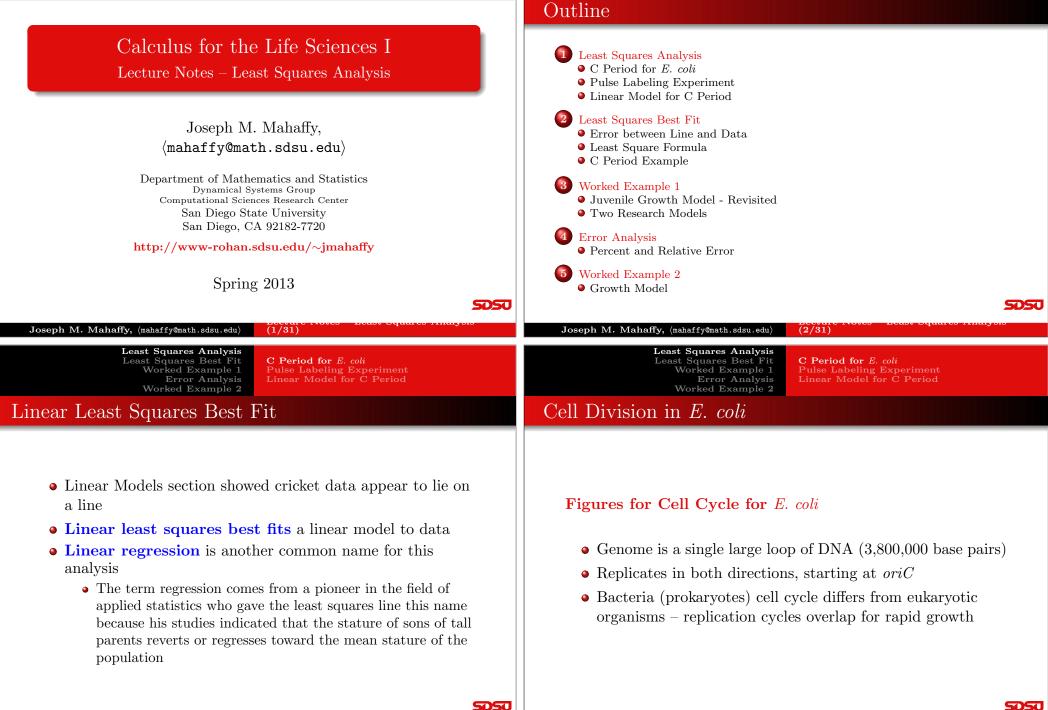
Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2



C Period for *E. coli* Pulse Labeling Experiment Linear Model for C Period

Cell Cycle in E. coli

Replication of DNA in E. coli

- Escherichia coli can divide every 20 minutes
- Time for the DNA to replicate is the C period
- Time for the two loops of DNA to split apart, segregate, and form two new daughter cells is the D period
- The C period is 35-50 min, and the D period is over 25 min
- Replication cycle often longer than cell division time
- Up to 8 *oriCs* in a single *E. coli*

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

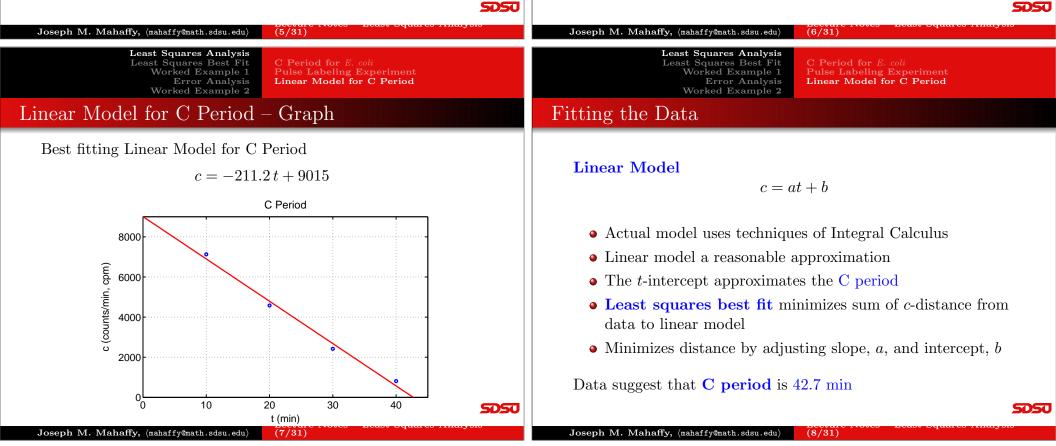
C Period for *E. coli* **Pulse Labeling Experiment** Linear Model for C Period

Pulse Labeling Experiment

Finding the C Period

- A pulse of radioactive thymidine given to E. coli
- Drugs at t = 0 to stop new replication forks and division
- Radioactive thymidine added to existing forks
- As forks end, no new radioactive thymidine added
- Radioactive emissions, c in counts/min (cpm) measured in lab of Prof. Judith Zyskind (SDSU)

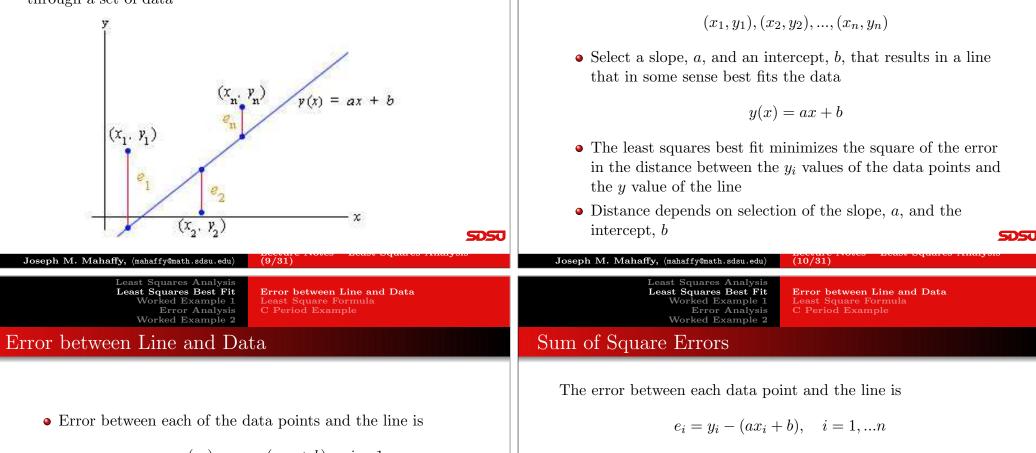
$t \pmod{t}$	10	20	30	40
c (cpm)	7130	4580	2420	810



Error between Line and Data Least Square Formula C Period Example

Least Squares Best Fit

The **least squares best fit** of a line to data is the best line through a set of data



$$e_i = y_i - y(x_i) = y_i - (ax_i + b), \quad i = 1, ...n$$

• Define the **Absolute Error** between each of the data points and the line as

$$|e_i| = |y_i - y(x_i)| = |y_i - (ax_i + b)|, \quad i = 1, ..., n$$

• The error e_i varies as a and b vary

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Error between Line and Data Least Square Formula C Period Example

Fitting the Data

• Consider a set of n data points:

Create a function depending on the slope a and intercept b of the line, which sums the square errors

$$J(a,b) = e_1^2 + e_2^2 + \ldots + e_n^2 = \sum_{i=1}^n e_i^2$$

The Least Squares Best Fit Line is the minimum value of the function J(a, b)

Minimum is determined using Calculus of two variables

5050

Error between Line and I Least Square Formula C Period Example

Formula for Best Fitting Line

Assume data points $(x_i, y_i), i = 1, ..., n$, and line

y = ax + b

Define the mean of the x values

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

The best fitting slope satisfies

$$a = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

The best fitting intercept satisfies

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

$$b = \frac{1}{n} \sum_{i=1}^{n} y_i - a\bar{x} = \bar{y} - a\bar{x}$$

(13/31)

Error between Line and Data

C Period Example

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

C Period Example (continued)

Similarly, the c-intercept, b, satisfies:

$$b = \frac{7130 + 4580 + 2420 + 810}{4} - (-211.2)25$$

$$b = 9015$$

Thus, the best fitting line is given by

$$c(t) = -211.2t + 9015$$

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Error between Line and Data Least Square Formula C Period Example

C Period Example (continued)

The pulse labeling experiment for *E. coli* gave data points:

$$(10, 7130), (20, 4580), (30, 2420), (40, 810)$$

The mean time is

 $\bar{t} = \frac{10 + 20 + 30 + 40}{4} = 25$

The best slope, a, satisfies

$$a = \frac{(10-25)7130+(20-25)4580+(30-25)2420+(40-25)810}{(10-25)^2+(20-25)^2+(30-25)^2+(40-25)^2}$$

$$a = -211.2$$

SDSU

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (14/31)

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Error between Line and Data Least Square Formula C Period Example

C Period Example - Error

With c(t) = -211.2t + 9015, compute the errors

For the first datum point (t, c) = (10, 7130), the model predicts c(10) = 6900, so

$$e_1 = c_1 - c(10) = 7130 - 6903 = 227$$

$$e_{2} = c_{2} - c(20) = 4580 - 4791 = -211$$

$$e_{3} = c_{3} - c(30) = 2420 - 2679 = -259$$

$$e_{4} = c_{4} - c(40) = 810 - 567 = 243$$

The sum of the square of these errors is

$$J(-211.2,9015) = 51529 + 44521 + 67081 + 59049 = 222180$$

SDSU

Juvenile Growth Model - Revisited Two Research Models

Model A

Model B

10

Juvenile Growth Model - Revisited

The linear Models section showed that Juvenile Height was approximated well with a linear model

Linear model is given by:

$$h(a) = 6.46 \, a + 72.3$$

and fit the data well

Least sum of square errors is found to be

$$J(m,b) = 41.5$$

Applet for Juvenile Height Growth

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Juvenile Growth Model - Revisited Two Research Models

Example 1 - Model Choice

Two researchers had only a limited set of data, the points (2,2), (5,6), and (8,3).

Researcher A felt that the model given by with y increasing with increasing x

 $y = \frac{5}{9}x + \frac{8}{9}$

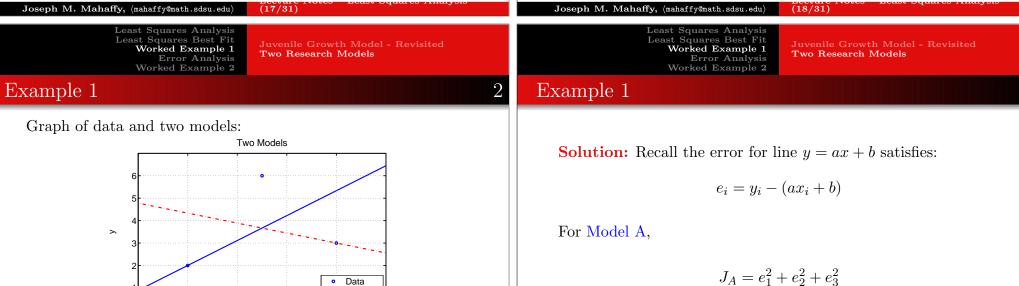
Researcher B felt that the model given by with y decreasing with increasing x

 $y = -\frac{2}{9}x + \frac{43}{9}$

SDSU

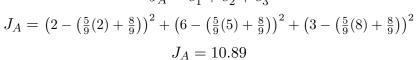
3

5050



SDSU

5050



• Find the sum of square errors for each model

4

х

6

• Which one is better accoding to the data

2

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (19/31)

0

Juvenile Growth Model - Revisited Two Research Models

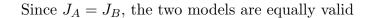
Example 1

For Model B,

$$J_B = e_1^2 + e_2^2 + e_3^2$$

$$J_B = \left(2 - \left(-\frac{2}{9}(2) + \frac{43}{9}\right)\right)^2 + \left(6 - \left(-\frac{2}{9}(5) + \frac{43}{9}\right)\right)^2 + \left(3 - \left(-\frac{2}{9}(8) + \frac{43}{9}\right)\right)^2$$

$$J_B = 10.89$$



Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Two Research Models

5

Example 1

4

What is the best fitting Linear model for these data?

Solution: The average x is

$$\bar{x} = \frac{2+5+8}{3} = 5$$

Best slope a satisfies:

$$a = \frac{(2-5)2+(5-5)6+(8-5)3}{(2-5)^2+(5-5)^2+(8-5)^2} = \frac{1}{6}$$

Since $\bar{y} = \frac{11}{3}$, the intercept *b* is

$$b = \bar{y} - a\bar{x} = \frac{11}{3} - \frac{5}{6} = \frac{17}{6}$$

The best linear model is

$$y = \frac{1}{6}x + \frac{17}{6}$$

SDSU

Percent and Relative Error

Relative and Percent Error

- Relative and Percent error allow a better comparison of the error between data sets or within a data set with large differences in the numerical values
- Again let X_e be an experimental measurement or the worst value from a model being tested and X_t be a theoretical value or the best value from actual data
- The **Relative Error** is

$$\mathbf{Relative \ Error} = \frac{X_e - X_t}{X_t}$$

• The **Absolute Error** is appropriate when only the magnitude of the error is needed

Percent Error =
$$\frac{X_e - X_t}{X_t} \times 100\%$$

Growth Model

Consider the growth of a fish given by the data:

t (weeks)	0	1	2	3	5	7	9
L (cm)	2.4	3.1	3.7	4.1	5.2	4.9	6.9

Growth Model

The formula for finding the least squares best fit linear model gives:

$$L = 0.437 t + 2.644$$

Determine the growth rate for this model

Solution: The rate of growth is the slope of the best fitting line, so

Growth Rate = 0.437 cm/week

SDSU

Growth Model

Growth Model

Which point is most likely erroneous?

The point with the most error is (7, 4.9)

When this point is removed, the new least squares best fit model is

L = 0.492t + 2.594

Determine the growth rate for this model

Growth Rate = 0.492 cm/week

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

What is the new sum of square errors

Solution: The new sum of square errors is

J(a,b) = 0.0376 + 0.0002 + 0.0149 + 0.0009 + 0.0213 + 0.0149 = 0.0898

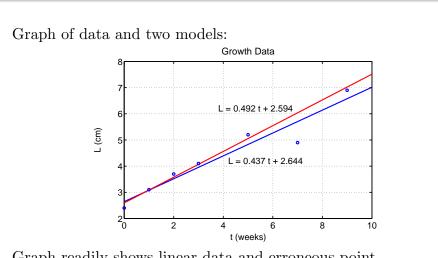
(29/31)

Growth Model

which is only 9% of the sum of squares error from above

Least Squares Analysis Least Squares Best Fit Worked Example 1 Error Analysis Worked Example 2

Growth Model



Graph readily shows linear data and erroneous point

Growth Model

4

SDSU

6

5050

What is the percent error between the computed growth rates?

Solution: The growth rate without the erroneous point is the best value, so

$$X_t = 0.492$$

The original growth rate is the worst value, so

 $X_e = 0.437$

Percent error is

 $\left(\frac{0.437 - 0.492}{0.492}\right) \times 100 = -11.2\%$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (30/31) SDSU

5