Calculus for the Life Sciences I

Lecture Notes－Introduction to the Derivative

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

$$
\text { Spring } 2013
$$

Outline

(1) Introduction to the Derivative
(2) Derivative as a Growth Rate

- Juvenile Height
- Yeast Population Growth
(3) Derivative as a Velocity
- Trotting Horse
- Falling under Gravity

Introduction to the Derivative

Introduction to the Derivative

Introduction to the Derivative

- The derivative is very important to Calculus

Introduction to the Derivative

Introduction to the Derivative

Introduction to the Derivative

- The derivative is very important to Calculus
- How to view the Derivative

Introduction to the Derivative

Introduction to the Derivative

Introduction to the Derivative

－The derivative is very important to Calculus
－How to view the Derivative
－Rate of Growth

Introduction to the Derivative

Introduction to the Derivative

－The derivative is very important to Calculus
－How to view the Derivative
－Rate of Growth
－Velocity

Introduction to the Derivative

Introduction to the Derivative

- The derivative is very important to Calculus
- How to view the Derivative
- Rate of Growth
- Velocity
- Geometric view: The Tangent Line

Introduction to the Derivative

Juvenile Height

Graph of the heights of girls and boys ages 0 to 18 Juvenile Height

Introduction to the Derivative

Juvenile Height

- The rate of growth is the slope of the line through the data

Introduction to the Derivative

Juvenile Height

- The rate of growth is the slope of the line through the data
- The earliest years show a high rate of growth

Introduction to the Derivative

Juvenile Height

- The rate of growth is the slope of the line through the data
- The earliest years show a high rate of growth
- Over a wide range of ages, the rate of growth is almost constant

Introduction to the Derivative

Juvenile Height

－The rate of growth is the slope of the line through the data
－The earliest years show a high rate of growth
－Over a wide range of ages，the rate of growth is almost constant
－The later years show the growth rate slowing

Introduction to the Derivative

Juvenile Height

- The rate of growth is the slope of the line through the data
- The earliest years show a high rate of growth
- Over a wide range of ages, the rate of growth is almost constant
- The later years show the growth rate slowing
- Growth rate is the difference in heights divided by the difference in time measured in years

Introduction to the Derivative

Juvenile Height

－The rate of growth is the slope of the line through the data
－The earliest years show a high rate of growth
－Over a wide range of ages，the rate of growth is almost constant
－The later years show the growth rate slowing
－Growth rate is the difference in heights divided by the difference in time measured in years
－The growth rate $g(t)$ is approximated by the formula

$$
g\left(t_{0}\right)=\frac{h\left(t_{1}\right)-h\left(t_{0}\right)}{t_{1}-t_{0}}
$$

where t_{0} and t_{1} are successive ages with heights $h\left(t_{0}\right)$ and $h\left(t_{1}\right)$

Introduction to the Derivative Derivative as a Velocity

Juvenile Height

Growth Rate for Children

Girls age from 2 to 3

Age (years)	Height (cm)	Annual Growth Rate (cm/yr)
$t_{0}=2$	$h\left(t_{0}\right)=87$	
$t_{1}=3$	$h\left(t_{1}\right)=94$	$g(2)=\frac{h(3)-h(2)}{3-2}=7$

Juvenile Height

Growth Rate for Children

Girls age from 2 to 3

Age (years)	Height (cm)	Annual Growth Rate (cm/yr)
$t_{0}=2$	$h\left(t_{0}\right)=87$	
$t_{1}=3$	$h\left(t_{1}\right)=94$	$g(2)=\frac{h(3)-h(2)}{3-2}=7$

Boys age 3 months to 6 months

Age (years)	Height (cm)	Annual Growth Rate (cm/yr)
$t_{0}=0.25$ $(3 \mathrm{months})$	$h\left(t_{0}\right)=61$	
$t_{1}=0.5$ $(6$ months $)$	$h\left(t_{1}\right)=68$	$g(0.25)=\frac{h(0.5)-h(0.25)}{0.5-0.25}=28$

Introduction to the Derivative

Juvenile Height

Growth Rate for Children

Growth Rate for Juveniles

Juvenile Height

Growth Rate for Children

- The growth rate is higher for early years

Juvenile Height

Growth Rate for Children

- The growth rate is higher for early years
- Stays almost constant for many years

Juvenile Height

Growth Rate for Children

- The growth rate is higher for early years
- Stays almost constant for many years
- Drops almost to zero in the late teens

Yeast Population Growth

Growing Culture of Yeast - Carlson (1913)

Population in thousands/cc

Time	Population	Time	Population	Time	Population
1	9.6	7	174.6	13	594.8
2	18.3	8	257.3	14	629.4
3	29.0	9	350.7	15	640.8
4	47.2	10	441.0	16	651.1
5	71.1	11	513.3	17	655.9
6	119.1	12	559.7	18	659.6

Yeast Population Growth

Population of Yeast

Yeast Population Growth

Graph of Population of Yeast

- This graph exhibits what is classically called an S-shaped curve

Yeast Population Growth

Graph of Population of Yeast

－This graph exhibits what is classically called an S－shaped curve
－This shape occurs frequently in biologically models

Yeast Population Growth

Graph of Population of Yeast

－This graph exhibits what is classically called an S－shaped curve
－This shape occurs frequently in biologically models
－The growth rate for the population of yeast

Yeast Population Growth

Graph of Population of Yeast

- This graph exhibits what is classically called an S-shaped curve
- This shape occurs frequently in biologically models
- The growth rate for the population of yeast
- Slow for early hours

Yeast Population Growth

Graph of Population of Yeast

- This graph exhibits what is classically called an S-shaped curve
- This shape occurs frequently in biologically models
- The growth rate for the population of yeast
- Slow for early hours
- Increases to a maximum near 8 hours

Yeast Population Growth

Graph of Population of Yeast

－This graph exhibits what is classically called an S－shaped curve
－This shape occurs frequently in biologically models
－The growth rate for the population of yeast
－Slow for early hours
－Increases to a maximum near 8 hours
－Decreases and levels off as the population reaches its carrying capacity

Yeast Population Growth

Growth of the Population of Yeast
Define the population at each hour as $P(t)$

Yeast Population Growth

Growth of the Population of Yeast

Define the population at each hour as $P(t)$
The growth of the yeast for each hour is computed

$$
g\left(t_{n}\right)=\frac{P\left(t_{n+1}\right)-P\left(t_{n}\right)}{t_{n+1}-t_{n}}
$$

Yeast Population Growth

Growth of the Population of Yeast

Define the population at each hour as $P(t)$
The growth of the yeast for each hour is computed

$$
g\left(t_{n}\right)=\frac{P\left(t_{n+1}\right)-P\left(t_{n}\right)}{t_{n+1}-t_{n}}
$$

This is the slope of the curve computed between each of the data points

Introduction to the Derivative

Yeast Population Growth

Growth of the Population of Yeast

Yeast Population Growth

Growth of the Population of Yeast

－The growth graph shows the early slow growth，peaking at 8 hours，then decreasing toward zero

Yeast Population Growth

Growth of the Population of Yeast

- The growth graph shows the early slow growth, peaking at 8 hours, then decreasing toward zero
- With more data, the growth curve would be smoother

Yeast Population Growth

Growth of the Population of Yeast

－The growth graph shows the early slow growth，peaking at 8 hours，then decreasing toward zero
－With more data，the growth curve would be smoother
－It is very important to note that the graph of the yeast population and the graph of the growth of the yeast population are different graphs，but are related through the slope of the population graph

Yeast Population Growth

Growth of the Population of Yeast

－The growth graph shows the early slow growth，peaking at 8 hours，then decreasing toward zero
－With more data，the growth curve would be smoother
－It is very important to note that the graph of the yeast population and the graph of the growth of the yeast population are different graphs，but are related through the slope of the population graph
－The Derivative will be the instantaneous growth rate at any time for any population curve

Example－Growth of a Puppy

Developing his Project Calculus course，David Smith measured the growth of his Golden Retriever puppy，Sassafras

Age（days）	Weight（lbs）	Age（days）	Weight（lbs）
0	3.25	101	30
10	4.25	115	37
20	5.5	150	54
30	7	195	65
40	9	230	70
50	11.5	332	75
60	15	436	77
70	19		

Skip Example

Example - Growth of a Puppy

Find the average weekly growth rate of the puppy over the first 10 weeks

Example - Growth of a Puppy

Find the average weekly growth rate of the puppy over the first 10 weeks

Solution: 10 weeks is equivalent to 70 days
The weight at day 0 is 3.25 lbs , while its 19 lbs at 10 weeks

Example - Growth of a Puppy

Find the average weekly growth rate of the puppy over the first 10 weeks

Solution: 10 weeks is equivalent to 70 days
The weight at day 0 is 3.25 lbs , while its 19 lbs at 10 weeks
The average growth rate is

$$
g_{a v e}=\frac{19-3.25}{10}=1.575 \mathrm{lb} / \text { week }
$$

Example - Growth of a Puppy

Find the average weekly growth rate of the puppy over the first 10 weeks

Solution: 10 weeks is equivalent to 70 days
The weight at day 0 is 3.25 lbs , while its 19 lbs at 10 weeks
The average growth rate is

$$
g_{a v e}=\frac{19-3.25}{10}=1.575 \mathrm{lb} / \text { week }
$$

Estimate the weekly growth rate of the puppy at age 10 weeks using the data at 70 and 101 days

Example－Growth of a Puppy

Find the average weekly growth rate of the puppy over the first 10 weeks

Solution： 10 weeks is equivalent to 70 days
The weight at day 0 is 3.25 lbs ，while its 19 lbs at 10 weeks
The average growth rate is

$$
g_{a v e}=\frac{19-3.25}{10}=1.575 \mathrm{lb} / \text { week }
$$

Estimate the weekly growth rate of the puppy at age 10 weeks using the data at 70 and 101 days

Solution：The weekly growth rate at 10 weeks satisfies

$$
g_{a v e}=\frac{30-19}{(101-70) / 7}=2.48 \mathrm{lb} / \text { week }
$$

Example - Growth of a Puppy

What is the weekly growth rate between days 230 and $436 ?$

Example - Growth of a Puppy

What is the weekly growth rate between days 230 and $436 ?$
Solution: The weekly growth rate between 230 and 436 days satisfies

$$
\frac{77-70}{(436-230) / 7}=0.238 \mathrm{lb} / \text { week }
$$

Example - Growth of a Puppy

What is the weekly growth rate between days 230 and $436 ?$
Solution: The weekly growth rate between 230 and 436 days satisfies

$$
\frac{77-70}{(436-230) / 7}=0.238 \mathrm{lb} / \text { week }
$$

The growth rate increases for several weeks, then slows down as the puppy matures

Example－Growth of a Puppy

What is the weekly growth rate between days 230 and $436 ?$
Solution：The weekly growth rate between 230 and 436 days satisfies

$$
\frac{77-70}{(436-230) / 7}=0.238 \mathrm{lb} / \text { week }
$$

The growth rate increases for several weeks，then slows down as the puppy matures

Once again，the growth curve for the weight of a puppy gives a typical S－shaped curve

Derivative as a Velocity

Derivative as a Velocity

－Differential Calculus－developed in the $17^{\text {th }}$ century by Sir Isaac Newton and Gottfried Leibnitz to explain the physics of motion

Derivative as a Velocity

Derivative as a Velocity

－Differential Calculus－developed in the $17^{\text {th }}$ century by Sir Isaac Newton and Gottfried Leibnitz to explain the physics of motion
－Velocity of an object is the change in distance divided by the change in time

Derivative as a Velocity

Derivative as a Velocity

- Differential Calculus - developed in the $17^{t h}$ century by Sir Isaac Newton and Gottfried Leibnitz to explain the physics of motion
- Velocity of an object is the change in distance divided by the change in time
- If we travel 200 ft in 10 sec , then we had an average velocity of $20 \mathrm{ft} / \mathrm{sec}$

Trotting Horses

Eadweard Muybridge - Trotting Horse

Trotting Horses

Eadweard Muybridge－Trotting Horse

－In the 1800s，there was a controversy whether or not a trotting horse ever had all feet off of the ground

Trotting Horses

Eadweard Muybridge－Trotting Horse

－In the 1800s，there was a controversy whether or not a trotting horse ever had all feet off of the ground
－Photographer Eadweard Muybridge developed some special photographic techniques for viewing animals and humans in motion by collecting timed sequences of still pictures

Trotting Horses

Eadweard Muybridge－Trotting Horse

－In the 1800s，there was a controversy whether or not a trotting horse ever had all feet off of the ground
－Photographer Eadweard Muybridge developed some special photographic techniques for viewing animals and humans in motion by collecting timed sequences of still pictures
－Viewed in succession with the same intervening times， these pictures produce an animation of motion，which was a precursor to modern motion pictures

Introduction to the Derivative
Derivative as a Growth Rate Derivative as a Velocity

Trotting Horses

Eadweard Muybridge－Trotting Horse

Introduction to the Derivative

Trotting Horses

Trotting Horse Falling under Gravity

Were all feet off the ground at any time?

Trotting Horses

Were all feet off the ground at any time?

How fast is the horse trotting?

Trotting Horses

Were all feet off the ground at any time?

How fast is the horse trotting?

- Often want to determine how fast a particular animal is running or a bird flying

Trotting Horses

Were all feet off the ground at any time?

How fast is the horse trotting?

- Often want to determine how fast a particular animal is running or a bird flying
- How do you determine the speed of a cheetah or the velocity of a peregrine falcon?

Trotting Horses

Were all feet off the ground at any time?

How fast is the horse trotting?

- Often want to determine how fast a particular animal is running or a bird flying
- How do you determine the speed of a cheetah or the velocity of a peregrine falcon?
- Above sequence of pictures has units of distance (ft) marked in the background and units of time on each frame

Trotting Horses

Were all feet off the ground at any time？

How fast is the horse trotting？
－Often want to determine how fast a particular animal is running or a bird flying
－How do you determine the speed of a cheetah or the velocity of a peregrine falcon？
－Above sequence of pictures has units of distance（ft） marked in the background and units of time on each frame
－Start by choosing a reference point，say the man＇s head

Trotting Horses

Trotting Horse Speed

The position at $t_{0}=0 \mathrm{sec}$, satisfies $s\left(t_{0}\right)=3.5 \mathrm{ft}$, while at $t_{1}=0.04 \mathrm{sec}$, the head is at $s\left(t_{1}\right)=4.5 \mathrm{ft}$

Introduction to the Derivative

Trotting Horses

Trotting Horse Speed

The position at $t_{0}=0 \mathrm{sec}$, satisfies $s\left(t_{0}\right)=3.5 \mathrm{ft}$, while at $t_{1}=0.04 \mathrm{sec}$, the head is at $s\left(t_{1}\right)=4.5 \mathrm{ft}$

$$
v\left(t_{0}\right)=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{4.5-3.5}{0.04-0}=25 \mathrm{ft} / \mathrm{sec}=17.0 \mathrm{mph}
$$

Trotting Horses

Trotting Horse Speed

The position at $t_{0}=0 \mathrm{sec}$, satisfies $s\left(t_{0}\right)=3.5 \mathrm{ft}$, while at $t_{1}=0.04 \mathrm{sec}$, the head is at $s\left(t_{1}\right)=4.5 \mathrm{ft}$

$$
v\left(t_{0}\right)=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{4.5-3.5}{0.04-0}=25 \mathrm{ft} / \mathrm{sec}=17.0 \mathrm{mph}
$$

At $t_{2}=0.08 \mathrm{sec}$, the head is at $s\left(t_{2}\right)=5.6 \mathrm{ft}$, so the velocity satisfies

$$
v\left(t_{1}\right)=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{5.6-4.5}{0.08-0.04}=27.5 \mathrm{ft} / \mathrm{sec}=18.75 \mathrm{mph}
$$

Trotting Horses

Trotting Horse Speed

The position at $t_{0}=0 \mathrm{sec}$, satisfies $s\left(t_{0}\right)=3.5 \mathrm{ft}$, while at $t_{1}=0.04 \mathrm{sec}$, the head is at $s\left(t_{1}\right)=4.5 \mathrm{ft}$

$$
v\left(t_{0}\right)=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{4.5-3.5}{0.04-0}=25 \mathrm{ft} / \mathrm{sec}=17.0 \mathrm{mph}
$$

At $t_{2}=0.08 \mathrm{sec}$, the head is at $s\left(t_{2}\right)=5.6 \mathrm{ft}$, so the velocity satisfies

$$
v\left(t_{1}\right)=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{5.6-4.5}{0.08-0.04}=27.5 \mathrm{ft} / \mathrm{sec}=18.75 \mathrm{mph}
$$

This is approximately the same

Trotting Horses

Trotting Horse Average Speed

The average velocity for the entire sequence of pictures gives the best average velocity for this trotting horse

Trotting Horses

Trotting Horse Average Speed

The average velocity for the entire sequence of pictures gives the best average velocity for this trotting horse

It is computed by taking the initial and final positions of the head and dividing by the total time between the frames

Trotting Horses

Trotting Horse Average Speed

The average velocity for the entire sequence of pictures gives the best average velocity for this trotting horse

It is computed by taking the initial and final positions of the head and dividing by the total time between the frames

$$
v\left(t_{a v e}\right)=\frac{s\left(t_{f}\right)-s\left(t_{0}\right)}{t_{f}-t_{0}}=\frac{11.5-3.5}{0.32-0}=25.0 \mathrm{ft} / \mathrm{sec}=17.05 \mathrm{mph}
$$

Thus, the velocity is relatively constant over the short time interval of the pictures

Introduction to the Derivative

Trotting Horses

More details

Trotting Horses

More details

- What if the question asked the velocity of the right front foot?

Trotting Horse

Trotting Horses

More details

- What if the question asked the velocity of the right front foot?
- Does the right front hoof stop or move backward at any time?

Trotting Horses

More details

- What if the question asked the velocity of the right front foot?
- Does the right front hoof stop or move backward at any time?
- Current sequence of pictures is inadequate

Trotting Horses

More details

－What if the question asked the velocity of the right front foot？
－Does the right front hoof stop or move backward at any time？
－Current sequence of pictures is inadequate
－How would you answer this question？

Trotting Horses

More details

－What if the question asked the velocity of the right front foot？
－Does the right front hoof stop or move backward at any time？
－Current sequence of pictures is inadequate
－How would you answer this question？
－Probably want many more pictures at smaller time intervals

Trotting Horses

More details

－What if the question asked the velocity of the right front foot？
－Does the right front hoof stop or move backward at any time？
－Current sequence of pictures is inadequate
－How would you answer this question？
－Probably want many more pictures at smaller time intervals
－This is the limiting process we will undertake to find the derivative

Example－Ball Falling under the Influence of Gravity

A Ball Falling under the Influence of Gravity
A steel ball is dropped from a height of 4 meters and has its height measured every 0.1 seconds

Example -Ball Falling under the Influence of Gravity

A Ball Falling under the Influence of Gravity

A steel ball is dropped from a height of 4 meters and has its height measured every 0.1 seconds

Time (sec)	Distance (cm)	Time (sec)	Distance (cm)
0	0	0.5	123
0.1	5	0.6	176
0.2	19	0.7	240
0.3	44	0.8	313
0.4	78	0.9	396

Falling under the Influence of Gravity

Find the average speed of the ball over the 0.9 seconds of the experiment

Falling under the Influence of Gravity

Find the average speed of the ball over the 0.9 seconds of the experiment

Solution:

$$
v_{\text {ave }}=\frac{396-0}{0.9-0}=440.0 \mathrm{~cm} / \mathrm{sec}
$$

Falling under the Influence of Gravity

Find the average speed of the ball over the 0.9 seconds of the experiment

Solution：

$$
v_{\text {ave }}=\frac{396-0}{0.9-0}=440.0 \mathrm{~cm} / \mathrm{sec}
$$

Determine the average speed of the ball between 0.5 and 0.7 seconds

Falling under the Influence of Gravity

Find the average speed of the ball over the 0.9 seconds of the experiment

Solution：

$$
v_{a v e}=\frac{396-0}{0.9-0}=440.0 \mathrm{~cm} / \mathrm{sec}
$$

Determine the average speed of the ball between 0.5 and 0.7 seconds

Solution：

$$
v_{\text {ave }}=\frac{240-123}{0.7-0.5}=585 \mathrm{~cm} / \mathrm{sec}
$$

Example - Sky Diving

A sky diver encounters a significant amount of air resistance when free falling (and more significantly when the parachute opens), so his speed will not match the parabolic curve characteristic of the Falling Ball

Time (sec)	Height (ft)	Time (sec)	Height (ft)
0	10,000	25	5,763
5	9,633	30	4,733
10	8,797	35	3,703
15	7,811	40	2,673
20	6,791	45	1,643

Skip Example

Introduction to the Derivative

Example - Sky Diving

Introduction to the Derivative

Example－Sky Diving

－Graph the Height vs．Time
－Compute the approximate velocity using the successive rows of the table

Introduction to the Derivative

Example－Sky Diving

－Graph the Height vs．Time
－Compute the approximate velocity using the successive rows of the table
－Graph the velocity curve

Introduction to the Derivative

Example - Sky Diving

- Graph the Height vs. Time
- Compute the approximate velocity using the successive rows of the table
- Graph the velocity curve
- What is the approximate velocity in miles per hour at 30 seconds into the fall?

Example－Sky Diving

－Graph the Height vs．Time
－Compute the approximate velocity using the successive rows of the table
－Graph the velocity curve
－What is the approximate velocity in miles per hour at 30 seconds into the fall？
－Can you estimate when the sky diver would hit the ground if the parachute failed to open？

Introduction to the Derivative

Example - Sky Diving

Solution: Graph the Height vs. Time

Introduction to the Derivative

Trotting Horse

Falling under Gravity

Example - Sky Diving

Solution: Compute the first two velocity points of the graph:

$$
\begin{aligned}
& v\left(t_{0}\right)=\frac{h\left(t_{1}\right)-h\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{9,633-10,000}{5-0}=-73.4 \mathrm{ft} / \mathrm{sec} \\
& v\left(t_{1}\right)=\frac{h\left(t_{2}\right)-h\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{8,797-9,633}{10-5}=-167.2 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Trotting Horse

Example - Sky Diving

Solution: Compute the first two velocity points of the graph:

$$
\begin{aligned}
& v\left(t_{0}\right)=\frac{h\left(t_{1}\right)-h\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{9,633-10,000}{5-0}=-73.4 \mathrm{ft} / \mathrm{sec} \\
& v\left(t_{1}\right)=\frac{h\left(t_{2}\right)-h\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{8,797-9,633}{10-5}=-167.2 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

The velocity at 30 seconds is

$$
v\left(t_{6}\right)=\frac{3703-4733}{35-30}=-206 \mathrm{ft} / \mathrm{sec}
$$

Introduction to the Derivative

Example - Sky Diving

Solution: Graph the velocity curve using calculations above

Introduction to the Derivative

Example - Sky Diving

Solution: The graph shows the velocity of the sky diver levels off shortly after 10 sec

Introduction to the Derivative

Example - Sky Diving

Solution: The graph shows the velocity of the sky diver levels off shortly after 10 sec

The terminal velocity is approximately the velocity at 30 sec or $v_{\text {term }}=-206 \mathrm{ft} / \mathrm{sec}$ (which is about -140.5 mph)

Example - Sky Diving

Solution: The graph shows the velocity of the sky diver levels off shortly after 10 sec

The terminal velocity is approximately the velocity at 30 sec or $v_{\text {term }}=-206 \mathrm{ft} / \mathrm{sec}$ (which is about -140.5 mph)

At 45 sec , the sky diver is at 1643 ft and traveling at $v_{\text {term }}$

Example - Sky Diving

Solution: The graph shows the velocity of the sky diver levels off shortly after 10 sec

The terminal velocity is approximately the velocity at 30 sec or $v_{\text {term }}=-206 \mathrm{ft} / \mathrm{sec}$ (which is about -140.5 mph)

At 45 sec , the sky diver is at 1643 ft and traveling at $v_{\text {term }}$
We get, time $=$ distance $/ v=1643 / 206=8.0$ sec to cover the remaining 1643 ft

Example - Sky Diving

Solution: The graph shows the velocity of the sky diver levels off shortly after 10 sec

The terminal velocity is approximately the velocity at 30 sec or $v_{\text {term }}=-206 \mathrm{ft} / \mathrm{sec}$ (which is about -140.5 mph)

At 45 sec , the sky diver is at 1643 ft and traveling at $v_{\text {term }}$
We get, time $=$ distance $/ v=1643 / 206=8.0 \mathrm{sec}$ to cover the remaining 1643 ft

Hence, the sky diver would fall for about $45+8=53 \mathrm{sec}$ if the parachute failed

