Outline

Calculus for the Life Sciences I
 Lecture Notes－Function Review

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Cente
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2013

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Lecture Notes－Function Review Transcription and Translation Linear Model for Rate of mRNA Synthesis Quadratic Function of Least Squares Best Fit

Rate of mRNA Synthesis

－DNA in E．coli provides the genetic code for all of the proteins
－DNA code used either for all aspects of the growth， maintenance，and reproduction of the cell
－The synthesis of proteins follows the processes of transcription and translation
－Proteins key for all cellular processes

（1）
Function Review
－Rate of mRNA Synthesis
－Transcription and Translation
－Linear Model for Rate of mRNA Synthesis
－Quadratic Function of Least Squares Best Fit

Definitions and Properties of Functions
－Definition of a Function
－Vertical Line Test
－Function Operations
－Composition of Functions
－Even and Odd Functions
－One－to－One Functions
－Inverse Functions

```
5050
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Lecture Notes－Function Review

\begin{abstract}
tate of mRNA Synthesis
\end{abstract}
```

Transcription and Translation
inear Model for Rate of mRNA Synthesis Quadratic Function of Least Squares Best Fit

```

\section*{Transcription}

\section*{Transcription of a bacterial gene}
－A controlled sequence of steps，RNA polymerase，reads genetic code and produces a complementary messenger RNA（mRNA）template
－The mRNA is a short－lived blueprint for the production of a specific protein with a particular activity


Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Definitions and Propertion Review Definitions and Properties of Functions

Rate of mRNA Synthesis Transcription and Translation Linear Model for Rate of mRNA Synthesis Quadratic Function of Least Squares Best Fit

\section*{Translation}

\section*{Translation of a bacterial mRNA}
－Begins shortly after transcription starts，with ribosomes reading the triplet codons on the mRNA
－Ribosome assembles a series of specific amino acids， forming a polypeptide
－Polypeptide probably folds passively into a tertiary structure which often combines with other proteins to become active or an enzyme


\section*{Linear Model for Rate of mRNA Synthesis}
－Instability of the mRNA implies its rate of production closely approximates the rate of growth of a cell
－The data lie almost on a straight line passing through the origin
－Linear mathematical model of the form
\[
r_{m}=a \mu
\]
for some value of \(a\)
－Want to find the best linear model by varying the slope，a

Function Review
Definitions and Properties of Functions

\section*{Rate of mRNA Synthesis}

\section*{Rate of mRNA Synthesis}
－The rate of growth of a bacterial cell depends on the rate at which it assembles all of its cellular components inside the cell
－The rate of production of different components inside the cell varies depending on the length of time it takes for a cell to double
－The table below shows the doublings／hr，\(\mu\) ，and the rate of mRNA synthesis（nucleotides \(/ \mathrm{min} /\) cell），\(r_{m} \times 10^{5}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(\mu\) & 0.6 & 1.0 & 1.5 & 2.0 & 2.5 \\
\hline\(r_{m}\) & 4.3 & 9.1 & 13 & 19 & 23 \\
\hline
\end{tabular}

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 Lecture Notes－Function Review
\begin{tabular}{|c|c|}
\hline Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 & Lecture Notes－Function Review－（6／29） \\
\hline Function Review Definitions and Properties of Functions & \begin{tabular}{l}
Rate of mRNA Synthesis \\
Transcription and Translation \\
Linear Model for Rate of mRNA Synthesis \\
Quadratic Function of Least Squares Best Fit
\end{tabular} \\
\hline aph of Data and Best I & ar Model \\
\hline
\end{tabular}

\section*{Graph of Data and Best Linear Model}


\section*{Least Squares Best Fit to Linear Model}

Linear model passing through the origin has the form
\[
r_{m}=a \mu
\]
－The linear least squares best fit of this model to the data uses only the slope of the model，\(a\)
－The sum of the squares of the errors is computed from each of the error terms
\[
\begin{aligned}
e_{1}^{2} & =(4.3-0.6 a)^{2} \\
e_{2}^{2} & =(9.1-a)^{2} \\
e_{3}^{2} & =(13-1.5 a)^{2} \\
e_{4}^{2} & =(19-2 a)^{2} \\
e_{5}^{2} & =(23-2.5 a)^{2}
\end{aligned}
\]

\section*{Graph of Least Squares Function \(J(a)\)}

Graph of Least Squares Function－Least Squares Best fit when \(a\) is at a minimum，the vertex \(a_{v}=9.14\)


Definitions and Properties of Review Definitions and Properties of Functions Rate of mRNA Synthesis Transcription and Translation

Quadratic Function of Least Squa

Least Squares Best Fit to Linear Model
Sum of Square Errors is given by
\[
J(a)=\sum_{i=1}^{5} e_{i}^{2}
\]
which reduces to
\[
J(a)=13.86 a^{2}-253.36 a+1160.3
\]
－\(J(a)\) is a quadratic function representing the sum of the squares of the errors
－The best fit of the model is the smallest value of \(J(a)\)
－This occurs the vertex，\(a_{v}\) ，of this quadratic equation
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 Lecture Notes－Function Review
\begin{tabular}{ll} 
& \begin{tabular}{l} 
Definition of a Function \\
Function Review
\end{tabular} \\
\begin{tabular}{l} 
Vertical Line Test \\
Function Operations
\end{tabular} \\
Composition of Functions \\
Coms and Properties of Functions & Even and Odd Functions \\
& One－to－One Functions \\
& Inverse Functions
\end{tabular}

Definitions and Properties of Functions

\section*{Definitions and Properties of Functions}
－Functions form the basis for most of this course
－A function is a relationship between one set of objects and another set of objects with only one possible association in the second set for each member of the first set

\section*{Rate of mNA Synthesis Example}

\section*{mRNA Example has two functions}
－A set of possible cell doubling times，\(\mu\) ，to which was found a particular average rate of mRNA synthesis，\(r_{m}\)
－This subdivides into two functional representations
－The experimental data，which represents a function with a finite set of points
－The linear model，which creates a different function representing your theoretical expectations
－The sum of the squares of the errors between the data points and the model，\(J(a)\) ，forms another function，where the set of possible slopes，\(a\) ，in the model，each produced a number，\(J(a)\) ， representing how far away the model was from the true data
－Claim that the best model is when this function is at its lowest point
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Lecture Notes－Function Review
Definition of a Function Vertical Line Test Composition of Functions Even and Odd Functions One－to－One Functions Inverse Functions

\section*{Definition of a Graph}

Definition：The graph of a function is defined by the set of points \((x, y)\) such that \(y=f(x)\) ，where \(f\) is a function．
－Often a function is described by a graph in the \(x y\)－coordinate system
－By convention \(x\) is the domain of the function and \(y\) is the range of the function
－The graph is defined by the set of points \((x, f(x))\) for all \(x\) in the domain

\section*{Example of Domain and Range}

Example 1: Consider the function
\[
f(t)=t^{2}-1
\]
a. What is the range of \(f(t)\) (assuming a domain of all \(t\) )?

Solution a: \(f(t)\) is a parabola with its vertex at \((0,-1)\) pointing up.

Since the vertex is the low point of the function, it follows that range of \(f(t)\) is \(-1 \leq y<\infty\)
\begin{tabular}{|c|c|c|}
\hline Joseph M. Mahaffy, <mahaffy@math.sdsu.edu〉 & Lecture Notes - Function Review & (17/29) \\
\hline Function Review Definitions and Properties of Functions & \begin{tabular}{l}
Definition of a Function Vertical Line Test \\
Function Operations Composition of Functions Even and Odd Functions One-to-One Functions Inverse Functions
\end{tabular} & \\
\hline \multicolumn{3}{|l|}{Example of Domain and Range 3} \\
\hline
\end{tabular}

Example 1 (cont): More on the function
\[
f(t)=t^{2}-1
\]
b. Find the domain of \(f(t)\), if the range of \(f\) is restricted to \(f(t)<0\)
Solution b: Solving \(f(t)=0\) gives \(t= \pm 1\)
It follows that the domain is \(-1<t<1\)

Definition of a Fun
Vertical Line Test
Function Operation
Composition of Functions Even and Odd Functions One-to-One Functions
Inverse Functions

\section*{Graph of Example 1}

Graph for the domain and range of \(f(t)\)


\section*{Addition and Multiplication of Functions}

Example 2: Let \(f(x)=x-1\) and \(g(x)=x^{2}+2 x-3\)
Skip Example
Determine \(f(x)+g(x)\) and \(\quad f(x) g(x)\)
Solution: The addition of the two functions
\[
f(x)+g(x)=x-1+x^{2}+2 x-3=x^{2}+3 x-4
\]

The multiplication of the two functions
\[
\begin{aligned}
f(x) g(x) & =(x-1)\left(x^{2}+2 x-3\right) \\
& =x^{3}+2 x^{2}-3 x-x^{2}-2 x+3 \\
& =x^{3}+x^{2}-5 x+3
\end{aligned}
\]

\section*{Addition of Function}

\section*{Composition of Functions}

Example 3：Let
\[
f(x)=\frac{3}{x-6} \quad \text { and } \quad g(x)=-\frac{2}{x+2}
\]

Skip Example
Determine \(f(x)+g(x)\)
Solution：The addition of the two functions
\[
\begin{aligned}
f(x)+g(x) & =\frac{3}{x-6}+\frac{-2}{x+2}=\frac{3(x+2)-2(x-6)}{(x-6)(x+2)} \\
& =\frac{x+18}{x^{2}-4 x-12}
\end{aligned}
\]

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
Lecture Notes－Function Review
Function Review
Definitions and Properties of Functions

Definition of a Function
Vertical Line Test Vertical Line Test Composition of Functions Even and Odd Functions One－to－One Functions Inverse Functions

\section*{Composition of Functions}

Example 4：Let
\[
f(x)=3 x+2 \quad \text { and } \quad g(x)=x^{2}-2 x+3
\]

Skip Example
Determine \(f(g(x))\) and \(\quad g(f(x))\)
Solution：For the first composite function
\[
f(g(x))=3\left(x^{2}-2 x+3\right)+2=3 x^{2}-6 x+11
\]

The second composite function
\[
g(f(x))=(3 x+2)^{2}-2(3 x+2)+3=9 x^{2}+6 x+3
\]

Clearly，\(f(g(x)) \neq g(f(x))\)
Joseph M．Mahaffy，〈mahaffyemath．sdsu．edu〉
Lecture Notes－Function Review
5050
A function \(f\) is called：
1．Even if \(f(x)=f(-x)\) for all \(x\) in the domain of \(f\) ．In this case，the graph is symmetrical with respect to the \(y\)－axis

2．Odd if \(f(x)=-f(-x)\) for all \(x\) in the domain of \(f\) ．In this case，the graph is symmetrical with respect to the origin

\section*{Example of Even Function}

\section*{One－to－One Function}

Consider our previous example
\[
f(t)=t^{2}-1
\]

Since
\[
f(-t)=(-t)^{2}-1=t^{2}-1=f(t)
\]
this is an even function．
The Graph of an Even Function is symmetric about the \(y\)－axis


\section*{Inverse Functions}

Definition：If a function \(f\) is one－to－one，then its corresponding inverse function，denoted \(f^{-1}\) ，satisfies：
\[
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
\]

Since these are composite functions，the domains of \(f\) and \(f^{-1}\) are restricted to the ranges of \(f^{-1}\) and \(f(x)\) ，respectively

Definition：A function \(f\) is one－to－one if whenever \(x_{1} \neq x_{2}\) in the domain，then \(f\left(x_{1}\right) \neq f\left(x_{2}\right)\) ．

Equivalently，if \(f\left(x_{1}\right)=f\left(x_{2}\right)\) ，then \(x_{1}=x_{2}\) ．

Function Review

Definitions and Properties of Functions Vertical Line a Function Vertical Line Test Composition of Functions Even and Odd Functions One－to－One Functions Inverse Functions
Example of an Inverse Function

Consider the function
\[
f(x)=x^{3}
\]

It has the inverse function
\[
f^{-1}(x)=x^{1 / 3}
\]

The domain and range for these functions are all of \(x\)
\[
f^{-1}(f(x))=\left(x^{3}\right)^{1 / 3}=x=\left(x^{1 / 3}\right)^{3}=f\left(f^{-1}(x)\right)
\]


These functions are mirror images through the line \(y=x\) (the
Identity Map)```

