	Outline		
Calculus for the Life Sciences I Lecture Notes – Product Rule	 Tumor Growth Background Model for Tumor Growth Gompertz Growth Model Equilibrium for Gompertz Model 2 Product Rule Examples Maximum Growth for the Gompertz Tumor Growth Model Ricker Function Graphing Example Tumor Growth Example 		
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)			
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://www-rohan.sdsu.edu/~jmahaffy			
Spring 2013	JECE		
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule - (2/32)		
BackgroundTumor GrowthModel for Tumor GrowthProduct RuleGompertz Growth ModelEquilibrium for Gompertz Model	Tumor GrowthBackgroundTumor GrowthModel for Tumor GrowthProduct RuleGompertz Growth ModelEquilibrium for Gompertz Model		
Tumor Growth)	Tumor Growth 2		
 Cancer and Tumor Growth: Mathematical Role Image Processing Calculating therapeutic doses Epidemiology of cancer in a population Growth of tumors 	 Tumor Growth Tumors grow based on the nutrient supply available Tumor angiogenesis is the proliferation of blood vessels that penetrate into the tumor to supply nutrients and oxygen and to remove waste products The center of the tumor largely consists of dead cells, called the necrotic center of the tumor The tumor grows outward in roughly a spherical shell shape 		

— (3/32)

Tumor Growth Product Rule Background Model for Tumor Growth Gompertz Growth Model Equilibrium for Gompertz Model	
Gompertz Growth Model 2	
 Tumor Growth: Simpson-Herren and Lloyd (1970) studied the growth of tumors They studied the C3H Mouse Mammary tumor Tritiated thymidine was used to measure the cell cycles This gave the growth rate for these tumors 	
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule - (6/32)	
Tumor Growth Background Product Rule Model for Tumor Growth Gompertz Growth Model Equilibrium for Gompertz Model	
Gompertz Growth Model 4	
 Tumor Growth and Gompertz Model: The growth of the tumor stops at equilibrium The tumor is at its maximum size supportable with the available nutrient supply We also want to know when the tumor is growing most rapidly This occurs when the derivative is zero Most cancer therapies attack growing cells Treatment has its maximum effect when maximum growth is occurring 	

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule

Population (x10⁶)

-(7/32)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule — (8/32) Tumor Growth Product Rule Background Model for Tumor Growth Gompertz Growth Model Equilibrium for Gompertz Model

Equilibrium for Gompertz Model

Equilibrium for Gompertz Model: The equilibrium satisfies:

$$G(N) = N(b - a \ln(N)) = 0$$

Since N > 0, this occurs when $b - a \ln(N_e) = 0$ or

$$n(N_e) = \frac{b}{a}$$
$$N_e = e^{b/a}$$

This is the unique equilibrium of the **Gompertz Model** or its **carrying capacity**

For the mouse tumor data above

$$N_e = e^{0.4126/0.0439} = e^{9.399} = 12,072,$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule

Tumor Growth Product Rule

which matches the P-intercept on the graph

Examples Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example

Product Rule

Product Rule: Let f(x) and g(x) be differentiable functions. The product rule for finding the derivative of the product of these two functions is given by:

$$\frac{d}{dx}\left(f(x)g(x)\right) = f(x)\frac{dg(x)}{dx} + \frac{df(x)}{dx}g(x)$$

In words, this says that the **derivative of the product of** two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function

Maximum Growth from Gompertz Model

Maximum Growth from Gompertz Model: The Gompertz Model is

$$G(N) = N(b - a \ln(N))$$

- The graph shows the maximum growth occurs near where the population of tumor cells is about 4,000 (×10⁶)
- Our techniques of Calculus can find the maximum set the derivative equal to zero
- Finding the derivative of G(N) presents a new problem in differentiation
- We need the **product rule for differentiation** to differentiate *G*(*N*)

${f Joseph}$ M. Mahaffy, $\langle { t mahaffy@math.sdsu.edu} angle$	Lecture Notes – Product Rule $-(10/32)$
Tumor Growth Product Rule	Examples Maximum Growth for the Gompertz Tumor Grov Ricker Function Graphing Example Tumor Growth Example
Product Rule - Example	

Product Rule Example: By the **Power rule** we know that if $f(x) = x^5$, then

$$f'(x) = 5x^4$$

Let $f_1(x) = x^2$ and $f_2(x) = x^3$, then $f(x) = f_1(x)f_2(x)$ From the **product rule**

$$f'(x) = f_1(x)f'_2(x) + f'_1(x)f_2(x) = x^2(3x^2) + (2x)x^3 = 5x^4$$

5D'SU

(11/32)

5051

(9/32)

Tumor Growth Product Rule Examples Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example

Example – Product Rule

Example: Consider the function

$$f(x) = (x^3 - 2x)(x^2 + 5)$$

Find the derivative of f(x)

Skip Example

Solution: From the product rule

$$f'(x) = (x^3 - 2x)(2x) + (x^2 + 5)(3x^2 - 2)$$

= 2x⁴ - 4x² + 3x⁴ - 2x² + 15x² - 10
$$f'(x) = 5x^4 + 9x^2 - 10$$

Tumor Growth Product Rule Examples Maximum Growth for the Gompertz Tumor Gr Ricker Function Graphing Example Tumor Growth Example

Example – Product Rule

Example: Consider the function

$$g(x) = (x^2 + 4)\ln(x)$$

Find the derivative of g(x)

Skip Example

Solution: From the product rule

$$g'(x) = (x^{2} + 4)\frac{1}{x} + (\ln(x))(2x)$$
$$g'(x) = x + \frac{4}{x} + 2x \ln(x)$$

5DSU

$\textbf{Joseph M. Mahaffy}, \; \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$	Lecture Notes – Product Rule — (13/32)	${f Joseph~M.~Mahaffy},~{\tt (mahaffy@math.sdsu.edu}$	Lecture Notes – Product Rule $-(14/32)$
Tumor Growth Product Rule	Examples Maximum Growth for the Gompertz Tumor Grov Ricker Function Graphing Example Tumor Growth Example	Tumor Growth Product Rule	Examples Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example
Maximum Growth for the Gompertz Tumor Growth		Maximum Growth for the Gompertz Tumor Growth	
Model	1	Model	2

505

Maximum Growth for the Gompertz Tumor Growth Model:

Apply the Product Rule to the Gompertz Growth function

$$G(N) = N(b - a \ln(N))$$

The **derivative** is

$$\frac{dG}{dN} = N\left(-\frac{a}{N}\right) + (b - a \ln(N))$$
$$\frac{dG}{dN} = (b - a) - a \ln(N)$$

Maximum Growth for the Gompertz Tumor Growth Model:

The maximum occurs when G'(N) = 0 or

$$a \ln(N_{max}) = b - a$$
 and $N_{max} = e^{(b/a-1)}$

Applied to the Gompertz model for the mouse mammary tumor, then the maximum occurs at the population

$$N_{max} = e^{(9.399-1)} = 4,441(\times 10^6)$$

Substituted into the Gompertz growth function, the maximum growth of mouse mammary tumor cells is

$$G(N_{max}) = 4441(0.4126 - 0.0439 \ln(4441)) = 195.0(\times 10^6/\text{day})$$

SD-SU

(15/32)

Tumor Growth Product Rule Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example

Lecture Notes – Product Rule

Ricker Function

Example – Ricker Function: Consider the Ricker function

$$R(x) = 5x \, e^{-0.1x}$$

The function is used in modeling populations.

- Find intercepts
- Find all extrema
- Find points of inflection

 $\textbf{Joseph M. Mahaffy}, \; \langle \texttt{mahaffy@math.sdsu.edu} \rangle$

• Sketch the graph

2

Ricker Function

1

5050

Solution: For the Ricker function

$$R(x) = 5x \, e^{-0.1x}$$

The only intercept is the origin, (0, 0)

By the **product rule**, the derivative is

$$\frac{dR}{dx} = 5x(-0.1\,e^{-0.1x}) + 5\,e^{-0.1x} = 5\,e^{-0.1x}(1-0.1\,x)$$

Since the exponential is never zero, the only **critical point** satisfies

$$1 - 0.1 x = 0$$
 or $x = 10$

There is a maximum at

Lecture Notes – Product Rule

(20/32)

Joseph M. Mahaffy, (ada/fy@ath.edga.edg)Lecture Notes - Product Rule(19/22)Joseph M. Mahaffy, (ada/fy@ath.edga.edg)Lecture Notes - Product Rule(19/22)Tumor Growth
Product RuleComplex
The constitution Rule
Product RuleComplex
Tumor Growth
Product RuleComplex
Tumor Growth
Product RuleComplex
Tumor Growth
Product RuleComplex
Tumor Growth
Refer FunctionRicker FunctionSolution (cont): The derivative of the Ricker function is
$$\frac{dR}{dx^2} = 5e^{-0.1x}(1-0.1x) = 0.5e^{-0.1x}(0.1x-2)$$
Solution (cont): Growth Function
 $R(x) = 5x e^{0.1x}$ Solution in findection is found by solving $R''(x) = 0$ Solution (cont): found by solving $R''(x) = 0$ SolutionCont(20, 100 e^{-2}) or (20, 13.5)Solution

(19/32)

Examples Maximum Growth for the Gompertz Tumor Gro Ricker Function Graphing Example Tumor Growth Example

Example – Growth of Tumor

Example: Suppose the growth of a tumor satisfies Gompertz growth function

 $G(W) = W(0.5 - 0.05 \ln(W)),$

where W is the weight of the tumor in mg

• Find the equilibrium weight of the tumor

Tumor Growth Product Rule

- Find the maximum growth rate for this tumor
- Sketch the graph of G(W)

Tumor Growth Product Rule

Example – Growth of Tumor

Solution: The **equilibrium** is found by solving G(W) equal to zero

$$G(W) = W(0.5 - 0.05 \ln(W)) = 0$$

$$0.5 - 0.05 \ln(W) = 0$$

$$\ln(W) = 10$$

$$W = e^{10} = 22,026 \text{ mg}$$

(32/32)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (29/32)Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Lecture Notes - Product Rule Lecture Notes – Product Rule (30/32)Examples Maximum Growth for the Gompertz Tumor Gro Maximum Growth for the Gompertz Tumor G Tumor Growth Tumor Growth Product Rule Product Rule Graphing Example Graphing Example Tumor Growth Example Tumor Growth Example 3 Example – Growth of Tumor Example – Growth of Tumor **Solution (cont):** The graph of **Solution cont**): The maximum growth is found by setting the derivative G'(W) = 0 $G(W) = W(0.5 - 0.05 \ln(W)),$ **Gompertz Growth Function** $G'(W) = W\left(-\frac{0.05}{W}\right) + (0.5 - 0.05 \ln(W))$ 400 $G'(W) = 0.45 - 0.05 \ln(W) = 0$ 300 G(W) (mg/day) $\ln(W) = 9$ $W = e^9 = 8.103 \text{ mg}$ 200 The maximum growth rate 100 $G(8, 103) = 8,103(0.5 - 0.05 \ln(8, 103)) = 405.2 \text{ mg/dav}$ 0.0 0.5 1.5 2 2.5 1 5050 x 10⁴ W (mg)

(31/32)

SDSU