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Discrete Growth Models

The Discrete Malthusian growth model shows exponential
growth

Most animal populations grow exponentially soon after
settling

With population growth, crowding pressure decreases the
growth rate

Space and resource limitation
Toxic build up
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Growing Culture of Yeast: Classic study by Carlson in 1913

Time Population Time Population Time Population

1 9.6 7 174.6 13 594.8

2 18.3 8 257.3 14 629.4

3 29.0 9 350.7 15 640.8

4 47.2 10 441.0 16 651.1

5 71.1 11 513.3 17 655.9

6 119.1 12 559.7 18 659.6

These data show a classic S-shape curve

[1] T. Carlson Über Geschwindigkeit und Grösse der Hefevermehrung in

Würze. Biochem. Z. (1913) 57, 313–334
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Carlson (1913) Yeast data: Classic S-shape curve with
initial accelerating growth, then eventually saturation
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Discrete Dynamical Growth Model

There are two standard forms for discrete population
models

One form uses a growth function, G(pn)

pn+1 = pn + G(pn)
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Discrete Dynamical Growth Model

There are two standard forms for discrete population
models

One form uses a growth function, G(pn)

pn+1 = pn + G(pn)

The population at the next time interval (n + 1) equals the
population at the current time interval (n) plus the net growth
of the current population, G(pn)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (6/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Introduction
Yeast Study
Discrete Dynamical Models

Discrete Growth Models 2

Discrete Dynamical Model with Updating Function

A more general form satisfies

pn+1 = F (pn)
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Discrete Dynamical Model with Updating Function

A more general form satisfies

pn+1 = F (pn)

An iterative map – the population at the (n + 1)st

generation depends on the population at the nth generation
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An iterative map – the population at the (n + 1)st
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Discrete Dynamical Model with Updating Function

A more general form satisfies

pn+1 = F (pn)

An iterative map – the population at the (n + 1)st

generation depends on the population at the nth generation

The function F (p) is called the updating function

The graph of the updating function

The (n + 1)st generation is on the vertical axis
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A more general form satisfies

pn+1 = F (pn)

An iterative map – the population at the (n + 1)st

generation depends on the population at the nth generation

The function F (p) is called the updating function

The graph of the updating function

The (n + 1)st generation is on the vertical axis
The nth generation is on the horizontal axis
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Discrete Dynamical Model with Updating Function

A more general form satisfies

pn+1 = F (pn)

An iterative map – the population at the (n + 1)st

generation depends on the population at the nth generation

The function F (p) is called the updating function

The graph of the updating function

The (n + 1)st generation is on the vertical axis
The nth generation is on the horizontal axis
Usually want identity map to find equilibria
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
Most populations have a decreasing growth rate due to
crowding effects
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
Most populations have a decreasing growth rate due to
crowding effects
Easiest form is to insert a quadratic term (negative) to the
updating function
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
Most populations have a decreasing growth rate due to
crowding effects
Easiest form is to insert a quadratic term (negative) to the
updating function
This is the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
Most populations have a decreasing growth rate due to
crowding effects
Easiest form is to insert a quadratic term (negative) to the
updating function
This is the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)

This equation has the Malthusian growth model with the
additional term −rp2

n/M
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Logistic Growth Model

Malthusian growth uses a linear updating function and
grows exponentially without bound
Most populations have a decreasing growth rate due to
crowding effects
Easiest form is to insert a quadratic term (negative) to the
updating function
This is the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)

This equation has the Malthusian growth model with the
additional term −rp2

n/M
The parameter M is called the carrying capacity of the
population
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)

There is no exact solution to this discrete dynamical
system
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)

There is no exact solution to this discrete dynamical
system

Given the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)

There is no exact solution to this discrete dynamical
system

Given the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)

There are equilibria at 0 and M
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)

There is no exact solution to this discrete dynamical
system

Given the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)

There are equilibria at 0 and M
The parameter r has restricted values (r < 3) with more
complex behavior for higher values of r
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Behavior of the Logistic Growth Model

The Logistic growth model shows complicated dynamics –
shown by ecologist May (1974)

There is no exact solution to this discrete dynamical
system

Given the Logistic Growth model

pn+1 = pn + rpn

(

1 −
pn

M

)

There are equilibria at 0 and M
The parameter r has restricted values (r < 3) with more
complex behavior for higher values of r

Numerous applets available on the web to view behavior
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Logistic Growth Model for Carlson Yeast Study
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Logistic Growth Model for Carlson Yeast Study

Logistic Growth model has form

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model for Carlson Yeast Study

Logistic Growth model has form

pn+1 = pn + rpn

(

1 −
pn

M

)

Use successive data values to obtain pn+1 and pn
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Logistic Growth Model for Carlson Yeast Study

Logistic Growth model has form

pn+1 = pn + rpn

(

1 −
pn

M

)

Use successive data values to obtain pn+1 and pn

The first two points are (9.6, 18.3) and (18.3, 29.0) with
others found similarly
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Logistic Growth Model for Carlson Yeast Study

Logistic Growth model has form

pn+1 = pn + rpn

(

1 −
pn

M

)

Use successive data values to obtain pn+1 and pn

The first two points are (9.6, 18.3) and (18.3, 29.0) with
others found similarly

The graph of the data is fit with the best quadratic passing
through the origin
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Updating Function: Graph of best fitting quadratic
through the origin of data, pn+1 vs pn, and the identity function
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Recall the logistic growth model has the form

pn+1 = pn + rpn

(

1 −
pn

M

)
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Recall the logistic growth model has the form

pn+1 = pn + rpn

(

1 −
pn

M

)

The best fitting model to the yeast data is

pn+1 = 1.5612 pn − 0.000861 p2
n
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Recall the logistic growth model has the form

pn+1 = pn + rpn

(

1 −
pn

M

)

The best fitting model to the yeast data is

pn+1 = 1.5612 pn − 0.000861 p2
n

It follows that r = 0.5612 and M = 650.4
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Simulation: The model is easily simulated and by varying the
initial population to p1 = 15.0, a best fit to the data is found
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations

The first step in any analysis is finding equilibria
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations

The first step in any analysis is finding equilibria

This is simply an algebraic equation
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations

The first step in any analysis is finding equilibria

This is simply an algebraic equation

An equilibrium point of a discrete dynamical system is
where there is no change in the variable from one iteration
to the next
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations

The first step in any analysis is finding equilibria

This is simply an algebraic equation

An equilibrium point of a discrete dynamical system is
where there is no change in the variable from one iteration
to the next

Mathematically, pe = F (pe)
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Equilibria

Consider the general discrete dynamical model:

pn+1 = F (pn)

Study the qualitative behavior of discrete dynamical
equations

The first step in any analysis is finding equilibria

This is simply an algebraic equation

An equilibrium point of a discrete dynamical system is
where there is no change in the variable from one iteration
to the next

Mathematically, pe = F (pe)

Geometrically, this is when F (p) crosses the identity map
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (15/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0

Thus, pe = 0 or
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0

Thus, pe = 0 or pe = M
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0

Thus, pe = 0 or pe = M

The equilibria for the Logistic growth model are either
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0

Thus, pe = 0 or pe = M

The equilibria for the Logistic growth model are either

The trivial solution pe = 0 (no population) or
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Equilibria for Logistic Growth Model

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

If r > 0, then equilibria satisfy

pe = pe + rpe

(

1 −
pe

M

)

rpe

(

1 −
pe

M

)

= 0

Thus, pe = 0 or pe = M

The equilibria for the Logistic growth model are either

The trivial solution pe = 0 (no population) or

The carrying capacity pe = M
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Logistic Growth Model Simulation 1

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model Simulation 1

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 0.5
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Model Simulation r = 0.5
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Logistic Growth Model Simulation 1

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 0.5

0 10 20 30 40 50
0

200

400
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800

1000

1200

n

p n

Model Simulation r = 0.5

Simulation monotonically approaches carrying capacity
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Logistic Growth Model Simulation 2

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model Simulation 2

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 1.8
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Model Simulation r = 1.8
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Logistic Growth Model Simulation 2

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 1.8
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0
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1200

n

p n

Model Simulation r = 1.8

Simulation oscillates, but approaches carrying capacity
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Logistic Growth Model Simulation 3

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model Simulation 3

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 2.3
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Model Simulation r = 2.3
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Logistic Growth Model Simulation 3

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 2.3
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p n

Model Simulation r = 2.3

Simulation oscillates with period 2 about carrying capacity
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Logistic Growth Model Simulation 4

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)
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Logistic Growth Model Simulation 4

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 2.65
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Model Simulation r = 2.65
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Logistic Growth Model Simulation 4

Consider the logistic growth model:

pn+1 = pn + rpn

(

1 −
pn

M

)

Let p0 = 50, M = 1000, and r = 2.65
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p n

Model Simulation r = 2.65

Simulation is chaotic with unpredictable results
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Stability of Logistic Growth Model 1

Stability of Logistic Growth Model

Equilibria are easy to find, but behavior of the model
varies dramatically as shown by simulations above
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Stability of Logistic Growth Model 1

Stability of Logistic Growth Model

Equilibria are easy to find, but behavior of the model
varies dramatically as shown by simulations above

There are mathematical tools that help predict some of
these behaviors
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Stability of Logistic Growth Model 1

Stability of Logistic Growth Model

Equilibria are easy to find, but behavior of the model
varies dramatically as shown by simulations above

There are mathematical tools that help predict some of
these behaviors

The discrete logistic growth model is

pn+1 = f(pn) = pn + rpn

(

1 −
pn

M

)
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Stability of Logistic Growth Model 1

Stability of Logistic Growth Model

Equilibria are easy to find, but behavior of the model
varies dramatically as shown by simulations above

There are mathematical tools that help predict some of
these behaviors

The discrete logistic growth model is

pn+1 = f(pn) = pn + rpn

(

1 −
pn

M

)

The derivative of the function f(p) is valuable for
determining the behavior of the discrete dynamical system
near an equilibrium point

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (20/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Stability of Logistic Growth Model 2

The Equilibria are

pe = 0 and pe = M
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Stability of Logistic Growth Model 2

The Equilibria are

pe = 0 and pe = M

The derivative of f(p) = (1 + r)p − rp2/M is

f ′(p) = 1 + r −
2rp

M
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Stability of Logistic Growth Model 2

The Equilibria are

pe = 0 and pe = M

The derivative of f(p) = (1 + r)p − rp2/M is

f ′(p) = 1 + r −
2rp

M

Evaluation of the derivative at the equilibria gives some
information about the behavior of the discrete
dynamical model
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0

Since the derivative is

f ′(p) = 1 + r −
2rp

M
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = 0, the derivative satisfies

f ′(0) = 1 + r
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = 0, the derivative satisfies

f ′(0) = 1 + r

r positive always results in solutions growing away from this
equilibrium
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = 0, the derivative satisfies

f ′(0) = 1 + r

r positive always results in solutions growing away from this
equilibrium
When the population is small, there are plenty of resources
and the population grows (exponentially)
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Stability of Logistic Growth Model 3

Consider the Trivial Equilibrium, pe = 0

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = 0, the derivative satisfies

f ′(0) = 1 + r

r positive always results in solutions growing away from this
equilibrium
When the population is small, there are plenty of resources
and the population grows (exponentially)
Near pe = 0 solutions behave like Malthusian growth
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Stability of Logistic Growth Model 4

Consider the Carrying Capacity Equilibrium, pe = M
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Stability of Logistic Growth Model 4

Consider the Carrying Capacity Equilibrium, pe = M

Since the derivative is

f ′(p) = 1 + r −
2rp

M
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Stability of Logistic Growth Model 4

Consider the Carrying Capacity Equilibrium, pe = M

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = M , the derivative satisfies

f ′(M) = 1 − r
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Stability of Logistic Growth Model 4

Consider the Carrying Capacity Equilibrium, pe = M

Since the derivative is

f ′(p) = 1 + r −
2rp

M

At pe = M , the derivative satisfies

f ′(M) = 1 − r

There are several possible behaviors of the solution near
the carrying capacity equilibrium
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
Solutions of the discrete dynamical model approach the
equilibrium (monotonically)
The equilibrium is stable
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
Solutions of the discrete dynamical model approach the
equilibrium (monotonically)
The equilibrium is stable

If −1 < f ′(pe) < 0
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
Solutions of the discrete dynamical model approach the
equilibrium (monotonically)
The equilibrium is stable

If −1 < f ′(pe) < 0
Solutions of the discrete dynamical model oscillate about
the equilibrium and approach it
The equilibrium is stable
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
Solutions of the discrete dynamical model approach the
equilibrium (monotonically)
The equilibrium is stable

If −1 < f ′(pe) < 0
Solutions of the discrete dynamical model oscillate about
the equilibrium and approach it
The equilibrium is stable

If f ′(pe) < −1
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Behavior of Discrete Dynamical Models

If f ′(pe) > 1
Solutions of the discrete dynamical model grow away from
the equilibrium (monotonically)
The equilibrium is unstable

If 0 < f ′(pe) < 1
Solutions of the discrete dynamical model approach the
equilibrium (monotonically)
The equilibrium is stable

If −1 < f ′(pe) < 0
Solutions of the discrete dynamical model oscillate about
the equilibrium and approach it
The equilibrium is stable

If f ′(pe) < −1
Solutions of the discrete dynamical model oscillate about
the equilibrium but move away from it
The equilibrium is unstable
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Behavior of the Logistic Growth Model

Behavior of Logistic Growth Model near pe = M

If 0 < r < 1, then the solution of the discrete logistic model
monotonically approaches the equilibrium, pe = M ,
which was observed for the experiment with the yeast
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Behavior of the Logistic Growth Model

Behavior of Logistic Growth Model near pe = M

If 0 < r < 1, then the solution of the discrete logistic model
monotonically approaches the equilibrium, pe = M ,
which was observed for the experiment with the yeast

If 1 < r < 2, then the solution of the discrete logistic model
oscillates about the equilibrium, pe = M , but the
solution asymptotically approaches this equilibrium
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Behavior of the Logistic Growth Model

Behavior of Logistic Growth Model near pe = M

If 0 < r < 1, then the solution of the discrete logistic model
monotonically approaches the equilibrium, pe = M ,
which was observed for the experiment with the yeast

If 1 < r < 2, then the solution of the discrete logistic model
oscillates about the equilibrium, pe = M , but the
solution asymptotically approaches this equilibrium

If 2 < r < 3, then the solution of the discrete logistic model
oscillates about the equilibrium, pe = M , but the
solution grows away from this equilibrium
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Behavior of the Logistic Growth Model

Behavior of Logistic Growth Model near pe = M

If 0 < r < 1, then the solution of the discrete logistic model
monotonically approaches the equilibrium, pe = M ,
which was observed for the experiment with the yeast

If 1 < r < 2, then the solution of the discrete logistic model
oscillates about the equilibrium, pe = M , but the
solution asymptotically approaches this equilibrium

If 2 < r < 3, then the solution of the discrete logistic model
oscillates about the equilibrium, pe = M , but the
solution grows away from this equilibrium

r > 3 results in negative solutions
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Example 1 of the Logistic Growth Model 1

Example 1: Consider the discrete logistic growth model

pn+1 = f1(pn) = 1.3 pn − 0.0001 p2
n

Skip Example
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Example 1 of the Logistic Growth Model 1

Example 1: Consider the discrete logistic growth model

pn+1 = f1(pn) = 1.3 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model
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Example 1 of the Logistic Growth Model 1

Example 1: Consider the discrete logistic growth model

pn+1 = f1(pn) = 1.3 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (26/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 1 of the Logistic Growth Model 1

Example 1: Consider the discrete logistic growth model

pn+1 = f1(pn) = 1.3 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn
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Example 1 of the Logistic Growth Model 1

Example 1: Consider the discrete logistic growth model

pn+1 = f1(pn) = 1.3 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn

Simulate the model, starting p0 = 100 for 50 iterations
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Example 1 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 1.3 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1
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Example 1 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 1.3 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 1.3 pe − 0.0001 p2
e
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Example 1 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 1.3 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 1.3 pe − 0.0001 p2
e

0 = 0.3 pe − 0.0001 p2
e = pe(0.3 − 0.0001 pe)
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Example 1 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 1.3 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 1.3 pe − 0.0001 p2
e

0 = 0.3 pe − 0.0001 p2
e = pe(0.3 − 0.0001 pe)

The equilibria satisfy
pe = 0
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Example 1 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 1.3 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 1.3 pe − 0.0001 p2
e

0 = 0.3 pe − 0.0001 p2
e = pe(0.3 − 0.0001 pe)

The equilibria satisfy
pe = 0

and
0.3 − 0.0001 pe = 0 or pe = 3000
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p

At pe = 0
f ′

1(0) = 1.3 > 1
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p

At pe = 0
f ′

1(0) = 1.3 > 1

The solution monotonically grows away from this equilibrium,
as expected
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p

At pe = 0
f ′

1(0) = 1.3 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 3000

f ′

1(3000) = 1.3 − 0.6 = 0.7 < 1
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p

At pe = 0
f ′

1(0) = 1.3 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 3000

f ′

1(3000) = 1.3 − 0.6 = 0.7 < 1

The solution monotonically approaches this equilibrium
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Example 1 of the Logistic Growth Model 3

Solution (cont): For f1(p) = 1.3 p − 0.0001 p2,
the derivative satisfies

f ′

1(p) = 1.3 − 0.0002 p

At pe = 0
f ′

1(0) = 1.3 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 3000

f ′

1(3000) = 1.3 − 0.6 = 0.7 < 1

The solution monotonically approaches this equilibrium
This equilibrium is stable
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Example 1 of the Logistic Growth Model 4

Graphing the updating function
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Example 1 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 13,000
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Example 1 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 13,000

The vertex is at (6500, 4225)
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Example 1 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 13,000

The vertex is at (6500, 4225)

Below is graph of updating function and identity map with
significant points
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Example 1 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 13,000

The vertex is at (6500, 4225)

Below is graph of updating function and identity map with
significant points
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Example 1 of the Logistic Growth Model 5

Simulation of
pn+1 = 1.3 pn − 0.0001 pn

with p0 = 100 for 50 iterations
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Example 1 of the Logistic Growth Model 5

Simulation of
pn+1 = 1.3 pn − 0.0001 pn

with p0 = 100 for 50 iterations

0 10 20 30 40 50

500

1000

1500

2000

2500

3000

p
n

p n+
1

P
n+1

 = 1.3 P
n
 − 0.0001 P

n
2

Shows classic S-curve of population growth
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Example 2 of the Logistic Growth Model 1

Example 2: Consider the discrete logistic growth model

pn+1 = f2(pn) = 2.7 pn − 0.0001 p2
n

Skip Example
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Example 2 of the Logistic Growth Model 1

Example 2: Consider the discrete logistic growth model

pn+1 = f2(pn) = 2.7 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (31/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 2 of the Logistic Growth Model 1

Example 2: Consider the discrete logistic growth model

pn+1 = f2(pn) = 2.7 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria
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Example 2 of the Logistic Growth Model 1

Example 2: Consider the discrete logistic growth model

pn+1 = f2(pn) = 2.7 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn
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Example 2 of the Logistic Growth Model 1

Example 2: Consider the discrete logistic growth model

pn+1 = f2(pn) = 2.7 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn

Simulate the model, starting p0 = 100 for 50 iterations
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Example 2 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 2.7 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1
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Example 2 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 2.7 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 2.7 pe − 0.0001 p2
e
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Example 2 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 2.7 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 2.7 pe − 0.0001 p2
e

0 = 1.7 pe − 0.0001 p2
e = pe(1.7 − 0.0001 pe)
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Example 2 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 2.7 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 2.7 pe − 0.0001 p2
e

0 = 1.7 pe − 0.0001 p2
e = pe(1.7 − 0.0001 pe)

The equilibria satisfy
pe = 0
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Example 2 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 2.7 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 2.7 pe − 0.0001 p2
e

0 = 1.7 pe − 0.0001 p2
e = pe(1.7 − 0.0001 pe)

The equilibria satisfy
pe = 0

and
1.7 − 0.0001 pe = 0 or pe = 17, 000
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p

At pe = 0
f ′

2(0) = 2.7 > 1
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p

At pe = 0
f ′

2(0) = 2.7 > 1

The solution monotonically grows away from this equilibrium,
as expected
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p

At pe = 0
f ′

2(0) = 2.7 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 17, 000

f ′

2(17, 000) = 2.7 − 3.4 = −0.7
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p

At pe = 0
f ′

2(0) = 2.7 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 17, 000

f ′

2(17, 000) = 2.7 − 3.4 = −0.7

Since −1 < f ′

2(17, 000) < 0, the solution oscillates and
approaches this equilibrium
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Example 2 of the Logistic Growth Model 3

Solution (cont): For f2(p) = 2.7 p − 0.0001 p2,
the derivative satisfies

f ′

2(p) = 2.7 − 0.0002 p

At pe = 0
f ′

2(0) = 2.7 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 17, 000

f ′

2(17, 000) = 2.7 − 3.4 = −0.7

Since −1 < f ′

2(17, 000) < 0, the solution oscillates and
approaches this equilibrium
This equilibrium is also stable
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Example 2 of the Logistic Growth Model 4

Graphing the updating function
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Example 2 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 27,000
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Example 2 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 27,000
The vertex is at (13500, 18225)
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Example 2 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 27,000
The vertex is at (13500, 18225)
Below is graph of updating function and identity map with
significant points
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Example 2 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 27,000
The vertex is at (13500, 18225)
Below is graph of updating function and identity map with
significant points
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Example 2 of the Logistic Growth Model 5

Simulation of
pn+1 = 2.7 pn − 0.0001 pn

with p0 = 100 for 50 iterations
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Example 2 of the Logistic Growth Model 5

Simulation of
pn+1 = 2.7 pn − 0.0001 pn

with p0 = 100 for 50 iterations
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Simulation grows and overshoots the equilibrium, then oscillates
toward the equilibrium
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Example 3 of the Logistic Growth Model 1

Example 3: Consider the discrete logistic growth model

pn+1 = f3(pn) = 3.2 pn − 0.0001 p2
n

Skip Example
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Example 3 of the Logistic Growth Model 1

Example 3: Consider the discrete logistic growth model

pn+1 = f3(pn) = 3.2 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model
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Example 3 of the Logistic Growth Model 1

Example 3: Consider the discrete logistic growth model

pn+1 = f3(pn) = 3.2 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria
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Example 3 of the Logistic Growth Model 1

Example 3: Consider the discrete logistic growth model

pn+1 = f3(pn) = 3.2 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn
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Example 3 of the Logistic Growth Model 1

Example 3: Consider the discrete logistic growth model

pn+1 = f3(pn) = 3.2 pn − 0.0001 p2
n

Skip Example

Find all the equilibria for this model

Determine the behavior of the solution near these equilibria

Sketch a graph of the updating function and the identity
map pn+1 = pn

Simulate the model, starting p0 = 100 for 50 iterations
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Example 3 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 3.2 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1
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Example 3 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 3.2 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 3.2 pe − 0.0001 p2
e
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Example 3 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 3.2 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 3.2 pe − 0.0001 p2
e

0 = 2.2 pe − 0.0001 p2
e = pe(2.2 − 0.0001 pe)
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Example 3 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 3.2 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 3.2 pe − 0.0001 p2
e

0 = 2.2 pe − 0.0001 p2
e = pe(2.2 − 0.0001 pe)

The equilibria satisfy
pe = 0
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Example 3 of the Logistic Growth Model 2

Solution: For the discrete logistic growth model

pn+1 = 3.2 pn − 0.0001 p2
n

the equilibria are found by substituting pe = pn = pn+1

Thus,

pe = 3.2 pe − 0.0001 p2
e

0 = 2.2 pe − 0.0001 p2
e = pe(2.2 − 0.0001 pe)

The equilibria satisfy
pe = 0

and
2.2 − 0.0001 pe = 0 or pe = 22, 000
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (38/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p

At pe = 0
f ′

3(0) = 3.2 > 1
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p

At pe = 0
f ′

3(0) = 3.2 > 1

The solution monotonically grows away from this equilibrium,
as expected
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p

At pe = 0
f ′

3(0) = 3.2 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 22, 000

f ′

3(22, 000) = 3.2 − 4.4 = −1.2 < −1
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p

At pe = 0
f ′

3(0) = 3.2 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 22, 000

f ′

3(22, 000) = 3.2 − 4.4 = −1.2 < −1

The solution oscillates away from this equilibrium
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Example 3 of the Logistic Growth Model 3

Solution (cont): For f3(p) = 3.2 p − 0.0001 p2,
the derivative satisfies

f ′

3(p) = 3.2 − 0.0002 p

At pe = 0
f ′

3(0) = 3.2 > 1

The solution monotonically grows away from this equilibrium,
as expected

At pe = 22, 000

f ′

3(22, 000) = 3.2 − 4.4 = −1.2 < −1

The solution oscillates away from this equilibrium
This equilibrium is unstable
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Example 3 of the Logistic Growth Model 4

Graphing the updating function
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Example 3 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 32,000
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Example 3 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 32,000

The vertex is at (16000, 25600)
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Example 3 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 32,000

The vertex is at (16000, 25600)

Below is graph of updating function and identity map with
significant points
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Example 3 of the Logistic Growth Model 4

Graphing the updating function

The p-intercepts are 0 and 32,000

The vertex is at (16000, 25600)

Below is graph of updating function and identity map with
significant points
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Example 3 of the Logistic Growth Model 5

Simulation of
pn+1 = 3.2 pn − 0.0001 pn

with p0 = 100 for 50 iterations
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Example 3 of the Logistic Growth Model 5

Simulation of
pn+1 = 3.2 pn − 0.0001 pn

with p0 = 100 for 50 iterations
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Simulation oscillates about the carrying capacity with
period 2 behavior
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Example 4 - Logistic Growth with Emigration 1

Logistic Growth with Emigration - Population growth may
be affected by immigration or emigration
Skip Example

Consider the discrete dynamical population model

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

where n is measured in generations
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Example 4 - Logistic Growth with Emigration 1

Logistic Growth with Emigration - Population growth may
be affected by immigration or emigration
Skip Example

Consider the discrete dynamical population model

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

where n is measured in generations

This model has a 71% growth rate per generation
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Example 4 - Logistic Growth with Emigration 1

Logistic Growth with Emigration - Population growth may
be affected by immigration or emigration
Skip Example

Consider the discrete dynamical population model

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

where n is measured in generations

This model has a 71% growth rate per generation

Logistic crowding effects are given by the term 0.001 p2
n
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Example 4 - Logistic Growth with Emigration 1

Logistic Growth with Emigration - Population growth may
be affected by immigration or emigration
Skip Example

Consider the discrete dynamical population model

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

where n is measured in generations

This model has a 71% growth rate per generation

Logistic crowding effects are given by the term 0.001 p2
n

7 individuals emigrate each generation
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Example 4 - Logistic Growth with Emigration 2

Logistic Growth with Emigration

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,
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Example 4 - Logistic Growth with Emigration 2

Logistic Growth with Emigration

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

Let p0 = 100 and find the population for the next 3
generations
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Example 4 - Logistic Growth with Emigration 2

Logistic Growth with Emigration

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

Let p0 = 100 and find the population for the next 3
generations

Find the p-intercepts and the vertex for g(p) and graph of
g(p)
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Example 4 - Logistic Growth with Emigration 2

Logistic Growth with Emigration

pn+1 = pn + g(pn) = 1.71 pn − 0.001 p2
n − 7,

Let p0 = 100 and find the population for the next 3
generations

Find the p-intercepts and the vertex for g(p) and graph of
g(p)

By finding when the growth rate is zero, determine all
equilibria for this model and analyze their stability
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Example 4 - Logistic Growth with Emigration 3

Solution: We begin with p0 = 100

p1 = p0 + g(p0) = 100 + 0.71(100) − 0.001(100)2 − 7 = 154,
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Example 4 - Logistic Growth with Emigration 3

Solution: We begin with p0 = 100

p1 = p0 + g(p0) = 100 + 0.71(100) − 0.001(100)2 − 7 = 154,

p2 = 154 + 0.71(154) − 0.001(154)2 − 7 = 233,
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Example 4 - Logistic Growth with Emigration 3

Solution: We begin with p0 = 100

p1 = p0 + g(p0) = 100 + 0.71(100) − 0.001(100)2 − 7 = 154,

p2 = 154 + 0.71(154) − 0.001(154)2 − 7 = 233,

p3 = 233 + 0.71(233) − 0.001(233)2 − 7 = 337.
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Example 4 - Logistic Growth with Emigration 4

Solution (cont): The growth function satisfies

g(p) = 0.71p − 0.001p2 − 7

g(p) = −0.001(p2 − 710p + 7000)

g(p) = −0.001(p − 10)(p − 700)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (44/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 4 - Logistic Growth with Emigration 4

Solution (cont): The growth function satisfies

g(p) = 0.71p − 0.001p2 − 7

g(p) = −0.001(p2 − 710p + 7000)

g(p) = −0.001(p − 10)(p − 700)

The p-intercepts are

p = 10 or p = 700
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Example 4 - Logistic Growth with Emigration 4

Solution (cont): The growth function satisfies

g(p) = 0.71p − 0.001p2 − 7

g(p) = −0.001(p2 − 710p + 7000)

g(p) = −0.001(p − 10)(p − 700)

The p-intercepts are

p = 10 or p = 700

The vertex satisfies p = 355 with

g(355) = −0.001(345)(−345) = 119
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Example 4 - Logistic Growth with Emigration 5

Solution (cont): The graph of the growth function is
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Growth Rate for Logistic with Emigration
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Example 4 - Logistic Growth with Emigration 6

Solution (cont): Equilibrium Analysis
Since the growth function g(p) is zero at

p = 10 and p = 700,

these are the equilibria
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Example 4 - Logistic Growth with Emigration 6

Solution (cont): Equilibrium Analysis
Since the growth function g(p) is zero at

p = 10 and p = 700,

these are the equilibria

The updating function is

F (p) = 1.71 p − 0.001 p2 − 7

with derivative
F ′(p) = 1.71 − 0.002 p
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Example 4 - Logistic Growth with Emigration 7

Solution (cont): Stability Analysis With

F ′(p) = 1.71 − 0.002 p
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Example 4 - Logistic Growth with Emigration 7

Solution (cont): Stability Analysis With

F ′(p) = 1.71 − 0.002 p

At p = 10,
F ′(10) = 1.69 > 1
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Example 4 - Logistic Growth with Emigration 7

Solution (cont): Stability Analysis With

F ′(p) = 1.71 − 0.002 p

At p = 10,
F ′(10) = 1.69 > 1

so this equilibrium is monotonically unstable (solutions
growing away)
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Example 4 - Logistic Growth with Emigration 7

Solution (cont): Stability Analysis With

F ′(p) = 1.71 − 0.002 p

At p = 10,
F ′(10) = 1.69 > 1

so this equilibrium is monotonically unstable (solutions
growing away)

At p = 700,
F ′(700) = 0.31 < 1
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Example 4 - Logistic Growth with Emigration 7

Solution (cont): Stability Analysis With

F ′(p) = 1.71 − 0.002 p

At p = 10,
F ′(10) = 1.69 > 1

so this equilibrium is monotonically unstable (solutions
growing away)

At p = 700,
F ′(700) = 0.31 < 1

so this equilibrium is monotonically stable (solutions
moving toward)
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Example 5 - U. S. Census with 3 Growth Models 1

U. S. Census with Logistic Growth Model - This example
uses the census data from 1790 to 2000 to compare 3 models
Skip Example
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Example 5 - U. S. Census with 3 Growth Models 1

U. S. Census with Logistic Growth Model - This example
uses the census data from 1790 to 2000 to compare 3 models
Skip Example

Malthusian growth model

Pn+1 = 1.1524 Pn
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Example 5 - U. S. Census with 3 Growth Models 1

U. S. Census with Logistic Growth Model - This example
uses the census data from 1790 to 2000 to compare 3 models
Skip Example

Malthusian growth model

Pn+1 = 1.1524 Pn

Nonautonomous growth model with n in decades after 1790

Pn+1 = (1.3768 − 0.01473 n)Pn

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (48/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 1

U. S. Census with Logistic Growth Model - This example
uses the census data from 1790 to 2000 to compare 3 models
Skip Example

Malthusian growth model

Pn+1 = 1.1524 Pn

Nonautonomous growth model with n in decades after 1790

Pn+1 = (1.3768 − 0.01473 n)Pn

Logistic growth model

Pn+1 = f(Pn) = Pn + 0.2334 Pn

(

1 −
Pn

411.1

)
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Example 5 - U. S. Census with 3 Growth Models 2

Malthusian growth model

Pn+1 = (1 + r)Pn with P0
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Example 5 - U. S. Census with 3 Growth Models 2

Malthusian growth model

Pn+1 = (1 + r)Pn with P0

Least squares best fit to census data

Pn = P0(1 + r)n = 15.05(1.1524)n
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Example 5 - U. S. Census with 3 Growth Models 2

Malthusian growth model

Pn+1 = (1 + r)Pn with P0

Least squares best fit to census data

Pn = P0(1 + r)n = 15.05(1.1524)n

The average growth over U. S. census history is r = 0.1524
per decade with best P0 = 15.05 M
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Example 5 - U. S. Census with 3 Growth Models 2

Malthusian growth model

Pn+1 = (1 + r)Pn with P0

Least squares best fit to census data

Pn = P0(1 + r)n = 15.05(1.1524)n

The average growth over U. S. census history is r = 0.1524
per decade with best P0 = 15.05 M

The sum of square errors is 2248
The P0 is quite high and growth only matches growth near
beginning of 20th century
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Example 5 - U. S. Census with 3 Growth Models 2

Malthusian growth model

Pn+1 = (1 + r)Pn with P0

Least squares best fit to census data

Pn = P0(1 + r)n = 15.05(1.1524)n

The average growth over U. S. census history is r = 0.1524
per decade with best P0 = 15.05 M

The sum of square errors is 2248
The P0 is quite high and growth only matches growth near
beginning of 20th century

Malthusian model isn’t expected to work well over long
periods of time
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0

Best linear fit to growth over U. S. history is

k(tn) = 0.3768 − 0.01473 n
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0

Best linear fit to growth over U. S. history is

k(tn) = 0.3768 − 0.01473 n

Growth near 38% per decade early, declining about 1.5%
per decade
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0

Best linear fit to growth over U. S. history is

k(tn) = 0.3768 − 0.01473 n

Growth near 38% per decade early, declining about 1.5%
per decade
Least squares best fit to census data had P0 = 3.77 M
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0

Best linear fit to growth over U. S. history is

k(tn) = 0.3768 − 0.01473 n

Growth near 38% per decade early, declining about 1.5%
per decade
Least squares best fit to census data had P0 = 3.77 M

The sum of square errors is 543
The P0 is very close to actual 1790 census
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Example 5 - U. S. Census with 3 Growth Models 3

Nonautonomous growth model

Pn+1 = (1 + k(tn))Pn with P0

Best linear fit to growth over U. S. history is

k(tn) = 0.3768 − 0.01473 n

Growth near 38% per decade early, declining about 1.5%
per decade
Least squares best fit to census data had P0 = 3.77 M

The sum of square errors is 543
The P0 is very close to actual 1790 census

This model matches the census quite well, but model
difficult to analyze mathematically
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Example 5 - U. S. Census with 3 Growth Models 4

Logistic growth model

Pn+1 = Pn + rPn

(

1 −
Pn

M

)

with P0
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Example 5 - U. S. Census with 3 Growth Models 4

Logistic growth model

Pn+1 = Pn + rPn

(

1 −
Pn

M

)

with P0

Least squares best fit to census data

Pn+1 = Pn + 0.2334 Pn

(

1 −
Pn

411.1

)
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Example 5 - U. S. Census with 3 Growth Models 4

Logistic growth model

Pn+1 = Pn + rPn

(

1 −
Pn

M

)

with P0

Least squares best fit to census data

Pn+1 = Pn + 0.2334 Pn

(

1 −
Pn

411.1

)

This gives a growth rate of r = 0.2334 and carrying
capacity of M = 411.1 with the best P0 = 8.04
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Example 5 - U. S. Census with 3 Growth Models 4

Logistic growth model

Pn+1 = Pn + rPn

(

1 −
Pn

M

)

with P0

Least squares best fit to census data

Pn+1 = Pn + 0.2334 Pn

(

1 −
Pn

411.1

)

This gives a growth rate of r = 0.2334 and carrying
capacity of M = 411.1 with the best P0 = 8.04

The sum of square errors is 479
The P0 is high at 8.04 M
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Example 5 - U. S. Census with 3 Growth Models 4

Logistic growth model

Pn+1 = Pn + rPn

(

1 −
Pn

M

)

with P0

Least squares best fit to census data

Pn+1 = Pn + 0.2334 Pn

(

1 −
Pn

411.1

)

This gives a growth rate of r = 0.2334 and carrying
capacity of M = 411.1 with the best P0 = 8.04

The sum of square errors is 479
The P0 is high at 8.04 M

This model matches the census data best of the 3 models
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Example 5 - U. S. Census with 3 Growth Models 5

Graph of the 3 models and U. S. census data
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Example 5 - U. S. Census with 3 Growth Models 6

Logistic Updating Function

Direct fitting of the logistic time series to data can be
numerically unstable
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Logistic Updating Function

Direct fitting of the logistic time series to data can be
numerically unstable

Finding the quadratic updating function uses stable
numerical routines
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Example 5 - U. S. Census with 3 Growth Models 6

Logistic Updating Function

Direct fitting of the logistic time series to data can be
numerically unstable

Finding the quadratic updating function uses stable
numerical routines

By plotting Pn+1 versus Pn, one can see how the data
compares to the updating function for the logistic growth
model
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Example 5 - U. S. Census with 3 Growth Models 6

Logistic Updating Function

Direct fitting of the logistic time series to data can be
numerically unstable

Finding the quadratic updating function uses stable
numerical routines

By plotting Pn+1 versus Pn, one can see how the data
compares to the updating function for the logistic growth
model

Find Pn and Pn+1 by taking successive pairs of census data
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Example 5 - U. S. Census with 3 Growth Models 7

Graph of the Logistic Updating function
Graph shows U. S. census data, quadratic for logistic model,
and identity map
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Example 5 - U. S. Census with 3 Growth Models 8

Logistic Updating function for U. S. census data

The logistic updating function very closely follows the
census data except at a couple of points

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (55/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 8

Logistic Updating function for U. S. census data

The logistic updating function very closely follows the
census data except at a couple of points

The equilibria occur at the intersection of the updating
function and the identity map
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Example 5 - U. S. Census with 3 Growth Models 8

Logistic Updating function for U. S. census data

The logistic updating function very closely follows the
census data except at a couple of points

The equilibria occur at the intersection of the updating
function and the identity map

The slope of the updating function at a point of
intersection determines the stability of that equilibrium
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Example 5 - U. S. Census with 3 Growth Models 9

Logistic Updating function for U. S. census data

f(Pn) = Pn+0.2334 Pn

(

1 −
Pn

411.1

)

= 1.2334 Pn−0.00056775 P 2
n
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Example 5 - U. S. Census with 3 Growth Models 9

Logistic Updating function for U. S. census data

f(Pn) = Pn+0.2334 Pn

(

1 −
Pn

411.1

)

= 1.2334 Pn−0.00056775 P 2
n

The equilibria satisfy

Pe = Pe + 0.2334 Pe

(

1 −
Pe

411.1

)
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Example 5 - U. S. Census with 3 Growth Models 9

Logistic Updating function for U. S. census data

f(Pn) = Pn+0.2334 Pn

(

1 −
Pn

411.1

)

= 1.2334 Pn−0.00056775 P 2
n

The equilibria satisfy

Pe = Pe + 0.2334 Pe

(

1 −
Pe

411.1

)

0 = 0.2334 Pe

(

1 −
Pe

411.1

)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (56/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 9

Logistic Updating function for U. S. census data

f(Pn) = Pn+0.2334 Pn

(

1 −
Pn

411.1

)

= 1.2334 Pn−0.00056775 P 2
n

The equilibria satisfy

Pe = Pe + 0.2334 Pe

(

1 −
Pe

411.1

)

0 = 0.2334 Pe

(

1 −
Pe

411.1

)

The equilibria are

Pe = 0 and Pe = 411.1
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Example 5 - U. S. Census with 3 Growth Models 10

Updating Function

f(P ) = 1.2334 P − 0.00056775 P 2
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Example 5 - U. S. Census with 3 Growth Models 10

Updating Function

f(P ) = 1.2334 P − 0.00056775 P 2

The derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P
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Example 5 - U. S. Census with 3 Growth Models 10

Updating Function

f(P ) = 1.2334 P − 0.00056775 P 2

The derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P

At the equilibrium, Pe = 0,

f ′(0) = 1.2334 > 1
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Example 5 - U. S. Census with 3 Growth Models 10

Updating Function

f(P ) = 1.2334 P − 0.00056775 P 2

The derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P

At the equilibrium, Pe = 0,

f ′(0) = 1.2334 > 1

This equilibrium is unstable with solutions monotonically
moving away
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Example 5 - U. S. Census with 3 Growth Models 11

Since the derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P
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Example 5 - U. S. Census with 3 Growth Models 11

Since the derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P

At the equilibrium, Pe = 411.1,

f ′(411.1) = 0.7666 < 1

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (58/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 11

Since the derivative of the updating function is

f ′(P ) = 1.2334 − 0.0011355 P

At the equilibrium, Pe = 411.1,

f ′(411.1) = 0.7666 < 1

This equilibrium is stable with solutions monotonically
approaching the carrying capacity
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model

Simulates historical data well, but low by 3.2% in 2000 and
5.8% in 2010
Fails to account for recent immigration and high birth rates
in immigrant community
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model

Simulates historical data well, but low by 3.2% in 2000 and
5.8% in 2010
Fails to account for recent immigration and high birth rates
in immigrant community
Model predicts population increases to a maximum of
330 M around 2050, then declines

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Nonlinear Dynamical Systems
— (59/64)



Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model

Cobwebbing

Equilibria
Simulation of Logistic Growth Model
Stability of Logistic Growth Model
Behavior of Discrete Dynamical Models
Examples of Logistic Growth
U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model

Simulates historical data well, but low by 3.2% in 2000 and
5.8% in 2010
Fails to account for recent immigration and high birth rates
in immigrant community
Model predicts population increases to a maximum of
330 M around 2050, then declines

Logistic growth model
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model

Simulates historical data well, but low by 3.2% in 2000 and
5.8% in 2010
Fails to account for recent immigration and high birth rates
in immigrant community
Model predicts population increases to a maximum of
330 M around 2050, then declines

Logistic growth model
Simulates historical data well, but low by 2.3% in 2000 and
4.0% in 2010 missing importance of recent immigration
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Example 5 - U. S. Census with 3 Growth Models 12

Summary: Future Projections

The Malthusian growth model is simple but simulates
poorly for the entire history of the U. S.
Nonautonomous growth model

Simulates historical data well, but low by 3.2% in 2000 and
5.8% in 2010
Fails to account for recent immigration and high birth rates
in immigrant community
Model predicts population increases to a maximum of
330 M around 2050, then declines

Logistic growth model
Simulates historical data well, but low by 2.3% in 2000 and
4.0% in 2010 missing importance of recent immigration
Model predicts population increases to carrying capacity of
411.1 M, asymptotically
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Cobwebbing 1

Consider the discrete dynamical model

pn+1 = f(pn)
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Cobwebbing 1

Consider the discrete dynamical model

pn+1 = f(pn)

In the Linear Discrete Dynamical Model section, we
showed a graphical method to view the local dynamics of this
model called cobwebbing
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Cobwebbing

Cobwebbing 1

Consider the discrete dynamical model

pn+1 = f(pn)

In the Linear Discrete Dynamical Model section, we
showed a graphical method to view the local dynamics of this
model called cobwebbing

Create a graph with the variable pn+1 on the vertical axis and
pn on the horizontal axis
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Cobwebbing

Cobwebbing 1

Consider the discrete dynamical model

pn+1 = f(pn)

In the Linear Discrete Dynamical Model section, we
showed a graphical method to view the local dynamics of this
model called cobwebbing

Create a graph with the variable pn+1 on the vertical axis and
pn on the horizontal axis

Draw the graph of the updating function, f(pn) and the
identity map

pn+1 = f(pn) and pn+1 = pn
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Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium
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Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium

The process of cobwebbing shows the dynamics of this
discrete dynamical model
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Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium

The process of cobwebbing shows the dynamics of this
discrete dynamical model

Start at some point p0 on the horizontal axis, then go
vertically to f(p0) to find p1
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Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium

The process of cobwebbing shows the dynamics of this
discrete dynamical model

Start at some point p0 on the horizontal axis, then go
vertically to f(p0) to find p1

Next go horizontally to the line pn+1 = pn
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Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium

The process of cobwebbing shows the dynamics of this
discrete dynamical model

Start at some point p0 on the horizontal axis, then go
vertically to f(p0) to find p1

Next go horizontally to the line pn+1 = pn

Go vertically to f(p1) to find p2
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Qualitative Analysis of Logistic Growth Model

Cobwebbing

Cobwebbing 2

Graphically, any intersection of the updating function and
the identity map

pn+1 = f(pn) and pn+1 = pn

produces an equilibrium

The process of cobwebbing shows the dynamics of this
discrete dynamical model

Start at some point p0 on the horizontal axis, then go
vertically to f(p0) to find p1

Next go horizontally to the line pn+1 = pn

Go vertically to f(p1) to find p2

The process is repeated to give a geometric interpretation
of the dynamics of the discrete model
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Cobwebbing – Breathing Model Example

Cobwebbing – Breathing Model Example

The model for a normal subject breathing an air mixture enriched
with Ar satisfies the model

cn+1 = (1 − q)cn + qγ = 0.82 cn + 0.0017

Below reviews the cobwebbing process for this example
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Cobwebbing
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Cobwebbing – Quadratic Example 1

Cobwebbing – Quadratic Example

Breathing model has a simple linear updating function
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Cobwebbing – Quadratic Example 1

Cobwebbing – Quadratic Example

Breathing model has a simple linear updating function
Unique equilibrium
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Monotonic dynamics

Quadratic updating function allows complicated
dynamics

Logistic growth model is a quadratic dynamical model
Have observed monotonic, oscillatory, and chaotic dynamics
Show oscillatory dynamics for

pn+1 = 3 pn(1 − pn)

using a few steps of cobwebbing
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Breathing model has a simple linear updating function
Unique equilibrium
Monotonic dynamics

Quadratic updating function allows complicated
dynamics

Logistic growth model is a quadratic dynamical model
Have observed monotonic, oscillatory, and chaotic dynamics
Show oscillatory dynamics for

pn+1 = 3 pn(1 − pn)

using a few steps of cobwebbing
This example has equilibria at 0 and 2

3
, the latter being

between stable and unstable and oscillatory
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