For $f(x)=(2-x) e^{x}$
－Since $f(0)=2$ ，the y－intercept is $(0,2)$
－Since the exponential function is never zero，the x－intercept is $(2,0)$
－It can be shown

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

－An exponential function dominates any polynomial function
－$f(x)$ goes to 0 ，so there is a horizontal asymptote to the left at $y=0$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉	Lecture Notes－Product Rule	－（26／32）		
Tumor Growth				
Product Rule				Examples
:---				
Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example				
Example－Graphing				

Solution（cont）：The graph of $f(x)=(2-x) e^{x}$ is

Example：Suppose the growth of a tumor satisfies Gompertz growth function

$$
G(W)=W(0.5-0.05 \ln (W))
$$

where W is the weight of the tumor in mg
－Find the equilibrium weight of the tumor
－Find the maximum growth rate for this tumor
－Sketch the graph of $G(W)$

Solution：The equilibrium is found by solving $G(W)$ equal to zero

$$
\begin{aligned}
G(W) & =W(0.5-0.05 \ln (W))=0 \\
0.5-0.05 \ln (W) & =0 \\
\ln (W) & =10 \\
W & =e^{10}=22,026 \mathrm{mg}
\end{aligned}
$$

| Tumor Growth |
| :---: | :--- |
| Product Rule |\quad| Examples |
| :--- |
| Maximum Growth for the Gompertz Tumor Gro
 Ricker Function
 Graphing Example
 Tumor Growth Example |
| Example－Growth of Tumor |

Solution（cont）：The graph of

$$
G(W)=W(0.5-0.05 \ln (W)),
$$

The maximum growth rate

$$
G(8,103)=8,103(0.5-0.05 \ln (8,103))=405.2 \mathrm{mg} / \text { day }
$$

