Limits Continuity Derivative

### Calculus for the Life Sciences I Lecture Notes – Limits, Continuity, and the Derivative

# Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/{\sim}jmahaffy$ 

Spring 2013

(1/24)

#### Limits Continuity Derivative

### Outline



Definition

Examples of Limit



#### Continuity

• Examples of Continuity



#### Derivative

• Examples of a derivative



|              | Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|--------------|------------------------------------|---------------------------------|
| Introduction |                                    |                                 |

#### • Limits are central to Calculus



|              | Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|--------------|------------------------------------|---------------------------------|
| Introduction |                                    |                                 |

- Limits are central to Calculus
- Present definitions of limits, continuity, and derivative



|              | Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|--------------|------------------------------------|---------------------------------|
| Introduction |                                    |                                 |

- Limits are central to Calculus
- Present definitions of limits, continuity, and derivative

-(3/24)

• Sketch the formal mathematics for these definitions

#### Introduction

- Limits are central to Calculus
- Present definitions of limits, continuity, and derivative

< □ > < A >

-(3/24)

A B > A B >

- Sketch the formal mathematics for these definitions
- Graphically show these ideas



### Introduction

- Limits are central to Calculus
- Present definitions of limits, continuity, and derivative
- Sketch the formal mathematics for these definitions
- Graphically show these ideas
- Recall derivative is related to the slope of the tangent line

-(3/24)

- Limits are central to Calculus
- Present definitions of limits, continuity, and derivative
- Sketch the formal mathematics for these definitions
- Graphically show these ideas
- Recall derivative is related to the slope of the tangent line
- Complete understanding of the definitions is beyond the scope of this course

-(3/24)

### Definition of Limit

**Limits** – Conceptually, the **limit of a function** f(x) at some point  $x_0$  simply means that if your value of x is very close to the value  $x_0$ , then the function f(x) stays very close to some particular value

**Definition:** The **limit of a function** f(x) at some point  $x_0$  exists and is equal to L if and only if every "small" interval about the limit L, say the interval  $(L - \epsilon, L + \epsilon)$ , means you can find a "small" interval about  $x_0$ , say the interval  $(x_0 - \delta, x_0 + \delta)$ , which has all values of f(x) existing in the former "small" interval about the limit L, except possibly at  $x_0$  itself

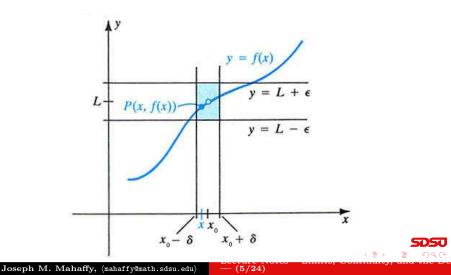
(4/24)

Limits Continuity Derivative

Definition Examples of Limit

#### Definition of Limit

#### **Diagram for Definition of Limit**



| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

**Examples of Limits** 

1

**Example of Limits:** Consider  $f(x) = x^2 - x - 6$ 



| Limits     |
|------------|
| Continuity |
| Derivative |

#### **Examples of Limits**

**Example of Limits:** Consider  $f(x) = x^2 - x - 6$ 

• Find the limit as x approaches 1

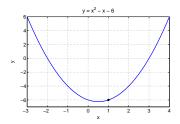




#### Examples of Limits

**Example of Limits:** Consider  $f(x) = x^2 - x - 6$ 

- Find the limit as x approaches 1
- From either the graph or from the way you have always evaluated this quadratic function that as x approaches 1, f(x) approaches -6, since f(1) = -6



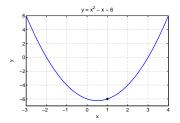
-(6/24)



#### Examples of Limits

**Example of Limits:** Consider  $f(x) = x^2 - x - 6$ 

- Find the limit as x approaches 1
- From either the graph or from the way you have always evaluated this quadratic function that as x approaches 1, f(x) approaches -6, since f(1) = -6



Fact: Any polynomial, p(x), has as its limit at some  $x_0$ , the value of  $p(x_0)$ 

-(6/24)

| Limits     |
|------------|
| Continuity |
| Derivative |

Examples of Limits

**Example of Limits:** Consider 
$$r(x) = \frac{x^2 - x - 6}{x - 3}$$



| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 6}{x - 3}$ 

• Find the limit as x approaches 1

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (7/24)

(日) (同) (日) (日) (日)

2

| Limits     |
|------------|
| Continuity |
| Derivative |

#### Examples of Limits

- Find the limit as x approaches 1
- If x is not 3, then this rational function reduces to r(x) = x + 2



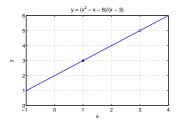
| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

Definition Examples of Limit

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 6}{x - 3}$ 

- Find the limit as x approaches 1
- If x is not 3, then this rational function reduces to r(x) = x + 2
- So as x approaches 1, this function simply goes to 3



(7/24)



 $\exists \rightarrow$ 

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

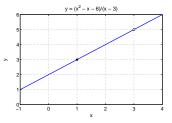
| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

Definition Examples of Limit

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 6}{x - 3}$ 

- Find the limit as x approaches 1
- If x is not 3, then this rational function reduces to r(x) = x + 2
- So as x approaches 1, this function simply goes to 3



Fact: Any rational function,  $r(x) = \frac{p(x)}{q(x)}$ , where p(x) and q(x) are polynomials with  $q(x_0)$  not zero, then the limit exists with the limit being  $r(x_0)$ 

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(7/24)

| Limits     |
|------------|
| Continuity |
| Derivative |

-(8/24)

Examples of Limits

**Example of Limits:** Consider 
$$r(x) = \frac{x^2 - x - 6}{x - 3}$$



| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

-(8/24)

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 6}{x - 3}$ 

• Find the limit as x approaches 3

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

⇒ →

| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

Definition Examples of Limit

-(8/24)

・ロト ・同ト ・ヨト ・ヨト

#### Examples of Limits

- Find the limit as x approaches 3
- Though r(x) is not defined at  $x_0 = 3$ , arbitrarily "close" to 3, r(x) = x + 2

| Limits     |
|------------|
| Continuity |
| Derivative |

Definition Examples of Limit

・ロト ・同ト ・ヨト ・ヨト

(8/24)

#### Examples of Limits

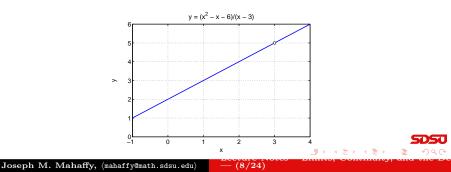
- Find the limit as x approaches 3
- Though r(x) is not defined at  $x_0 = 3$ , arbitrarily "close" to 3, r(x) = x + 2
- So as x approaches 3, this function goes to 5

Limits Continuity Derivative

Definition Examples of Limit

### Examples of Limits

- Find the limit as x approaches 3
- Though r(x) is not defined at  $x_0 = 3$ , arbitrarily "close" to 3, r(x) = x + 2
- So as x approaches 3, this function goes to 5
- Its limit exists though the function is not defined at  $x_0 = 3$



| Limits     | Def |
|------------|-----|
| Continuity | Exa |
| Derivative | EX  |

**Examples of Limits** 

4

**Example of Limits:** Consider  $f(x) = \frac{1}{x^2}$ 



Joseph M. Mahaffy,  $\langle mahaffy@math.sdsu.edu \rangle$ 

| Limits     |  |
|------------|--|
| Continuity |  |
| Derivative |  |

#### **Examples of Limits**

**Example of Limits:** Consider  $f(x) = \frac{1}{x^2}$ 

• Find the limit as x approaches 0, if it exists



| Limits     |
|------------|
| Continuity |
| Derivative |

#### Examples of Limits

- Find the limit as x approaches 0, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero



| Limits     |
|------------|
| Continuity |
| Derivative |

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(9/24)

#### Examples of Limits

4

- Find the limit as x approaches 0, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- However, at  $x_0 = 0$ , this function is undefined

| Limits     |
|------------|
| Continuity |
| Derivative |

(9/24)

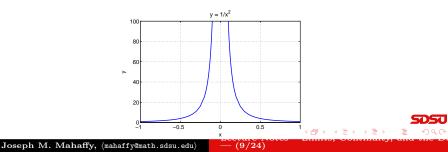
### Examples of Limits

- Find the limit as x approaches 0, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- However, at  $x_0 = 0$ , this function is undefined
- Thus, the graph has a vertical asymptote at  $x_0 = 0$

| Limits     |
|------------|
| Continuity |
| Derivative |

### Examples of Limits

- Find the limit as x approaches 0, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- However, at  $x_0 = 0$ , this function is undefined
- Thus, the graph has a vertical asymptote at  $x_0 = 0$
- This means that no limit exists for f(x) at  $x_0 = 0$



| Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|------------------------------------|---------------------------------|
| Examples of Limits                 | 5                               |

-(10/24)

**Example of Limits:** Consider 
$$r(x) = \frac{x^2 - x - 2}{x - 3}$$



 $\textbf{Joseph M. Mahaffy}, \; \langle \texttt{mahaffy@math.sdsu.edu} \rangle$ 

## Examples of Limits Examples of Limits

-(10/24)

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 2}{x - 3}$ 

• Find the limit as x approaches 3, if it exists



5

-(10/24)

#### Examples of Limits

- Find the limit as x approaches 3, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 2}{x - 3}$ 

- Find the limit as x approaches 3, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- Since the numerator is not zero, while the denominator is zero at  $x_0 = 3$ , this function is undefined at  $x_0 = 3$

(10/24)

#### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 2}{x - 3}$ 

- Find the limit as x approaches 3, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- Since the numerator is not zero, while the denominator is zero at  $x_0 = 3$ , this function is undefined at  $x_0 = 3$

(10/24)

• The graph has a vertical asymptote at  $x_0 = 3$ 

(日) (四) (日) (日) (日)

### Examples of Limits

**Example of Limits:** Consider  $r(x) = \frac{x^2 - x - 2}{x - 3}$ 

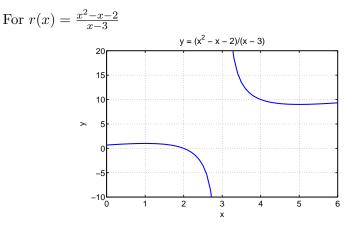
- Find the limit as x approaches 3, if it exists
- This function has a limit for any value of  $x_0$  where the denominator is not zero
- Since the numerator is not zero, while the denominator is zero at  $x_0 = 3$ , this function is undefined at  $x_0 = 3$

-(10/24)

- The graph has a vertical asymptote at  $x_0 = 3$
- This means that no limit exists for r(x) at  $x_0 = 3$

Definition Examples of Limit

### **Examples of Limits**



Fact: Whenever you have a vertical asymptote at some  $x_0$ , then the limit fails to exist at that point

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(11/24)

・ロト ・四ト ・ヨト ・ヨト

6

| <b>Limits</b><br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|-------------------------------------------|---------------------------------|
| Examples of Limits                        | 7                               |

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"



| Limits     |
|------------|
| Continuity |
| Derivative |

-(12/24)

# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$





・ロト ・同ト ・ヨト ・ヨト

# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

• This function clearly has the limit of 0 for any x < 0, and it has the limit of 1 for any x > 0

-(12/24)





# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

- This function clearly has the limit of 0 for any x < 0, and it has the limit of 1 for any x > 0
- Even though this function is defined to be 1 at x = 0, it does not have a limit at  $x_0 = 0$

-(12/24)



# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

- This function clearly has the limit of 0 for any x < 0, and it has the limit of 1 for any x > 0
- Even though this function is defined to be 1 at x = 0, it does not have a limit at  $x_0 = 0$ 
  - If you take some "small" interval about the proposed limit of 1, say  $\epsilon = 0.1$ , then all values of x near 0 must have H(x) between 0.9 and 1.1

-(12/24)

(日) (四) (日) (日) (日)



# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

- This function clearly has the limit of 0 for any x < 0, and it has the limit of 1 for any x > 0
- Even though this function is defined to be 1 at x = 0, it does not have a limit at  $x_0 = 0$ 
  - If you take some "small" interval about the proposed limit of 1, say  $\epsilon = 0.1$ , then all values of x near 0 must have H(x) between 0.9 and 1.1
  - But take any "small" negative x and H(x) = 0, which is not in the desired given interval

-(12/24)

(日) (四) (日) (日) (日)



# Examples of Limits

**Example of Limits:** The Heaviside function is often used to specify when something is "on" or "off"

The Heaviside function is defined as

$$H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

- This function clearly has the limit of 0 for any x < 0, and it has the limit of 1 for any x > 0
- Even though this function is defined to be 1 at x = 0, it does not have a limit at  $x_0 = 0$ 
  - If you take some "small" interval about the proposed limit of 1, say  $\epsilon = 0.1$ , then all values of x near 0 must have H(x) between 0.9 and 1.1
  - But take any "small" negative x and H(x) = 0, which is not in the desired given interval

-(12/24)

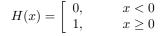
(日) (四) (日) (日) (日)

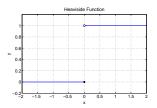
• Thus, no limit exists for H(x)

#### Limits Continuity Derivative Definition Examples of Limit

### Examples of Limits

For





**Perspective:** Whenever a **function is defined differently on different intervals** (like the Heaviside function), check the *x*-values where the function changes in definition to see if the function has a limit at these *x*-values

-(13/24)

<日 > < 部 > < 문 > < 문 >

8

| Continuity         | Definition        |
|--------------------|-------------------|
| Derivative         | Examples of Limit |
| Examples of Limits | 9                 |

-(14/24)

**Example of Limits:** Consider  $f(x) = \sqrt{x}$ 



|                    | Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |   |
|--------------------|------------------------------------|---------------------------------|---|
| Examples of Limits |                                    |                                 | 9 |

**Example of Limits:** Consider  $f(x) = \sqrt{x}$ 

• Find the limit as x approaches 0, if it exists



Joseph M. Mahaffy,  $\langle mahaffy@math.sdsu.edu \rangle$ 

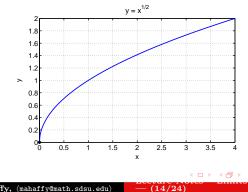


Examples of Limit

# **Examples of Limits**

**Example of Limits:** Consider  $f(x) = \sqrt{x}$ 

- Find the limit as x approaches 0, if it exists
- This function is not defined for x < 0, so it cannot have a limit at x = 0, though it is said to have a right-handed limit



| Limits<br>Continuity<br>Derivative | Definition<br>Examples of Limit |
|------------------------------------|---------------------------------|
| Summary of Limits                  |                                 |

-(15/24)

**Summary of Limits:** 



 
 Limits Continuity Derivative
 Definition Examples of Limit

 Summary of Limits

### **Summary of Limits:**

• Most of the functions in this course examine have limits

-(15/24)



Limits Continuity Derivative Definition Examples of Limit

### Summary of Limits

### **Summary of Limits:**

- Most of the functions in this course examine have limits
- Continuous portions of a function have limits

 $\exists \rightarrow$ 

< 注→

# Summary of Limits

### **Summary of Limits:**

• Most of the functions in this course examine have limits

-(15/24)

- Continuous portions of a function have limits
- Limits fail to exist at points  $x_0$

# Summary of Limits

### **Summary of Limits:**

• Most of the functions in this course examine have limits

-(15/24)

- Continuous portions of a function have limits
- Limits fail to exist at points  $x_0$ 
  - At a vertical asymptote

# Summary of Limits

### **Summary of Limits:**

- Most of the functions in this course examine have limits
- Continuous portions of a function have limits
- Limits fail to exist at points  $x_0$ 
  - At a vertical asymptote
  - When the function is defined differently on different intervals

-(15/24)

・ 同 ト ・ ヨ ト ・ ヨ ト

# Summary of Limits

### **Summary of Limits:**

- Most of the functions in this course examine have limits
- Continuous portions of a function have limits
- Limits fail to exist at points  $x_0$ 
  - At a vertical asymptote
  - When the function is defined differently on different intervals

-(15/24)

• Special cases like the square root function



# Continuity

### Continuity

• Closely connected to the concept of a limit is that of continuity

-(16/24)



# Continuity

### Continuity

- Closely connected to the concept of a limit is that of continuity
- Intuititvely, the idea of a continuous function is what you would expect

# Continuity

### Continuity

- Closely connected to the concept of a limit is that of continuity
- Intuititvely, the idea of a continuous function is what you would expect
  - If you can draw the function without lifting your pencil, then the function is continuous

-(16/24)

・ 同 ト ・ ヨ ト ・ ヨ ト

# Continuity

### Continuity

- Closely connected to the concept of a limit is that of continuity
- Intuititvely, the idea of a continuous function is what you would expect
  - If you can draw the function without lifting your pencil, then the function is continuous
- Most practical examples use functions that are continuous or at most have a few points of discontinuity

-(16/24)

(ロ) (日) (日) (日) (日)

# Continuity

### Continuity

- Closely connected to the concept of a limit is that of continuity
- Intuititvely, the idea of a continuous function is what you would expect
  - If you can draw the function without lifting your pencil, then the function is continuous
- Most practical examples use functions that are continuous or at most have a few points of discontinuity

**Definition:** A function f(x) is **continuous** at a point  $x_0$  if the limit exists at  $x_0$  and is equal to  $f(x_0)$ 

**Examples of Continuity** 

-(17/24)

### Continuity in Examples

Example 3: For

$$r(x) = \frac{x^2 - x - 6}{x - 3}$$



Joseph M. Mahaffy,  $\langle mahaffy@math.sdsu.edu \rangle$ 

1

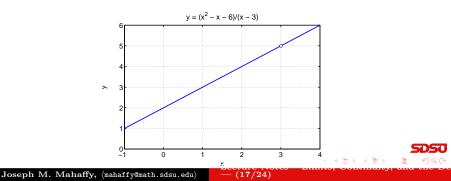
**Examples of Continuity** 

# Continuity in Examples

Example 3: For

$$r(x) = \frac{x^2 - x - 6}{x - 3}$$

• Though the limit exists at  $x_0 = 3$ , the function is not continuous there (function not defined at x = 3)



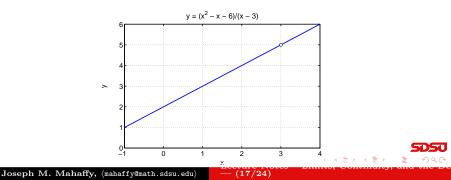
1

# Continuity in Examples

Example 3: For

$$r(x) = \frac{x^2 - x - 6}{x - 3}$$

- Though the limit exists at  $x_0 = 3$ , the function is not continuous there (function not defined at x = 3)
- This function is continuous at all other points,  $x \neq 3$



### Continuity in Examples

Examples 4 and 6: For

$$f(x) = \frac{1}{x^2} \quad \text{and} \quad H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$$

-(18/24)



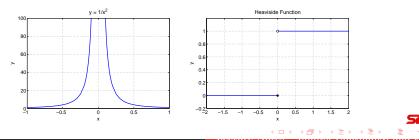
Joseph M. Mahaffy,  $\langle mahaffy@math.sdsu.edu \rangle$ 

# Continuity in Examples

Examples 4 and 6: For

$$f(x) = \frac{1}{x^2}$$
 and  $H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$ 

• These functions are not continuous at  $x_0 = 0$ 



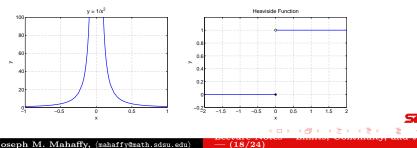
-(18/24)

# Continuity in Examples

Examples 4 and 6: For

$$f(x) = \frac{1}{x^2}$$
 and  $H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$ 

- These functions are not continuous at  $x_0 = 0$ ۲
- These functions are continuous at all other points,  $x \neq 0$ ٩



-(19/24)

# Comparing Limits and Continuity

#### Example:

Below is a graph of a function, f(x), that is defined  $x \in [-2, 2]$ , except at x = 0

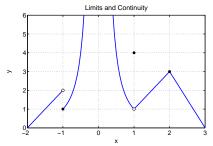


・ロト ・同ト ・ヨト ・ヨト

# Comparing Limits and Continuity

#### Example:

Below is a graph of a function, f(x), that is defined  $x \in [-2, 2]$ , except at x = 0

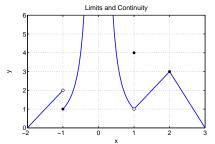


-(19/24)

# Comparing Limits and Continuity

#### Example:

Below is a graph of a function, f(x), that is defined  $x \in [-2, 2]$ , except at x = 0

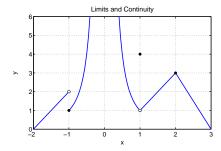


-(19/24)

Difficulties with this function occur at integer values

**Examples of Continuity** 

# Comparing Limits and Continuity



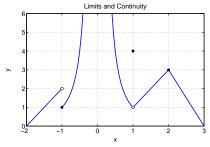
-(20/24)

At x = -1, the function has the value f(-1) = 1

**Examples of Continuity** 

<ロ> (日) (日) (日) (日) (日)

# Comparing Limits and Continuity



At x = -1, the function has the value f(-1) = 1

The function is not continuous nor does a limit exist at this point

(20/24)

**Examples of Continuity** 

 $\exists \rightarrow$ 

< A >

(20/24)

# Comparing Limits and Continuity

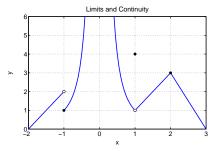


At x = 0, the function is not defined

**Examples of Continuity** 

ъ

## Comparing Limits and Continuity



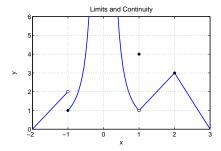
(20/24)

At x = 0, the function is not defined

There is a vertical asymptote

**Examples of Continuity** 

## Comparing Limits and Continuity



-(20/24)

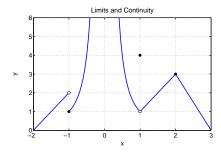
At x = 1, the function has the value f(1) = 4

**Examples of Continuity** 

<**1**₽ ► < **2** ►

 $\exists \rightarrow$ 

### Comparing Limits and Continuity



At x = 1, the function has the value f(1) = 4

The function is not continuous, but the limit exists with

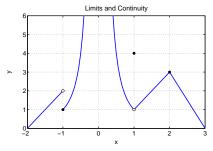
$$\lim_{x \to 1} f(x) = 1$$

(20/24)

**Examples of Continuity** 

・ロト ・同ト ・ヨト ・ヨト

### Comparing Limits and Continuity



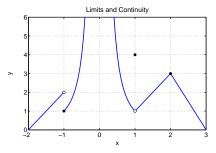
At x = 2, the function is continuous with f(2) = 3, which also means that the limit exists

-(20/24)

**Examples of Continuity** 

ъ

## Comparing Limits and Continuity

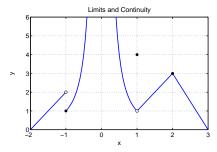


At all non-integer values of x the function is continuous (hence its limit exists)

(20/24)

**Examples of Continuity** 

## Comparing Limits and Continuity



At all non-integer values of x the function is continuous (hence its limit exists)

We will see that the derivative only exists at these non-integer values of  $\boldsymbol{x}$ 

(20/24)



#### Derivative

• The primary reason for the discussion above is for the proper definition of the derivative

-(21/24)



 $\exists \rightarrow$ 

## Derivative

### Derivative

- The primary reason for the discussion above is for the proper definition of the derivative
- The derivative at a point on a curve is the slope of the tangent line at that point

-(21/24)

## Derivative

### Derivative

- The primary reason for the discussion above is for the proper definition of the derivative
- The derivative at a point on a curve is the slope of the tangent line at that point
- This motivation is what underlies the definition given below

-(21/24)

・ロト ・日ト ・ヨト・

## Derivative

### Derivative

- The primary reason for the discussion above is for the proper definition of the derivative
- The derivative at a point on a curve is the slope of the tangent line at that point
- This motivation is what underlies the definition given below

**Definition:** The **derivative of a function** f(x) at a point  $x_0$  is denoted  $f'(x_0)$  and satisfies

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

-(21/24)

provided this limit exists

|                     | Limits<br>Continuity<br>Derivative | Examples of a derivative |
|---------------------|------------------------------------|--------------------------|
| Derivative of $x^2$ |                                    |                          |

**Example:** Use the definition to find the derivative of

 $f(x) = x^2$ 

-(22/24)



# $\begin{array}{c|c} & \text{Limits} \\ \hline \text{Continuity} \\ \hline \text{Derivative} \end{array} \quad \textbf{Examples of a derivative} \\ \hline \text{Derivative of } x^2 \end{array}$

**Example:** Use the definition to find the derivative of

$$f(x) = x^2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

-(22/24)

# $\begin{array}{c|c} & \text{Limits} \\ \hline \text{Continuity} \\ \hline \text{Derivative} \end{array} \quad \text{Examples of a derivative} \\ \hline \text{Derivative of } x^2 \end{array}$

**Example:** Use the definition to find the derivative of

$$f(x) = x^2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
  
= 
$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

-(22/24)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ĵ

# $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Limits} \\ \text{Continuity} \\ \text{Derivative} \end{array} \end{array} \quad \text{Examples of a derivative} \\ \end{array}$

**Example:** Use the definition to find the derivative of

$$f(x) = x^2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
  
= 
$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
  
= 
$$\lim_{h \to 0} \frac{2xh + h^2}{h}$$

-(22/24)

# $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Limits} \\ \text{Continuity} \\ \text{Derivative} \end{array} \end{array} \quad \text{Examples of a derivative} \\ \end{array}$

**Example:** Use the definition to find the derivative of

$$f(x) = x^2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
  
= 
$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
  
= 
$$\lim_{h \to 0} \frac{2xh + h^2}{h}$$
  
= 
$$\lim_{h \to 0} (2x+h)$$

-(22/24)

# $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Limits} \\ \text{Continuity} \\ \text{Derivative} \end{array} \end{array} \quad \text{Examples of a derivative} \\ \end{array}$

**Example:** Use the definition to find the derivative of

$$f(x) = x^2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
=  $\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$   
=  $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$   
=  $\lim_{h \to 0} \frac{2xh + h^2}{h}$   
=  $\lim_{h \to 0} (2x+h)$   
=  $2x$ 

-(22/24)



## Derivative of f(x) = 1/(x+2)

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

-(23/24)





(日) (四) (日) (日) (日)

-(23/24)

## Derivative of f(x) = 1/(x+2)

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h}$$



## Derivative of f(x) = 1/(x+2)

Ĵ

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h} \\ = \lim_{h \to 0} \frac{(x+2) - (x+h+2)}{h(x+2+h)(x+2)}$$

-(23/24)

<ロ> < 回 > < 回 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < つ </p>



(日) (四) (日) (日) (日)

## Derivative of f(x) = 1/(x+2)

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h}$$

$$= \lim_{h \to 0} \frac{(x+2) - (x+h+2)}{h(x+2+h)(x+2)}$$

$$= \lim_{h \to 0} \frac{-h}{h(x+2+h)(x+2)}$$

-(23/24)



(日) (四) (日) (日) (日)

## Derivative of f(x) = 1/(x+2)

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

$$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h}$$

$$= \lim_{h \to 0} \frac{(x+2) - (x+h+2)}{h(x+2+h)(x+2)}$$

$$= \lim_{h \to 0} \frac{-h}{h(x+2+h)(x+2)}$$

$$= \lim_{h \to 0} \frac{-1}{(x+2+h)(x+2)}$$

-(23/24)



## Derivative of f(x) = 1/(x+2)

f

**Example:** Use the definition to find the derivative of

$$f(x) = \frac{1}{x+2}, \qquad x \neq -2$$

$$'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h}$$

$$= \lim_{h \to 0} \frac{(x+2) - (x+h+2)}{h(x+2+h)(x+2)}$$

$$= \lim_{h \to 0} \frac{-h}{h(x+2+h)(x+2)}$$

$$= \lim_{h \to 0} \frac{-1}{(x+2+h)(x+2)}$$

$$= \frac{-1}{(x+2)^2}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(23/24)

|             | Limits<br>Continuity<br>Derivative | Examples of a derivative |
|-------------|------------------------------------|--------------------------|
| Derivatives |                                    |                          |

• Clearly, we do not want to use this formula every time we need to compute a derivative

-(24/24)



|             | Limits<br>Continuity<br>Derivative | Examples of a derivative |
|-------------|------------------------------------|--------------------------|
| Derivatives |                                    |                          |

- Clearly, we do not want to use this formula every time we need to compute a derivative
- Much of the remainder of this course will be learning easier ways to take the derivative

-(24/24)

- A IB M A IB M

|            | Limits<br>Continuity<br>Derivative | Examples of a derivative |
|------------|------------------------------------|--------------------------|
| erivatives |                                    |                          |

- Clearly, we do not want to use this formula every time we need to compute a derivative
- Much of the remainder of this course will be learning easier ways to take the derivative

-(24/24)

• In Lab, a very easy way to find derivatives is using the Maple diff command