Enzyme Kinetics Enzyme Kinetics Polynomials Polynomials Rational Functions Rational Functions Square Root Functions **Square Root Functions** Outline Calculus for the Life Sciences I **Enzyme Kinetics** Lecture Notes – Other Functions and Asymptotes Michaelis-Menten Enzyme Reaction • ATP and Myosin Joseph M. Mahaffy, Polynomials $\langle mahaffy@math.sdsu.edu \rangle$ • Applications of Polynomials Department of Mathematics and Statistics **Rational Functions** Dynamical Systems Group • Vertical Asymptote Computational Sciences Research Center Horizontal Asymptote San Diego State University Lineweaver-Burk Plot San Diego, CA 92182-7720 http://www-rohan.sdsu.edu/~jmahaffy Square Root Functions Weak Acid Chemistry Spring 2013 SDSU $\textbf{Joseph M. Mahaffy}, \; \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle \\$ Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ -(1/52)-(2/52)Enzyme Kinetics Enzyme Kinetics

Rational Functions Square Root Functions Enzyme Kinetics

Proteins

- Life forms are characterized by their distinct molecular composition, especially proteins
- Proteins are the primary building blocks of life

Polynomials

• Enzymes are proteins that facilitate reactions inside the cell

Michaelis-Menten Enzyme Reaction

ATP and Myosin

- Enzymes are noted for their specificity and speed under a narrow range of conditions
 - β -galactosidase catalyzes the break down of lactose into glucose and galactose
 - Urease rapidly converts urea into ammonia and carbon dioxide

Michaelis-Menten Enzyme Reaction

Enzyme Reaction

Polynomials

Rational Functions

Square Root Functions

• Substrate, S, combines reversibly to the enzyme E to form a enzyme-substrate complex ES

Michaelis-Menten Enzyme Reaction

ATP and Myosin

 $\bullet\,$ The complex decomposes irreversibly to form a product P

$$E+S \xrightarrow{k_1} ES \xrightarrow{k_2} E+P.$$

• The law of mass action is applied to these biochemical equations

SDSU

SDSU

Enzyme Kinetics Polynomials Rational Functions

Michaelis-Menten Enzyme Reaction ATP and Myosin

Reaction Model

Reaction Model

- The law of mass action applied to biochemical equations
- Differential equations are formed (Math 122)
- Simplifications for basic reactions
 - The enzyme-substrate complex forms extremely rapidly, creating a **quasi-steady state**
 - The forward reaction or turnover number, k_2 , occurs on a slower time scale

Enzyme Production Rate

The Michaelis-Menten reaction rate for product

$$R([S]) = \frac{k_2[E_0][S]}{K_m + [S]} = \frac{V_{max}[S]}{K_m + [S]},$$

- [S] is the substrate concentration
- V (or V_{max}) is called the **maximal velocity of the** reaction
- K_m is the Michaelis constant

Graph of the binding of ATP to Myosin

2500

2000

Reaction Rate 1000

500

0

• K_m is substrate concentration at which the reaction achieves half of the maximum velocity

Michaelis-Menten Kinetics

3000

[S]

4000

5000

6000

R([S])=2040[S]/(150+[S])

SDSU SDSU Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(6/52)-(5/52)Enzyme Kinetics Enzyme Kinetics Michaelis-Menten Enzyme Reaction Polynomials Michaelis-Menten Enzyme Reaction Polynomials Rational Functions ATP and Myosin Rational Functions ATP and Myosin **Square Root Functions Square Root Functions** Binding of ATP to Myosin Binding of ATP to Myosin

- Binding of ATP to myosin in forming cross-link bridges to actin for the power stroke of striated muscle tissue satisfies a Michaelis-Menten kinetics
- The reaction velocity is an actual velocity of motion, where the chemical energy of ATP is transformed into mechanical energy by movement of the actin filement
- For rabbit psoas muscle tissue, experimental measurements give $V_{max} = 2040 \text{ nm/sec}$ and $K_m = 150 \text{ mM}$
- The initial rise in the reaction velocity is almost linear
- As the concentration increases, there are diminishing returns with the eventual saturation of the reaction at some maximal rate

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

5050

1000

2000

Polynomials **Applications of Polynomials** Rational Functions Square Root Functions

Polynomials

Polynomials

• The most general polynomial of order n is

Enzyme Kinetic

 $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$

- Coefficients a_i are constants and n is a positive integer
- $a_n \neq 0$
- Degree of a polynomial is the same as the order of the polynomial
- Linear functions are first order polynomials
- Quadratic functions are second order polynomials

Applications of Polynomials

Applications of Polynomials

- Polynomials can fit complicated data, providing a simple model
- Excellent routines exist for finding the best least squares fit of a polynomial to data
- Polynomials are defined for all values of x and form very smooth curves
- It easy to use polynomials for interpreting data
 - Finding where **minimum** and **maximum values** occur
 - Computing the area under the curve

Polynomials

Rational Functions

• These phenomena are topics that **Calculus** covers

5050

The roots of this polynomial are x = 0, -2, or 5

Later techniques of Calculus will find

- The high point occurring at (-1.08, 6.04)
- The low point occurring at (3.08, -30.04)

Example of Cubic Polynomial

Example of Quartic Polynomial

Consider the quartic polynomial given by

 $p(x) = x^4 - 5x^2 + 4$

Find the roots of this equation

Skip Example

Solution: Factoring

$$p(x) = (x^{2} - 1)(x^{2} - 4) = (x - 1)(x + 1)(x - 2)(x + 2) = 0$$

The roots of this polynomial are x = -2, -1, 1, 2

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (13/52)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (14/52)
Enzyme Kinetics Polynomials Rational Functions Square Root Functions	Enzyme Kinetics Polynomials Rational Functions Square Root Functions
Rational Functions	Vertical Asymptote
Rational Functions	
Definition: A function $r(x)$ is a rational function if $p(x)$ and $q(x)$ are polynomials and $r(x) = \frac{p(x)}{q(x)} \text{for} q(x) \neq 0$	d Definition: When the graph of a function $f(x)$ approaches a vertical line, $x = a$, as x approaches a , then that line is called a vertical asymptote

5050

SDSU

2

- The domain of the rational function, r(x), is all x such that $q(x) \neq 0$
- The roots of the polynomial q(x) are candidates for vertical asymptotes of r(x)
- When the order of the polynomial in the numerator of a rational function is less than or equal to the order of the polynomial of the denominator, then a **horizontal asymptote** occurs

- A function cannot continuously cross a vertical asymptote
- Most of the time a rational function, $r(x) = \frac{p(x)}{q(x)}$ has a vertical asymptote at x = a when q(a) = 0

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (15/52)$

Vertical Asymptote Horizontal Asymptote Lineweaver-Burk Plot

Horizontal Asymptote

Horizontal Asymptotes for Rational Functions

Definition: When the graph of a function f(x) approaches a horizontal line, y = c, as x becomes very large and positive $(x \to \infty)$, or x becomes very large and negative $(x \to -\infty)$, then the line, y = c, is called a **horizontal asymptote**

Note that a function can cross a horizontal asymptote for "small" values of \boldsymbol{x}

Horizontal Asymptotes for Rational Functions

Let r(x) be a rational function with polynomial $p(x) = a_n x^n + ... + a_0$ of degree n in the numerator and polynomial $q(x) = b_m x^m + ... + b_0$ of degree m in the denominator

- If n < m, then r(x) has a horizontal asymptote of y = 0.
- If n > m, then r(x) becomes unbounded for large values of x (positive or negative).
- 3 If n = m, then r(x) has a horizontal asymptote of $y = a_n/b_n$.

	5050	SOSC
$\mathbf{Joseph~M.~Mahaffy}, \ \langle \texttt{mahaffy@math.sdsu.edu} \rangle$	-(17/52)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) $-(18/52)$
Enzyme Kinetics Polynomials Rational Functions Square Root Functions	Vertical Asymptote Horizontal Asymptote Lineweaver-Burk Plot	Enzyme Kinetics Polynomials Rational Functions Square Root Functions
Simple Hyperbola	1	Simple Hyperbola
The simplest rational function is $r(x)$	$=\frac{1}{x}$	Since $r(x_n) = \frac{1}{x_n} = \frac{1}{1/n} = n$
where $p(x) = 1$ and $q(x) = x$ Skip Example This function is defined for all x Consider the sequence of number $x_n = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{k} \dots$ for	$\neq 0$ (domain) rs or $n = 2, 3, 4,, k,$	$r(x_n) = \frac{1}{x_n} = 2, 3, 4,, k,$ for $n = 2, 3, 4,, k,$ which is getting larger and larger, so approaching the vertical line $x = 0$ Thus, there is a vertical asymptote at $x = 0$
These numbers are getting close	r and closer to zero	

Lineweaver-Burk Plot

The **Lineweaver-Burk Plot** provides a valuable method for experimentally measuring the characteristics of an enzyme

Vertical Asymptote

Horizontal Asymptote Lineweaver-Burk Plot

Experimentally, one measures the rate (velocity) of a reaction V as a function of the substrate concentration [S]

Find the best least squares linear fit to the inverse of the data

The intercepts and slope give the constants V_{max} and K_m

If the data aren't linear, then the enzyme is not Michaelis-Menten type

Enzyme Kinetics Polynomials

Rational Functions

Enzyme Example

4

Suppose an enzyme satisfies the equation

$$V = \frac{20[S]}{10 + [S]}$$

Skip Example

- Create a graph for $[S] \ge 0$, showing any asymptotes
- Find the Lineweaver-Burk plot for this enzyme
- Find the enzyme's characteristic parameters, K_m and V_{max}

SDSU

5050

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ -(38/52)-(37/52)Enzyme Kinetics Enzyme Kinetics Vertical Asymptote Polynomials Polynomials Horizontal Asymptote Rational Functions Rational Functions Lineweaver-Burk Plot Lineweaver-Burk Plot Square Root Functions **Square Root Functions** Enzyme Example 2Enzyme Example 3 Graph of rational function for enzyme V = 20[S]/(10 + [S])**Solution:** The graph passes through the origin with no vertical asymptotes in the domain $[S] \ge 0$ Horizontal Asymptote 20 Since $V = \frac{20[S]}{10 + [S]}$ 15 > 10 the numerator and denominator are both linear This gives a horizontal asymptote of V = 205 0 20 40 60 80 100 [S]

5050

SDSU

Enzyme Kinetics Polynomials Polynomials Horizontal Asymptote Lineweaver-Burk Plot Horizontal Asymptote **Rational Functions** Rational Functions Lineweaver-Burk Plot Square Root Functions Square Root Functions **Enzyme** Example Enzyme Example 4 5 The slope is $K_m/V_{max} = \frac{1}{2}$, so $K_m = 10$ Solution (cont): The Lineweaver-Burk formulation looks at Lineweaver-Burk Plot the inverse of the enzyme reaction formula 0.8 Define x = 1/[S] and y = 1/V0.6 $y = \frac{10 + 1/x}{20/x} = \frac{10x + 1}{20} = \frac{1}{2}x + \frac{1}{20}$ 0.4 ≧ 0.2 1/20 Since the *y*-intercept is $1/V_{max} = \frac{1}{20}$, so $V_{max} = 20$ 0.5 1.5 -0.5 0 2 1/[S] SDSU SDSU Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(42/52)-(41/52)**Enzyme Kinetics** Enzyme Kinetics Polynomials Polynomials Weak Acid Chemistry Weak Acid Chemistry Rational Functions Square Root Functions **Square Root Functions**

Weak Acid Chemistry

Weak Acid Chemistry

A weak acid with equilibrium constant, K_a , and normality, x, was shown to have acid concentration

Vertical Asymptote

 $[H^+] = \frac{1}{2} \left(-K_a + \sqrt{K_a^2 + 4K_a x} \right)$

The $[H^+]$ is a square root function of the normality, x

Formic Acid has an equilibrium constant, $K_a = 1.77 \times 10^{-4}$

Enzyme Kinetics

Vertical Asymptote

Below is a graph of $[H^+]$

Formic Acid - $[H^+]$

5050

