Outline

Calculus for the Life Sciences I
 Lecture Notes－Limits，Continuity，and the Derivative

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2013

－Limits are central to Calculus
－Present definitions of limits，continuity，and derivative
－Sketch the formal mathematics for these definitions
－Graphically show these ideas
－Recall derivative is related to the slope of the tangent line
－Complete understanding of the definitions is beyond the scope of this course
（1）
Limits
－Definition
－Examples of Limit

Continuity
－Examples of Continuity
（3）
Derivative
－Examples of a derivative

Definition of Limit \begin{tabular}{c}
Limits

Continuity
Derivative

Definition

Examples of Limit
\end{tabular}

Definition of Limit

Limits－Conceptually，the limit of a function $f(x)$ at some point x_{0} simply means that if your value of x is very close to the value x_{0} ，then the function $f(x)$ stays very close to some particular value

Definition：The limit of a function $f(x)$ at some point x_{0} exists and is equal to L if and only if every＂small＂interval about the limit L ，say the interval（ $L-\epsilon, L+\epsilon$ ），means you can find a＂small＂interval about x_{0} ，say the interval（ $x_{0}-\delta, x_{0}+\delta$ ）， which has all values of $f(x)$ existing in the former＂small＂ interval about the limit L ，except possibly at x_{0} itself

Definition of Limit

Diagram for Definition of Limit

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Limits
Continuity

Definition
Examples of Limit

Examples of Limits

Example of Limits：Consider $r(x)=\frac{x^{2}-x-6}{x-3}$
－Find the limit as x approaches 1
－If x is not 3 ，then this rational function reduces to $r(x)=x+2$
－So as x approaches 1 ，this function simply goes to 3

Fact：Any rational function，$r(x)=\frac{p(x)}{q(x)}$ ，where $p(x)$ and $q(x)$ are polynomials with $q\left(x_{0}\right)$ not zero，then the limit exists with the limit being $r\left(x_{0}\right)$

Example of Limits：Consider $f(x)=\frac{1}{x^{2}}$

－Find the limit as x approaches 0 ，if it exists
－This function has a limit for any value of x_{0} where the denominator is not zero
－However，at $x_{0}=0$ ，this function is undefined
－Thus，the graph has a vertical asymptote at $x_{0}=0$
－This means that no limit exists for $f(x)$ at $x_{0}=0$

Fact：Whenever you have a vertical asymptote at some x_{0} ， then the limit fails to exist at that point

Example of Limits：Consider $r(x)=\frac{x^{2}-x-2}{x-3}$
－Find the limit as x approaches 3 ，if it exists
－This function has a limit for any value of x_{0} where the denominator is not zero
－Since the numerator is not zero，while the denominator is zero at $x_{0}=3$ ，this function is undefined at $x_{0}=3$
－The graph has a vertical asymptote at $x_{0}=3$
－This means that no limit exists for $r(x)$ at $x_{0}=3$

	Limits Continuity Derivative	Definition Examples of Limit	
Examples of Limits			7

Example of Limits：The Heaviside function is often used to specify when something is＂on＂or＂off＂

The Heaviside function is defined as

$$
H(x)=\left[\begin{array}{ll}
0, & x<0 \\
1, & x \geq 0
\end{array}\right.
$$

－This function clearly has the limit of 0 for any $x<0$ ，and it has the limit of 1 for any $x>0$
－Even though this function is defined to be 1 at $x=0$ ，it does not have a limit at $x_{0}=0$
－If you take some＂small＂interval about the proposed limit of 1 ，say $\epsilon=0.1$ ，then all values of x near 0 must have $H(x)$ between 0.9 and 1.1
－But take any＂small＂negative x and $H(x)=0$ ，which is not in the desired given interval
－Thus，no limit exists for $H(x)$

For

$$
H(x)=\left[\begin{array}{ll}
0, & x<0 \\
1, & x \geq 0
\end{array}\right.
$$

Perspective：Whenever a function is defined differently on different intervals（like the Heaviside function），check the x－values where the function changes in definition to see if the function has a limit at these x－values

Summary of Limits

Summary of Limits：

－Most of the functions in this course examine have limits
－Continuous portions of a function have limits
－Limits fail to exist at points x_{0}
－At a vertical asymptote
－When the function is defined differently on different intervals
－Special cases like the square root function

Example of Limits：Consider $f(x)=\sqrt{x}$
－Find the limit as x approaches 0 ，if it exists
－This function is not defined for $x<0$ ，so it cannot have a limit at $x=0$ ，though it is said to have a right－handed limit

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（14／24）

| Limits
 Continuity
 Derivative | Examples of Continuity | |
| :---: | :---: | :---: | :---: |
| Continuity | | |

Continuity

－Closely connected to the concept of a limit is that of continuity
－Intuititvely，the idea of a continuous function is what you would expect
－If you can draw the function without lifting your pencil， then the function is continuous
－Most practical examples use functions that are continuous or at most have a few points of discontinuity

Definition：A function $f(x)$ is continuous at a point x_{0} if the limit exists at x_{0} and is equal to $f\left(x_{0}\right)$

Continuity in Examples

Example 3：For

$$
r(x)=\frac{x^{2}-x-6}{x-3}
$$

－Though the limit exists at $x_{0}=3$ ，the function is not continuous there（function not defined at $x=3$ ）
－This function is continuous at all other points，$x \neq 3$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

> Limits Continuity

Continuity
Derivative

Comparing Limits and Continuity

Example：

Below is a graph of a function，$f(x)$ ，that is defined $x \in[-2,2]$ ， except at $x=0$

Difficulties with this function occur at integer values

Derivative

Derivative

－The primary reason for the discussion above is for the proper definition of the derivative
－The derivative at a point on a curve is the slope of the tangent line at that point
－This motivation is what underlies the definition given below
Definition：The derivative of a function $f(x)$ at a point x_{0} is denoted $f^{\prime}\left(x_{0}\right)$ and satisfies

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided this limit exists

Example：Use the definition to find the derivative of

$$
\begin{aligned}
f(x) & =\frac{1}{x+2}, \quad x \neq-2 \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h+2}-\frac{1}{x+2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+2)-(x+h+2)}{h(x+2+h)(x+2)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x+2+h)(x+2)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x+2+h)(x+2)} \\
& =\frac{-1}{(x+2)^{2}}
\end{aligned}
$$

－Clearly，we do not want to use this formula every time we need to compute a derivative
－Much of the remainder of this course will be learning easier ways to take the derivative
－In Lab，a very easy way to find derivatives is using the Maple diff command

5050
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（22／24）

Derivative

Derivatives

Example：Use the definition to find the derivative of

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

