Calculus for the Life Sciences I
 Lecture Notes－Other Functions and Asymptotes

> Joseph M. Mahaffy,\langle mahaffy@math.sdsu.edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2013

Joseph M．Mahaffy，\langle mahaffy＠math．sdsu．edu \rangle	$-(1 / 52)$
Enzyme Kinetics Polynomials Rational Functions	Michaelis－Menten Enzyme Reaction ATP and Myosin
Equare Root Functions	

Proteins

－Life forms are characterized by their distinct molecular composition，especially proteins
－Proteins are the primary building blocks of life
－Enzymes are proteins that facilitate reactions inside the cell
－Enzymes are noted for their specificity and speed under a narrow range of conditions
－β－galactosidase catalyzes the break down of lactose into glucose and galactose
－Urease rapidly converts urea into ammonia and carbon dioxide

Enzyme Kinetics
－Michaelis－Menten Enzyme Reaction
－ATP and Myosin
（2）Polynomials
－Applications of Polynomials
（3）
Rational Functions
－Vertical Asymptote
－Horizontal Asymptote
－Lineweaver－Burk Plot
（4）
Square Root Functions
－Weak Acid Chemistry

Michaelis－Menten Enzyme Reaction

－Substrate，S ，combines reversibly to the enzyme E to form a enzyme－substrate complex $E S$
－The complex decomposes irreversibly to form a product P

$$
\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{ES} \xrightarrow{\stackrel{k_{2}}{\longrightarrow}} \mathrm{E}+\mathrm{P} .
$$

－The law of mass action is applied to these biochemical equations

Reaction Model

Enzyme Production Rate

Reaction Model

－The law of mass action applied to biochemical equations
－Differential equations are formed（Math 122）
－Simplifications for basic reactions
－The enzyme－substrate complex forms extremely rapidly， creating a quasi－steady state
－The forward reaction or turnover number，k_{2} ，occurs on a slower time scale

The Michaelis－Menten reaction rate for product

$$
R([\mathrm{~S}])=\frac{k_{2}\left[\mathrm{E}_{0}\right][\mathrm{S}]}{K_{m}+[\mathrm{S}]}=\frac{V_{\max }[\mathrm{S}]}{K_{m}+[\mathrm{S}]},
$$

－$[S]$ is the substrate concentration
－V（or $V_{\max }$ ）is called the maximal velocity of the reaction
－K_{m} is the Michaelis constant
－K_{m} is substrate concentration at which the reaction achieves half of the maximum velocity

Michaelis－Menten Enzyme Reaction ATP and Myosin

Binding of ATP to Myosin

－Binding of ATP to myosin in forming cross－link bridges to actin for the power stroke of striated muscle tissue satisfies a Michaelis－Menten kinetics
－The reaction velocity is an actual velocity of motion，where the chemical energy of ATP is transformed into mechanical energy by movement of the actin filement
－For rabbit psoas muscle tissue，experimental measurements give $V_{\max }=2040 \mathrm{~nm} / \mathrm{sec}$ and $K_{m}=150 \mathrm{mM}$
－The initial rise in the reaction velocity is almost linear
－As the concentration increases，there are diminishing returns with the eventual saturation of the reaction at some maximal rate

Polynomials

Polynomials

－The most general polynomial of order n is

$$
p_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}
$$

－Coefficients a_{i} are constants and n is a positive integer
－$a_{n} \neq 0$
－Degree of a polynomial is the same as the order of the polynomial
－Linear functions are first order polynomials
－Quadratic functions are second order polynomials

Properties of Polynomials

－Polynomials are considered nice functions because of their well－behaved properties
－Difficult to find the roots of an equation（setting $\left.p_{n}(x)=0\right)$ for a polynomial with $n>2$ ，and rarely even possible for $n>4$
－Easy to use in approximations or numerical methods

Applications of Polynomials

－Polynomials can fit complicated data，providing a simple model
－Excellent routines exist for finding the best least squares fit of a polynomial to data
－Polynomials are defined for all values of x and form very smooth curves
－It easy to use polynomials for interpreting data
－Finding where minimum and maximum values occur
－Computing the area under the curve
－These phenomena are topics that Calculus covers
deph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（10／52）
$\left.\begin{array}{|c}\begin{array}{c}\text { Enzyme Kinetics } \\ \text { Polynomials } \\ \text { Rational Functions }\end{array} \\ \text { Square Root Functions }\end{array}\right) ~$ Applications of Polynomials

Consider the cubic polynomial given by

$$
p(x)=x^{3}-3 x^{2}-10 x
$$

Find the roots of this equation and graph this cubic polynomial
Solution：Factoring

$$
p(x)=x^{3}-3 x^{2}-10 x=x(x-5)(x+2)=0
$$

The roots of this polynomial are $x=0,-2$ ，or 5
Later techniques of Calculus will find
－The high point occurring at $(-1.08,6.04)$
－The low point occurring at $(3.08,-30.04)$

Example of Cubic Polynomial

Solution（cont）：The graph is

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Rational Functions

Rational Functions

Definition：A function $r(x)$ is a rational function if $p(x)$ and $q(x)$ are polynomials and

$$
r(x)=\frac{p(x)}{q(x)} \quad \text { for } \quad q(x) \neq 0
$$

－The domain of the rational function，$r(x)$ ，is all x such that $q(x) \neq 0$
－The roots of the polynomial $q(x)$ are candidates for vertical asymptotes of $r(x)$
－When the order of the polynomial in the numerator of a rational function is less than or equal to the order of the polynomial of the denominator，then a horizontal asymptote occurs

Consider the quartic polynomial given by

$$
p(x)=x^{4}-5 x^{2}+4
$$

Find the roots of this equation
Skip Example
Solution：Factoring

$$
p(x)=\left(x^{2}-1\right)\left(x^{2}-4\right)=(x-1)(x+1)(x-2)(x+2)=0
$$

The roots of this polynomial are $x=-2,-1,1,2$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（14／52）
Enzyme Kinetics
Polynomials \quad Vertical Asymptote
Rational Functions
Square Root Functions

Vertical Asymptote

Definition：When the graph of a function $f(x)$ approaches a vertical line，$x=a$ ，as x approaches a ，then that line is called a vertical asymptote
－A function cannot continuously cross a vertical asymptote
－Most of the time a rational function，$r(x)=\frac{p(x)}{q(x)}$ has a vertical asymptote at $x=a$ when $q(a)=0$

Horizontal Asymptotes for Rational Functions

Definition：When the graph of a function $f(x)$ approaches a horizontal line，$y=c$ ，as x becomes very large and positive $(x \rightarrow \infty)$ ，or x becomes very large and negative $(x \rightarrow-\infty)$ ， then the line，$y=c$ ，is called a horizontal asymptote

Note that a function can cross a horizontal asymptote for ＂small＂values of x

Horizontal Asymptotes for Rational Functions

Let $r(x)$ be a rational function with polynomial $p(x)=a_{n} x^{n}+\ldots+a_{0}$ of degree n in the numerator and polynomial $q(x)=b_{m} x^{m}+\ldots+b_{0}$ of degree m in the denominator
（1）If $n<m$ ，then $r(x)$ has a horizontal asymptote of $y=0$ ．
（2）If $n>m$ ，then $r(x)$ becomes unbounded for large values of x（positive or negative）．
（3）If $n=m$ ，then $r(x)$ has a horizontal asymptote of $y=a_{n} / b_{n}$ ．

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（18／52）

\(\left.$$
\begin{array}{|c}\begin{array}{c}\text { Enzyme Kinetics } \\
\text { Polynomials } \\
\text { Rational Functions }\end{array}
$$

Square Root Functions\end{array}\right)\)| Vertical Asymptote |
| :--- |
| Horizontal Asymptote |
| Lineweaver－Burk Plot |$\quad 2$

Since

$$
\begin{gathered}
\qquad r\left(x_{n}\right)=\frac{1}{x_{n}}=\frac{1}{1 / n}=n \\
r\left(x_{n}\right)=\frac{1}{x_{n}}=2,3,4, \ldots, k, \ldots \quad \text { for } \quad n=2,3,4, \ldots, k, \ldots
\end{gathered}
$$

which is getting larger and larger，so approaching the vertical line $x=0$

Thus，there is a vertical asymptote at $x=0$

Enzyme Kinetics

Simple Hyperbola

The graph of $y=\frac{1}{x}$ is

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（21／52）
Enzyme Kinetics
Polynomials

Rational Functions $~$| Vertical Asymptote |
| :--- |
| Horizontal Asymptote |
| Lineweaver－Burk Plot |

Rational Function Example 1

Solution：The denominator is zero when $x=-2$ so the domain is

$$
x \neq-2
$$

The function passes through the origin，x and y－intercepts are zero．

The edge of the domain is $x=-2$ ，so we see there is a vertical asymptote at $x=-2$

Consider the rational function

$$
r(x)=\frac{10 x}{2+x}
$$

Skip Example
This function is typical of a function from Michaelis－Menten enzyme kinetics
（1）Find the domain of the function
（2）Find the x and y－intercepts
（3）Find vertical and horizontal asymptotes
（3）Graph the function

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（22／52）

Enzyme Kinetics Rational Funomials Runcons Square Root Functions	Horizontal Asymptot Lineweaver－Burk Plo	
Rational Function Example		3

Solution（cont）：The rational function is

$$
r(x)=\frac{10 x}{2+x}
$$

The numerator and denominator are linear functions（degree of polynomials are the same）

$$
p(x)=10 x \quad \text { and } \quad q(x)=x+2
$$

Alternately，we can see that as x get＂large，＂then the 2 in $q(x)$ becomes insignificant．

Thus，for x＂large＂

$$
r(x) \approx \frac{10 x}{x}=10
$$

Thus，a horizontal asymptote occurs at $y=10$
$\left.\begin{array}{r|r}\text { Enzyme Kinetics } \\ \text { Polynomials }\end{array}\right) \begin{aligned} & \text { Vertical Asymptote } \\ & \text { Horizontal Asymptot } \\ & \text { Rinal Functions }\end{aligned}$

The graph of $y=\frac{x+2}{x-3}$ is

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（29／52）

Enzyme Kinetics	
Polynomials	Vertical Asymptote
Rational Functions	

Rational Function Example 3

Solution：The denominator is zero when $x= \pm 2$ so the domain is

$$
x \neq \pm 2
$$

This function clearly passes through the origin，so the x and y－intercept is $(x, y)=(0,0)$
Note that this function is an even function
The edge of the domain is $x= \pm 2$ ，so we see there are vertical asymptotes at $x= \pm 2$
asymptotes at $x= \pm 2$

Consider the rational function

$$
f(x)=\frac{4 x^{2}}{4-x^{2}}
$$

where $p(x)=4 x^{2}$ and $q(x)=4-x^{2}$
Skip Example
（1）Find the domain of the function
（2）Find the x and y－intercepts
（3）Find vertical and horizontal asymptotes
（1）Graph the function

```
    Enzyme Kinetics 

Graph the function

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（30／52）
\begin{tabular}{|c|c|c|}
\hline  & Vertical Asymptote
Horizontal Asymptote
Lineweaver－Burk Plot & \\
\hline Rational Function Example 3 & & 3 \\
\hline
\end{tabular}

Solution（cont）：The rational function is
\[
f(x)=\frac{4 x^{2}}{4-x^{2}}
\]

The numerator and denominator are quadratic functions （degree of polynomials are the same）

Thus，for \(x\)＂large＂
\[
f(x) \approx \frac{4 x^{2}}{-x^{2}}=-4
\]

Thus，a horizontal asymptote occurs at \(y=-4\)

The graph of \(y=\frac{4 x^{2}}{4-x^{2}}\) is


Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Vertical Asymptote Horizontal Asymptote
Lineweaver－Burk Plot

\section*{Lineweaver－Burk Plot}

The inverse expression is linear in \(\frac{1}{[S]}\) and \(\frac{1}{V}\)
Define \(y=\frac{1}{V}\) and \(x=\frac{1}{[\mathrm{~S}]}\) ，then
\[
y=\frac{K_{m}}{V_{\max }} x+\frac{1}{V_{\max }} .
\]
－The slope of this line is \(K_{m} / V_{\max }\)
－The \(y\)－intercept is \(1 / V_{\max }\)
－The \(x\)－intercept is \(-1 / K_{m}\)
The Michaelis－Menten rate function traces out a hyperbola
\[
V=\frac{V_{\max }[\mathrm{S}]}{K_{m}+[\mathrm{S}]} .
\]

The inverse of this expression is written
\[
\frac{1}{V}=\frac{K_{m}+[\mathrm{S}]}{V_{\max }[\mathrm{S}]}=\frac{K_{m}}{V_{\max }} \frac{1}{[\mathrm{~S}]}+\frac{1}{V_{\max }}
\]


Below is the Lineweaver－Burk Plot
Lineweaver－Burk Plot


\section*{Lineweaver－Burk Plot}

The Lineweaver－Burk Plot provides a valuable method for experimentally measuring the characteristics of an enzyme

Experimentally，one measures the rate（velocity）of a reaction \(V\) as a function of the substrate concentration［S］
Find the best least squares linear fit to the inverse of the data The intercepts and slope give the constants \(V_{\max }\) and \(K_{m}\) If the data aren＇t linear，then the enzyme is not Michaelis－Menten type

Suppose an enzyme satisfies the equation
\[
V=\frac{20[S]}{10+[S]}
\]

Skip Example
－Create a graph for \([S] \geq 0\) ，showing any asymptotes
－Find the Lineweaver－Burk plot for this enzyme
－Find the enzyme＇s characteristic parameters，\(K_{m}\) and \(V_{\max }\)

Joseph M．Mahaffy，〈mahaffyemath．sdsu．edu〉－（38／52）
\(\left.\begin{array}{rrl}\text { Enzyme Kinetics } \\
\text { Polynomials } \\
\text { Rational Functions }\end{array}\right)\)\begin{tabular}{l} 
Vertical Asymptote \\
Horizontal Asymptote \\
Lineweaver－Burk Plot
\end{tabular}

Enzyme Example

Vertical Asymptote
Enzyme Example

\section*{Enzyme Example}

Solution：The graph passes through the origin with no vertical asymptotes in the domain \([S] \geq 0\)
Since
\[
V=\frac{20[S]}{10+[S]}
\]
the numerator and denominator are both linear
This gives a horizontal asymptote of \(V=20\)

Graph of rational function for enzyme


Solution（cont）：The Lineweaver－Burk formulation looks at the inverse of the enzyme reaction formula
Define \(x=1 /[S]\) and \(y=1 / V\)
\[
y=\frac{10+1 / x}{20 / x}=\frac{10 x+1}{20}=\frac{1}{2} x+\frac{1}{20}
\]

Since the \(y\)－intercept is \(1 / V_{\max }=\frac{1}{20}\) ，
so \(V_{\max }=20\)
The slope is \(K_{m} / V_{\max }=\frac{1}{2}\) ，so \(K_{m}=10\)


Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（42／52）
\(\left.\begin{array}{r}\begin{array}{r}\text { Enzyme Kinetics } \\ \text { Polynomials } \\ \text { Rational Functions }\end{array} \\ \text { Square Root Functions }\end{array}\right)\) Weak Acid Chemistry

Formic Acid has an equilibrium constant，\(K_{a}=1.77 \times 10^{-4}\) Below is a graph of \(\left[H^{+}\right]\)


The concentration of \(\left[H^{+}\right]\)for Formic Acid was graphed above The pH of the solution is \(-\log _{10}\left(\left[H^{+}\right]\right)\)

Below is a graph of the pH


Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu
Enzyme Kinetics
Polynomials
Square Root Functions

Consider the function
\[
y=\sqrt{x+2}
\]

Skip Example
Find the domain of this function and graph the function
Solution：The domain of this function satisfies \(x+2 \geq 0\)
This example has its function defined for \(x \geq-2\)

\section*{Square Root Function}
－The square root function is the inverse of the quadratic function
－The square root function is only defined for positive quantities under the radical
－The domain of a square root function is found by solving the inequality for the function under the radical being greater than zero
\(\left.\begin{array}{|c}\begin{array}{r}\text { Enzyme Kinetics } \\ \text { Polynomials } \\ \text { Rational Functions }\end{array} \\ \text { Square Root Functions }\end{array}\right)\) Weak Acid Chemistry

Below is a graph of \(y=\sqrt{x+2}\)


Consider the function
\[
y=\sqrt{8-2 x}
\]

Find the domain and range of this function and graph the function

Solution：The domain of this function satisfies \(8-2 x \geq 0\) or \(x \leq 4\)

The range is all \(y \geq 0\)
Below is a graph of \(y=\sqrt{8-2 x}\)

\(\left.\begin{array}{|c}\begin{array}{r}\text { Enzyme Kinetics } \\ \text { Polynomials } \\ \text { Rational Functions }\end{array} \\ \text { Square Root Functions }\end{array}\right) ~\) Weak Acid Chemistry

Below is a graph of \(y=\sqrt{8-2 x-x^{2}}\)


This example has its function defined for \(-4 \leq x \leq 2\)
Since the maximum occurs at \(x=-1\)（with \(y(-1)=\sqrt{9})\) The range is \(0 \leq y \leq 3\)```

