

5050

Examples of Limit

Examples of Limits

For

Limits Continuity

Derivative

Perspective: Whenever a **function is defined differently on different intervals** (like the Heaviside function), check the *x*-values where the function changes in definition to see if the function has a limit at these *x*-values

SDSU

8

Examples of Limits

Example of Limits: Consider $f(x) = \sqrt{x}$

- Find the limit as x approaches 0, if it exists
- This function is not defined for x < 0, so it cannot have a limit at x = 0, though it is said to have a right-handed limit

SDSU

9

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) $-(13/24)$	Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (14/24)$
Limits Continuity DerivativeDefinition Examples of LimitSummary of Limits	Continuity Derivative Continuity Derivative
 Summary of Limits: Most of the functions in this course examine have limits Continuous portions of a function have limits Limits fail to exist at points x₀ At a vertical asymptote When the function is defined differently on different intervals Special cases like the square root function 	 Continuity Closely connected to the concept of a limit is that of continuity Intuitively, the idea of a continuous function is what you would expect If you can draw the function without lifting your pencil, then the function is continuous Most practical examples use functions that are continuous or at most have a few points of discontinuity Definition: A function f(x) is continuous at a point x₀ if the limit exists at x₀ and is equal to f(x₀)

5050

Continuity in Examples

Example 3: For

$$r(x) = \frac{x^2 - x - 6}{x - 3}$$

- Though the limit exists at $x_0 = 3$, the function is not continuous there (function not defined at x = 3)
- This function is continuous at all other points, $x \neq 3$

Example:

Below is a graph of a function, f(x), that is defined $x \in [-2, 2]$, except at x = 0

Difficulties with this function occur at integer values

5050

Continuity in Examples

Examples 4 and 6: For

$$f(x) = \frac{1}{x^2}$$
 and $H(x) = \begin{bmatrix} 0, & x < 0\\ 1, & x \ge 0 \end{bmatrix}$

- These functions are not continuous at $x_0 = 0$
- These functions are continuous at all other points, $x \neq 0$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Continuity Derivative

Examples of Continuity

-(18/24)

SDSU

Comparing Limits and Continuity

At x = -1, the function has the value f(-1) = 1

The function is not continuous nor does a limit exist at this point At x = 0, the function is not defined

There is a vertical asymptote At x = 1, the function has the value f(1) = 4

The function is not continuous, but the limit exists with

$$\lim_{x \to 1} f(x) = 1$$

At x = 2, the function is continuous with f(2) = 3, which also means that the limit exists

At all non-integer values of x the function is continuous (hence its limit exists)

We will see that the derivative only exists at these non-integer values of x

Limits Continuity Examples of a derivative Derivative

Derivative

Derivative

- The primary reason for the discussion above is for the proper definition of the derivative
- The derivative at a point on a curve is the slope of the tangent line at that point
- This motivation is what underlies the definition given below

Definition: The **derivative of a function** f(x) at a point x_0 is denoted $f'(x_0)$ and satisfies

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists

SDSU

Derivative of x^2

Example: Use the definition to find the derivative of

Limits Continuity Derivative

 $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$
$$= \lim_{h \to 0} (2x+h)$$
$$= 2x$$

SDSU

Declare Avoids - Diminist Convention and the De-	Becture Notes - Emilion Continuity, and the De
Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle - (21/24)$	$\textbf{Joseph M. Mahaffy}, \langle \texttt{mahaffy@math.sdsu.edu} \rangle \qquad - (22/24)$
$\begin{array}{c} \begin{tabular}{c} \textbf{Limits} \\ \hline \textbf{Continuity} \\ \hline \textbf{Derivative} \end{array} \end{tabular} tabular$	Limits Continuity DerivativeExamples of a derivativeDerivatives
Example: Use the definition to find the derivative of $f(x) = \frac{1}{x+2}, \qquad x \neq -2$	e Clearly we do not wort to use this formula successions we
$f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h+2} - \frac{1}{x+2}}{h}$ = $\lim_{h \to 0} \frac{(x+2) - (x+h+2)}{h(x+2+h)(x+2)}$ = $\lim_{h \to 0} \frac{-h}{h(x+2+h)(x+2)}$ = $\lim_{h \to 0} \frac{-1}{(x+2+h)(x+2)}$	 Clearly, we do not want to use this formula every time we need to compute a derivative Much of the remainder of this course will be learning easier ways to take the derivative In Lab, a very easy way to find derivatives is using the Maple diff command
$= \frac{-1}{(x+2)^2}$ Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) = (23/24)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (24/24)