Calculus for the Life Sciences I
 Lecture Notes－The Derivative of e^{x} and $\ln (x)$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group Computational Sciences Research Center

San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

$$
\text { Spring } 2013
$$

Outline

(1) Fluoxetine (Prozac)

- Background
- Drug Kinetics
- Norfluoxetine Kinetics
(2) Derivative of e^{x}
- Derivative of Prozac Model
- Examples
- Polymer Drug Delivery System
(3) Derivative of Natural Logarithm
- Height and Weight Relationship for Children
- Examples
- von Bertalanffy Model
- Inverse von Bertalanffy Model

Introduction

Introduction

- Special functions often arise in biological problems

Introduction

Introduction

- Special functions often arise in biological problems
- Biochemical Kinetics

Introduction

Introduction

- Special functions often arise in biological problems
- Biochemical Kinetics
- Population dynamics

Introduction

Introduction

- Special functions often arise in biological problems
- Biochemical Kinetics
- Population dynamics
- Need the derivatives for e^{x} and $\ln (x)$

Introduction

Introduction

- Special functions often arise in biological problems
- Biochemical Kinetics
- Population dynamics
- Need the derivatives for e^{x} and $\ln (x)$
- Find maxima, minima, and points of inflection

Fluoxetine (Prozac)

Fluoxetine (Prozac)

- Fluoxetine (trade name Prozac) is a selective serotonin reuptake inhibitor (SSRI)

Fluoxetine (Prozac)

Fluoxetine (Prozac)

- Fluoxetine (trade name Prozac) is a selective serotonin reuptake inhibitor (SSRI)
- This drug is used to treat depression, obsessive compulsive disorder, and a number of other neurological disorders

Fluoxetine (Prozac)

Fluoxetine (Prozac)

- Fluoxetine (trade name Prozac) is a selective serotonin reuptake inhibitor (SSRI)
- This drug is used to treat depression, obsessive compulsive disorder, and a number of other neurological disorders
- It works by preventing serotonin from being reabsorbed too rapidly from the synapses between nerve cells, prolonging its availablity, which improves the patient's mood

Fluoxetine (Prozac)

Fluoxetine (Prozac) - cont

- Fluoxetine is metabolized in the liver and transformed into a slightly less potent SSRI, norfluoxetine

Fluoxetine (Prozac)

Fluoxetine (Prozac) - cont

- Fluoxetine is metabolized in the liver and transformed into a slightly less potent SSRI, norfluoxetine
- Both compounds bind to plasma protein, then become concentrated in the brain (up to 50 times more concentrated)

Fluoxetine (Prozac)

Fluoxetine (Prozac) - cont

- Fluoxetine is metabolized in the liver and transformed into a slightly less potent SSRI, norfluoxetine
- Both compounds bind to plasma protein, then become concentrated in the brain (up to 50 times more concentrated)
- Fluoxetine and norfluoxetine are eliminated from the brain with characteristic half-lives of 1-4 days and 7-15 days, respectively

Fluoxetine (Prozac)

Drug Kinetics

- It is very important to understand the kinetics of the drug in the body

Fluoxetine (Prozac)

Drug Kinetics

- It is very important to understand the kinetics of the drug in the body
- Drugs metabolized into another active form make modeling more complex

Fluoxetine (Prozac)

Drug Kinetics

- It is very important to understand the kinetics of the drug in the body
- Drugs metabolized into another active form make modeling more complex
- Models below examine first order kinetic models for the concentrations of fluoxetine $(F(t))$ and norfluoxetine $(N(t))$ in the blood

Fluoxetine (Prozac)

Half-Life of a Drug

- A subject taking a 40 mg oral dose of fluoxetine rapidly exhibits a blood stream concentration of $21 \mathrm{ng} / \mathrm{ml}$

Fluoxetine (Prozac)

Half-Life of a Drug

- A subject taking a 40 mg oral dose of fluoxetine rapidly exhibits a blood stream concentration of $21 \mathrm{ng} / \mathrm{ml}$
- One study of healthy volunteers showed the half-life of fluoxetine was 1.5 days

Fluoxetine (Prozac)

Half-Life of a Drug

- A subject taking a 40 mg oral dose of fluoxetine rapidly exhibits a blood stream concentration of $21 \mathrm{ng} / \mathrm{ml}$
- One study of healthy volunteers showed the half-life of fluoxetine was 1.5 days
- When a drug is either filtered out by the kidneys or metabolized by some organ such as the liver proportional to its concentration, then the drug is said to exhibit first-order kinetics

Fluoxetine (Prozac)

Half-Life of a Drug

- A subject taking a 40 mg oral dose of fluoxetine rapidly exhibits a blood stream concentration of $21 \mathrm{ng} / \mathrm{ml}$
- One study of healthy volunteers showed the half-life of fluoxetine was 1.5 days
- When a drug is either filtered out by the kidneys or metabolized by some organ such as the liver proportional to its concentration, then the drug is said to exhibit first-order kinetics
- The drug decays exponentially with a characteristic half-life

Fluoxetine (Prozac)

Half-Life of a Drug - Calculation

- Assume instantaneous uptake of the drug, then the initial blood concentration of fluoxetine is

$$
F(0)=21 \mathrm{ng} / \mathrm{ml}
$$

Fluoxetine (Prozac)

Half-Life of a Drug - Calculation

- Assume instantaneous uptake of the drug, then the initial blood concentration of fluoxetine is

$$
F(0)=21 \mathrm{ng} / \mathrm{ml}
$$

- Fluoxetine is metabolized in both the brain and liver, so satisfies the kinetic equation

$$
F(t)=21 e^{-k t}
$$

Fluoxetine (Prozac)

Half-Life of a Drug - Calculation

- Assume instantaneous uptake of the drug, then the initial blood concentration of fluoxetine is

$$
F(0)=21 \mathrm{ng} / \mathrm{ml}
$$

- Fluoxetine is metabolized in both the brain and liver, so satisfies the kinetic equation

$$
F(t)=21 e^{-k t}
$$

- With a half-life of 1.5 days, we have

$$
F(1.5)=10.5=21 e^{-1.5 k}
$$

Fluoxetine (Prozac)

Half-Life of a Drug - Calculation

- Assume instantaneous uptake of the drug, then the initial blood concentration of fluoxetine is

$$
F(0)=21 \mathrm{ng} / \mathrm{ml}
$$

- Fluoxetine is metabolized in both the brain and liver, so satisfies the kinetic equation

$$
F(t)=21 e^{-k t}
$$

- With a half-life of 1.5 days, we have

$$
F(1.5)=10.5=21 e^{-1.5 k}
$$

- Solving this equation for k,

$$
e^{1.5 k}=2 \quad \text { or } \quad k=\ln (2) / 1.5=0.462
$$

Fluoxetine (Prozac)

Model for Fluoxetine

A good model for blood plasma concentration of fluoxetine is

$$
F(t)=21 e^{-0.462 t}
$$

Norfluoxetine Kinetic Model

Norfluoxetine Kinetic Model

- Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine (through a demethylation)

Norfluoxetine Kinetic Model

Norfluoxetine Kinetic Model

- Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine (through a demethylation)
- Norfluoxetine continues to act as potent and specific serotonin reuptake inhibitor

Norfluoxetine Kinetic Model

Norfluoxetine Kinetic Model

- Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine (through a demethylation)
- Norfluoxetine continues to act as potent and specific serotonin reuptake inhibitor
- The half-life is taken to be 9 days for norfluoxetine

Norfluoxetine Kinetic Model

Norfluoxetine Kinetic Model

- Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine (through a demethylation)
- Norfluoxetine continues to act as potent and specific serotonin reuptake inhibitor
- The half-life is taken to be 9 days for norfluoxetine
- A reasonable model using linear kinetics for the blood plasma concentration of norfluoxetine is

$$
N(t)=27.5\left(e^{-0.077 t}-e^{-0.462 t}\right)
$$

Norfluoxetine Kinetic Model

Norfluoxetine Kinetic Model

－Fluoxetine is metabolized in the liver and through a hepatic biotransformation becomes norfluoxetine（through a demethylation）
－Norfluoxetine continues to act as potent and specific serotonin reuptake inhibitor
－The half－life is taken to be 9 days for norfluoxetine
－A reasonable model using linear kinetics for the blood plasma concentration of norfluoxetine is

$$
N(t)=27.5\left(e^{-0.077 t}-e^{-0.462 t}\right)
$$

－Pharmokinetic models often are composed of the difference of two decaying exponentials

Fluoxetine (Prozac)

Graph of Fluoxetine and Norfluoxetine

Fluoxetine and Norfluoxetine Kinetic Models

Fluoxetine and Norfluoxetine Kinetic Models

- Determine the rate of change of fluoxetine and norfluoxetine

Fluoxetine and Norfluoxetine Kinetic Models

Fluoxetine and Norfluoxetine Kinetic Models

- Determine the rate of change of fluoxetine and norfluoxetine
- Find the time of maximum blood plasma concentration of norfluoxetine and what that concentration is

Fluoxetine and Norfluoxetine Kinetic Models

Fluoxetine and Norfluoxetine Kinetic Models

- Determine the rate of change of fluoxetine and norfluoxetine
- Find the time of maximum blood plasma concentration of norfluoxetine and what that concentration is
- To solve these problems, we need to learn the formula for the derivative of the exponential function

Derivative of e^{x}

Derivative of e^{x}

- The exponential function e^{x} is a special function

Derivative of e^{x}

Derivative of e^{x}

- The exponential function e^{x} is a special function
- It's the only function (up to a scalar multiple) that is the derivative of itself

Derivative of e^{x}

Derivative of e^{x}

- The exponential function e^{x} is a special function
- It's the only function (up to a scalar multiple) that is the derivative of itself

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Derivative of e^{x}

Derivative of e^{x}

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Derivative of e^{x}

Derivative of e^{x}

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

One definition of the number e is the number that makes

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Derivative of e^{x}

Derivative of e^{x}

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

One definition of the number e is the number that makes

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

From the definition of the derivative and using the properties of exponentials

$$
\frac{d}{d x}\left(e^{x}\right)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x}
$$

Derivative of e^{x}

Derivative of e^{x}
Geometrically, the function e^{x} is a number raised to the power x, whose slope of the tangent line at $x=0$ is 1

Derivative of e^{x}

Derivative of e^{x}
Geometrically, the function e^{x} is a number raised to the power x, whose slope of the tangent line at $x=0$ is 1
General rule for the derivative of $e^{k x}$

Derivative of e^{x}

Derivative of e^{x}
Geometrically, the function e^{x} is a number raised to the power x, whose slope of the tangent line at $x=0$ is 1
General rule for the derivative of $e^{k x}$
The derivative of $e^{k x}$ is

$$
\frac{d}{d x}\left(e^{k x}\right)=k e^{k x}
$$

Example - Exponential Function

Example: Find the derivative of

$$
f(x)=5 e^{-3 x}
$$

Solution: From our rule of differentiation and the formula above

$$
f^{\prime}(x)=-15 e^{-3 x}
$$

Application of the Derivative to Prozac Model

Derivative of Prozac Model: Find the rate of change of the fluoxetine model

$$
F(t)=21 e^{-0.426 t}
$$

Application of the Derivative to Prozac Model

Derivative of Prozac Model: Find the rate of change of the fluoxetine model

$$
F(t)=21 e^{-0.426 t}
$$

Solution: The derivative is

$$
F^{\prime}(t)=(-0.462) 21 e^{-0.462 t}=-9.702 e^{-0.426 t}
$$

Application of the Derivative to Prozac Model

Derivative of Prozac Model: Find the rate of change of the fluoxetine model

$$
F(t)=21 e^{-0.426 t}
$$

Solution: The derivative is

$$
F^{\prime}(t)=(-0.462) 21 e^{-0.462 t}=-9.702 e^{-0.426 t}
$$

The rate of change of blood plasma concentration of fluoxetine at times $t=2$ and 10 is

$$
\begin{aligned}
F^{\prime}(2) & =-9.702 e^{-0.462(2)}=-3.85 \mathrm{ng} / \mathrm{ml} / \text { day } \\
F^{\prime}(10) & =-9.702 e^{-0.462(10)}=-0.0956 \mathrm{ng} / \mathrm{ml} / \text { day }
\end{aligned}
$$

Application of the Derivative to Norfluoxetine Model

Derivative of Norfluoxetine Model: Find the rate of change of the norfluoxetine model

$$
N(t)=27.5\left(e^{-0.077 t}-e^{-0.426 t}\right)
$$

Application of the Derivative to Norfluoxetine Model

Derivative of Norfluoxetine Model: Find the rate of change of the norfluoxetine model

$$
N(t)=27.5\left(e^{-0.077 t}-e^{-0.426 t}\right)
$$

Solution: The derivative is

$$
\begin{aligned}
N^{\prime}(t) & =27.5\left(-0.077 e^{-0.077 t}+0.462 e^{-0.426 t}\right) \\
& =12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
\end{aligned}
$$

Application of the Derivative to Norfluoxetine Model

Derivative of Norfluoxetine Model: Find the rate of change of the norfluoxetine model

$$
N(t)=27.5\left(e^{-0.077 t}-e^{-0.426 t}\right)
$$

Solution: The derivative is

$$
\begin{aligned}
N^{\prime}(t) & =27.5\left(-0.077 e^{-0.077 t}+0.462 e^{-0.426 t}\right) \\
& =12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
\end{aligned}
$$

The rate of change of blood plasma concentration of norfluoxetine at times $t=2$ and 10 is

$$
\begin{aligned}
N^{\prime}(2) & =12.705 e^{-0.462(2)}-2.1175 e^{-0.077(2)}=3.23 \mathrm{ng} / \mathrm{ml} / \text { day } \\
N^{\prime}(10) & =12.705 e^{-0.462(10)}-2.1175 e^{-0.077(10)}=-0.855 \mathrm{ng} / \mathrm{ml} / \text { day }
\end{aligned}
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The maximum occurs when the derivative is zero or

$$
2.1175 e^{-0.077 t}=12.705 e^{-0.462 t}
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The maximum occurs when the derivative is zero or

$$
\begin{aligned}
2.1175 e^{-0.077 t} & =12.705 e^{-0.462 t} \\
\frac{e^{-0.077 t}}{e^{-0.462 t}} & =\frac{12.705}{2.1175}
\end{aligned}
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The maximum occurs when the derivative is zero or

$$
2.1175 e^{-0.077 t}=12.705 e^{-0.462 t}
$$

$$
\begin{aligned}
\frac{e^{-0.077 t}}{e^{-0.462 t}} & =\frac{12.705}{2.1175} \\
e^{0.385 t} & =6.0
\end{aligned}
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The maximum occurs when the derivative is zero or

$$
2.1175 e^{-0.077 t}=12.705 e^{-0.462 t}
$$

$$
\begin{aligned}
\frac{e^{-0.077 t}}{e^{-0.462 t}} & =\frac{12.705}{2.1175} \\
e^{0.385 t} & =6.0
\end{aligned}
$$

The maximum occurs at

$$
0.385 t=\ln (6) \quad \text { and } \quad t_{\max }=4.654 \text { days }
$$

Maximum Concentration of Norfluoxetine Model

Maximum of Norfluoxetine Model: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The maximum occurs when the derivative is zero or

$$
2.1175 e^{-0.077 t}=12.705 e^{-0.462 t}
$$

$$
\begin{aligned}
\frac{e^{-0.077 t}}{e^{-0.462 t}} & =\frac{12.705}{2.1175} \\
e^{0.385 t} & =6.0
\end{aligned}
$$

The maximum occurs at

$$
0.385 t=\ln (6) \quad \text { and } \quad t_{\max }=4.654 \text { days }
$$

The maximum blood plasma concentration of norfluoxetine is

$$
N\left(t_{\max }\right)=16.01 \mathrm{ng} / \mathrm{ml}
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The second derivative satisfies

$$
N^{\prime \prime}(t)=-5.8697 e^{-0.462 t}+0.16305 e^{-0.077 t}
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The second derivative satisfies

$$
\begin{gathered}
N^{\prime \prime}(t)=-5.8697 e^{-0.462 t}+0.16305 e^{-0.077 t} \\
\frac{e^{-0.077 t}}{e^{-0.462 t}}=\frac{5.8697}{0.16305}
\end{gathered}
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The second derivative satisfies

$$
N^{\prime \prime}(t)=-5.8697 e^{-0.462 t}+0.16305 e^{-0.077 t}
$$

$$
\begin{aligned}
\frac{e^{-0.077 t}}{e^{-0.462 t}} & =\frac{5.8697}{0.16305} \\
e^{0.385 t} & =36.0
\end{aligned}
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The second derivative satisfies

$$
\begin{aligned}
& N^{\prime \prime}(t)=-5.8697 e^{-0.462 t}+0.16305 e^{-0.077 t} \\
& \frac{e^{-0.077 t}}{e^{-0.462 t}}=\frac{5.8697}{0.16305} \\
& e^{0.385 t}=36.0
\end{aligned}
$$

The point of inflection with maximum decrease occurs at

$$
0.385 t=\ln (36)=2 \ln (6) \quad \text { and } \quad t_{p o i}=9.308 \text { days }
$$

Maximum Removal of Norfluoxetine

Maximum Removal of Norfluoxetine: The derivative is

$$
N^{\prime}(t)=12.705 e^{-0.462 t}-2.1175 e^{-0.077 t}
$$

The second derivative satisfies

$$
\begin{aligned}
& N^{\prime \prime}(t)=-5.8697 e^{-0.462 t}+0.16305 e^{-0.077 t} \\
& \frac{e^{-0.077 t}}{e^{-0.462 t}}=\frac{5.8697}{0.16305} \\
& e^{0.385 t}=36.0
\end{aligned}
$$

The point of inflection with maximum decrease occurs at

$$
0.385 t=\ln (36)=2 \ln (6) \quad \text { and } \quad t_{p o i}=9.308 \text { days }
$$

with blood plasma concentration of norfluoxetine at

$$
N\left(t_{p o i}\right)=12.91 \mathrm{ng} / \mathrm{ml} \text { and } N^{\prime}\left(t_{p o i}\right)=-0.862 \mathrm{ng} / \mathrm{ml} \neq \text { day suce }
$$

Example - Graphing an Exponential

Graphing an Exponential: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

Skip Example

Example - Graphing an Exponential

Graphing an Exponential: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- Graph the function

Skip Example

Example - Graphing an Exponential

Graphing an Exponential: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- Graph the function
- Find its derivative

Skip Example

Example - Graphing an Exponential

Solution: The domain is all x

Example - Graphing an Exponential

Solution: The domain is all x

The y-intercept is $y(0)=2 e^{-0.2(0)}-1=1$

Example - Graphing an Exponential

Solution: The domain is all x
The y-intercept is $y(0)=2 e^{-0.2(0)}-1=1$
The x-intercept satisfies

$$
2 e^{-0.2 x}-1=0 \quad \text { or } \quad 2 e^{-0.2 x}=1
$$

Example - Graphing an Exponential

Solution: The domain is all x
The y-intercept is $y(0)=2 e^{-0.2(0)}-1=1$
The x-intercept satisfies

$$
\begin{aligned}
& 2 e^{-0.2 x}-1=0 \quad \text { or } \quad 2 e^{-0.2 x}=1 \\
& e^{0.2 x}=2 \quad \text { or } \quad x=5 \ln (2) \approx 3.466
\end{aligned}
$$

Example - Graphing an Exponential

Solution: The domain is all x
The y-intercept is $y(0)=2 e^{-0.2(0)}-1=1$
The x-intercept satisfies

$$
\begin{aligned}
& 2 e^{-0.2 x}-1=0 \quad \text { or } \quad 2 e^{-0.2 x}=1 \\
& e^{0.2 x}=2 \quad \text { or } \quad x=5 \ln (2) \approx 3.466
\end{aligned}
$$

For large values of x, the exponential function decays to zero

Example - Graphing an Exponential

Solution: The domain is all x
The y-intercept is $y(0)=2 e^{-0.2(0)}-1=1$
The x-intercept satisfies

$$
\begin{aligned}
& 2 e^{-0.2 x}-1=0 \quad \text { or } \quad 2 e^{-0.2 x}=1 \\
& e^{0.2 x}=2 \quad \text { or } \quad x=5 \ln (2) \approx 3.466
\end{aligned}
$$

For large values of x, the exponential function decays to zero Thus, there is a horizontal asymptote to the right with

$$
y=-1
$$

Example - Graphing an Exponential

Graph: $y(x)=2 e^{-0.2 x}-1$

Example - Graphing an Exponential

Derivative: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

Example - Graphing an Exponential

Derivative: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- The derivative of this function satisfies

$$
y^{\prime}=2(-0.2) e^{-0.2 x}=-0.4 e^{-0.2 x}
$$

Example - Graphing an Exponential

Derivative: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- The derivative of this function satisfies

$$
y^{\prime}=2(-0.2) e^{-0.2 x}=-0.4 e^{-0.2 x}
$$

- Since the exponential function is always positive, the derivative is always negative

Example - Graphing an Exponential

Derivative: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- The derivative of this function satisfies

$$
y^{\prime}=2(-0.2) e^{-0.2 x}=-0.4 e^{-0.2 x}
$$

- Since the exponential function is always positive, the derivative is always negative
- The derivative does approach zero as x becomes large (approaching the horizontal asymptote)

Example - Graphing an Exponential

Derivative: Consider

$$
y(x)=2 e^{-0.2 x}-1
$$

- The derivative of this function satisfies

$$
y^{\prime}=2(-0.2) e^{-0.2 x}=-0.4 e^{-0.2 x}
$$

- Since the exponential function is always positive, the derivative is always negative
- The derivative does approach zero as x becomes large (approaching the horizontal asymptote)
- This function is always decreasing

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially
- Filteration by the kidneys

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially
- Filteration by the kidneys
- Metabolism of the drug

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially
- Filteration by the kidneys
- Metabolism of the drug
- Model for Injection of a Drug

$$
k(t)=A_{0} e^{-q t}
$$

Example - Polymer Drug Delivery System

Drug Delivery: Drugs are often administered by a pill or an injection

- The body receives a high dose rapidly
- The drug remaining in the blood disappears exponentially
- Filteration by the kidneys
- Metabolism of the drug
- Model for Injection of a Drug

$$
k(t)=A_{0} e^{-q t}
$$

- Concentration of the drug, $k(t)$
- Total dose, A_{0}
- Rate of clearance, q

Derivative of Prozac Model

Example - Polymer Drug Delivery System

Polymer Drug Delivery System:

Example - Polymer Drug Deliv Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone

Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time

Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower

Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices

Polymer Drug Delivery System:

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices
- Devices deliver the hormones estrogen and progesterone

Example - Polymer Drug Deliv

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices
- Devices deliver the hormones estrogen and progesterone
- Delivery gives a more uniform level of the hormones over extended periods of time to prevent pregnancy

Example - Polymer Drug Deliv

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices
- Devices deliver the hormones estrogen and progesterone
- Delivery gives a more uniform level of the hormones over extended periods of time to prevent pregnancy
- New drug delivery devices

Example - Polymer Drug Deliv

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices
- Devices deliver the hormones estrogen and progesterone
- Delivery gives a more uniform level of the hormones over extended periods of time to prevent pregnancy
- New drug delivery devices
- Diabetes sufferers could receive a more uniform level of insulin

Example - Polymer Drug Deliv

- Scientists invented polymers that are implanted to deliver a drug or hormone
- Deliver the drug (or hormone) for a much longer period of time
- Drug doses can be lower
- Several long term birth control devices
- Devices deliver the hormones estrogen and progesterone
- Delivery gives a more uniform level of the hormones over extended periods of time to prevent pregnancy
- New drug delivery devices
- Diabetes sufferers could receive a more uniform level of insulin
- Chemotherapeutic drugs to cancer patients could extend over a much longer period of time at lower doses to maximize their efficacy

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device: Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device: Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

- $c(t)$ is the concentration of the drug

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device:
Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

- $c(t)$ is the concentration of the drug
- C_{0} relates to the dose in the polymer delivery device

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device:
Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

- $c(t)$ is the concentration of the drug
- C_{0} relates to the dose in the polymer delivery device
- r relates to the decay of the polymer, releasing the drug ($q>r$)

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device:

Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

- $c(t)$ is the concentration of the drug
- C_{0} relates to the dose in the polymer delivery device
- r relates to the decay of the polymer, releasing the drug ($q>r$)
- q is a kinetic constant depending on how the patient clears the drug

Example - Polymer Drug Delivery System

Model for a Polymer Drug Delivery Device:

Mathematically, this is described by two decaying exponentials

$$
c(t)=C_{0}\left(e^{-r t}-e^{-q t}\right)
$$

- $c(t)$ is the concentration of the drug
- C_{0} relates to the dose in the polymer delivery device
- r relates to the decay of the polymer, releasing the drug ($q>r$)
- q is a kinetic constant depending on how the patient clears the drug
- The amounts of drug are the same when

$$
A_{0}=\frac{C_{0}}{r}
$$

Example - Polymer Drug Delivery System

Drug Delivery: This example examines the same amount of drug delivered by injection and a polymer delivery device

Example - Polymer Drug Delivery System

Drug Delivery: This example examines the same amount of drug delivered by injection and a polymer delivery device

- Suppose the drug is injected

$$
k(t)=1000 e^{-0.2 t}
$$

- $k(t)$ is a concentration in $\mathrm{mg} / \mathrm{dl}$ and the time t is in days

Example - Polymer Drug Delivery System

Drug Delivery: This example examines the same amount of drug delivered by injection and a polymer delivery device

- Suppose the drug is injected

$$
k(t)=1000 e^{-0.2 t}
$$

- $k(t)$ is a concentration in $\mathrm{mg} / \mathrm{dl}$ and the time t is in days
- The same amount of drug is delivered by a polymer drug delivery device satisfies

$$
c(t)=10\left(e^{-0.01 t}-e^{-0.2 t}\right)
$$

- $c(t)$ is a concentration in $\mathrm{mg} / \mathrm{dl}$

Example - Polymer Drug Delivery System

Drug Delivery: Comparing the injected and polymer delivered drug systems

Example - Polymer Drug Delivery System

Drug Delivery: Comparing the injected and polymer delivered drug systems

- Find the rate of change in concentration for both $k(t)$ and $c(t)$ at $t=5$ and 20

Example - Polymer Drug Delivery System

Drug Delivery: Comparing the injected and polymer delivered drug systems

- Find the rate of change in concentration for both $k(t)$ and $c(t)$ at $t=5$ and 20
- Determine the maximum concentration of $c(t)$ and when it occurs

Example - Polymer Drug Delivery System

Drug Delivery: Comparing the injected and polymer delivered drug systems

- Find the rate of change in concentration for both $k(t)$ and $c(t)$ at $t=5$ and 20
- Determine the maximum concentration of $c(t)$ and when it occurs
- Graph each of these functions

Example - Polymer Drug Delivery System

Solution: Since $k(t)=1000 e^{-0.2 t}$, the derivative is

$$
k^{\prime}(t)=(-0.2) 1000 e^{-0.2 t}=-200 e^{-0.2 t}
$$

Example - Polymer Drug Delivery System

Solution: Since $k(t)=1000 e^{-0.2 t}$, the derivative is

$$
k^{\prime}(t)=(-0.2) 1000 e^{-0.2 t}=-200 e^{-0.2 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is

Example - Polymer Drug Delivery System

Solution: Since $k(t)=1000 e^{-0.2 t}$, the derivative is

$$
k^{\prime}(t)=(-0.2) 1000 e^{-0.2 t}=-200 e^{-0.2 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is
-

$$
k^{\prime}(5)=-200 e^{-0.2(5)}=-73.58 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

Example - Polymer Drug Delivery System

Solution: Since $k(t)=1000 e^{-0.2 t}$, the derivative is

$$
k^{\prime}(t)=(-0.2) 1000 e^{-0.2 t}=-200 e^{-0.2 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is
-

$$
k^{\prime}(5)=-200 e^{-0.2(5)}=-73.58 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

$$
k^{\prime}(20)=-200 e^{-0.2(20)}=-3.66 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

Example - Polymer Drug Delivery System

Solution (cont): Since $c(t)=10\left(e^{-0.01 t}-e^{-0.2 t}\right)$, the derivative is

$$
c^{\prime}(t)=10\left(-0.01 e^{-0.01 t}-(-0.2) e^{-0.2 t}\right)=2 e^{-0.2 t}-0.1 e^{-0.01 t}
$$

Example - Polymer Drug Delivery System

Solution (cont): Since $c(t)=10\left(e^{-0.01 t}-e^{-0.2 t}\right)$, the derivative is

$$
c^{\prime}(t)=10\left(-0.01 e^{-0.01 t}-(-0.2) e^{-0.2 t}\right)=2 e^{-0.2 t}-0.1 e^{-0.01 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is

Example - Polymer Drug Delivery System

Solution (cont): Since $c(t)=10\left(e^{-0.01 t}-e^{-0.2 t}\right)$, the derivative is

$$
c^{\prime}(t)=10\left(-0.01 e^{-0.01 t}-(-0.2) e^{-0.2 t}\right)=2 e^{-0.2 t}-0.1 e^{-0.01 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is
-

$$
c^{\prime}(5)=2 e^{-0.2(5)}-0.1 e^{-0.01(5)}=0.64 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

Example - Polymer Drug Delivery System

Solution (cont): Since $c(t)=10\left(e^{-0.01 t}-e^{-0.2 t}\right)$, the derivative is

$$
c^{\prime}(t)=10\left(-0.01 e^{-0.01 t}-(-0.2) e^{-0.2 t}\right)=2 e^{-0.2 t}-0.1 e^{-0.01 t}
$$

- The rate of change of the drug concentrations at times $t=5$ and 20 for the injected drug is
-

$$
c^{\prime}(5)=2 e^{-0.2(5)}-0.1 e^{-0.01(5)}=0.64 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

$$
c^{\prime}(20)=2 e^{-0.2(20)}-0.1 e^{-0.01(20)}=-0.045 \mathrm{mg} / \mathrm{dl} / \text { day }
$$

Example - Polymer Drug Delivery System

Solution for Maximum for $c(t)$: Since the derivative is

$$
c^{\prime}(t)=2 e^{-0.2 t}-0.1 e^{-0.01 t}
$$

Example - Polymer Drug Delivery System

Solution for Maximum for $c(t)$: Since the derivative is

$$
\begin{gathered}
c^{\prime}(t)=2 e^{-0.2 t}-0.1 e^{-0.01 t} \\
2 e^{-0.2 t}-0.1 e^{-0.01 t}=0 \quad \text { or } \quad 0.1 e^{-0.01 t}=2 e^{-0.2 t}
\end{gathered}
$$

Example - Polymer Drug Delivery System

Solution for Maximum for $c(t)$: Since the derivative is

$$
\begin{gathered}
c^{\prime}(t)=2 e^{-0.2 t}-0.1 e^{-0.01 t} \\
2 e^{-0.2 t}-0.1 e^{-0.01 t}=0 \quad \text { or } \quad 0.1 e^{-0.01 t}=2 e^{-0.2 t}
\end{gathered}
$$

Thus,

$$
e^{-0.01 t+0.2 t}=e^{0.19 t}=20
$$

Example - Polymer Drug Delivery System

Solution for Maximum for $c(t)$: Since the derivative is

$$
\begin{gathered}
c^{\prime}(t)=2 e^{-0.2 t}-0.1 e^{-0.01 t} \\
2 e^{-0.2 t}-0.1 e^{-0.01 t}=0 \quad \text { or } \quad 0.1 e^{-0.01 t}=2 e^{-0.2 t}
\end{gathered}
$$

Thus,

$$
e^{-0.01 t+0.2 t}=e^{0.19 t}=20
$$

It follows that $t_{\max }=\ln (20) / 0.19=15.767$ days

Example - Polymer Drug Delivery System

Solution for Maximum for $c(t)$: Since the derivative is

$$
\begin{gathered}
c^{\prime}(t)=2 e^{-0.2 t}-0.1 e^{-0.01 t} \\
2 e^{-0.2 t}-0.1 e^{-0.01 t}=0 \quad \text { or } \quad 0.1 e^{-0.01 t}=2 e^{-0.2 t}
\end{gathered}
$$

Thus,

$$
e^{-0.01 t+0.2 t}=e^{0.19 t}=20
$$

It follows that $t_{\max }=\ln (20) / 0.19=15.767$ days
The maximum occurs at $c(15.767)=8.11 \mu \mathrm{~g} / \mathrm{dl}$

Derivative of Prozac Model Examples
Polymer Drug Delivery System

Example - Polymer Drug Delivery System

Graph: Drug Delivery

Derivative of Prozac Model Examples
Polymer Drug Delivery System

Example - Polymer Drug Delivery System

Graph: Drug Delivery

The polymer delivered drug over a longer period of time

Example - Polymer Drug Delivery System

Graph: Drug Delivery

The polymer delivered drug over a longer period of time
These graphs show the obvious advantages of the time released drug if it has serious side effects or toxicity

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Height and Weight Relationship for Children

Height and Weight Relationship for Children:

age(years)	height(cm)	weight(kg)
5	108	18.2
6	114	20.0
7	121	21.8
8	126	25.0
9	132	29.1
10	138	32.7
11	144	37.3
12	151	41.4
13	156	46.8

Height and Weight Relationship for Children

Ehrenberg Model: Logarithmic relationship

$$
H(w)=49.5 \ln (w)-34.14
$$

Want to find the find the rate of change of height with respect to weight for the average girl

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Derivative of $\ln (x)$

Derivative of $\ln (x)$

Derivative of $\ln (x)$

Derivative of $\ln (x)$

The derivative of the natural logarithm, $\ln (x)$, is given by the formula

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

Derivative of $\ln (x)$

Derivative of $\ln (x)$
The derivative of the natural logarithm, $\ln (x)$, is given by the formula

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

This relationship is most easily demonstrated after learning the Fundamental Theorem of Calculus in Math 122, which centers about the integral

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

$$
H(w)=49.5 \ln (w)-34.14
$$

Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

$$
H(w)=49.5 \ln (w)-34.14
$$

The derivative is given by

$$
\frac{d H}{d w}=\frac{49.5}{w} \frac{\mathrm{~cm}}{\mathrm{~kg}}
$$

Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

$$
H(w)=49.5 \ln (w)-34.14
$$

The derivative is given by

$$
\frac{d H}{d w}=\frac{49.5}{w} \frac{\mathrm{~cm}}{\mathrm{~kg}}
$$

- As the weight increases, the rate of change in height decreases

Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

$$
H(w)=49.5 \ln (w)-34.14
$$

The derivative is given by

$$
\frac{d H}{d w}=\frac{49.5}{w} \frac{\mathrm{~cm}}{\mathrm{~kg}}
$$

- As the weight increases, the rate of change in height decreases
- At $w=20 \mathrm{~kg}$

$$
H^{\prime}(20)=\frac{49.5}{20}=2.475 \mathrm{~cm} / \mathrm{kg}
$$

Derivative of Ehrenberg Model

Derivative of Ehrenberg Model: The Ehrenberg model for the previous data

$$
H(w)=49.5 \ln (w)-34.14
$$

The derivative is given by

$$
\frac{d H}{d w}=\frac{49.5}{w} \frac{\mathrm{~cm}}{\mathrm{~kg}}
$$

- As the weight increases, the rate of change in height decreases
- At $w=20 \mathrm{~kg}$

$$
H^{\prime}(20)=\frac{49.5}{20}=2.475 \mathrm{~cm} / \mathrm{kg}
$$

- At $w=49.5 \mathrm{~kg}$

$$
H^{\prime}(49.5)=\frac{49.5}{49.5}=1 \mathrm{~cm} / \mathrm{kg}
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Derivative of Logarithm

Example: Find the derivative of

$$
f(x)=\ln \left(x^{2}\right)
$$

Example - Derivative of Logarithm

Example: Find the derivative of

$$
f(x)=\ln \left(x^{2}\right)
$$

Solution: From our properties of logarithms and the formula above

$$
f(x)=\ln \left(x^{2}\right)
$$

Example - Derivative of Logarithm

Example: Find the derivative of

$$
f(x)=\ln \left(x^{2}\right)
$$

Solution: From our properties of logarithms and the formula above

$$
f(x)=\ln \left(x^{2}\right)=2 \ln (x)
$$

Example - Derivative of Logarithm

Example: Find the derivative of

$$
f(x)=\ln \left(x^{2}\right)
$$

Solution: From our properties of logarithms and the formula above

$$
f(x)=\ln \left(x^{2}\right)=2 \ln (x)
$$

The derivative is given by

$$
f^{\prime}(x)=\frac{2}{x}
$$

Example - Logarithm Function

Example: Consider the following function

$$
y=x-\ln (x)
$$

Height and Weight Relationship for Children Examples

Example - Logarithm Function

Example: Consider the following function

$$
y=x-\ln (x)
$$

- Find the first and second derivatives of this function

Example - Logarithm Function

Example: Consider the following function

$$
y=x-\ln (x)
$$

- Find the first and second derivatives of this function
- Find any local extrema

Example - Logarithm Function

Example: Consider the following function

$$
y=x-\ln (x)
$$

- Find the first and second derivatives of this function
- Find any local extrema
- Graph the function

Example - Logarithm Function

Solution: The function $y=x-\ln (x)$ has the derivative

$$
\frac{d y}{d x}=1-\frac{1}{x}=\frac{x-1}{x}
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Logarithm Function

Solution: The function $y=x-\ln (x)$ has the derivative

$$
\frac{d y}{d x}=1-\frac{1}{x}=\frac{x-1}{x}
$$

The second derivative is

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}}
$$

Example - Logarithm Function

Solution: The function $y=x-\ln (x)$ has the derivative

$$
\frac{d y}{d x}=1-\frac{1}{x}=\frac{x-1}{x}
$$

The second derivative is

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}}
$$

Note that since $y^{\prime \prime}(x)>0$, this function is concave upward

Example - Logarithm Function

Solution (cont): Graphing the Function

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$
- There is no y-intercept

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$
- There is no y-intercept
- There is a vertical asymptote at $x=0$

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$
- There is no y-intercept
- There is a vertical asymptote at $x=0$

Extrema: Solve the derivative equal to zero

$$
\frac{d y}{d x}=\frac{x-1}{x}=0
$$

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$
- There is no y-intercept
- There is a vertical asymptote at $x=0$

Extrema: Solve the derivative equal to zero

$$
\frac{d y}{d x}=\frac{x-1}{x}=0
$$

Thus, $x=1$

Example - Logarithm Function

Solution (cont): Graphing the Function

- This function is only defined for $x>0$
- There is no y-intercept
- There is a vertical asymptote at $x=0$

Extrema: Solve the derivative equal to zero

$$
\frac{d y}{d x}=\frac{x-1}{x}=0
$$

Thus, $x=1$
There is an extremum at $(1,1)$

Example - Logarithm Function

Solution (cont): Graphing the Function

Example - Logarithm Function

Solution (cont): Graphing the Function

- Since the second derivative is always positive

Example - Logarithm Function

Solution (cont): Graphing the Function

- Since the second derivative is always positive
- The point $(1,1)$ is a minimum

Example - Logarithm Function

Solution (cont): Graphing the Function

- Since the second derivative is always positive
- The point $(1,1)$ is a minimum

Example－von Bertalanffy Model

Example：von Bertalanffy Model

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout
- 5.5 years to reach 2 kg

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout
- 5.5 years to reach 2 kg
- 15 years to reach 5 kg

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout
- 5.5 years to reach 2 kg
- 15 years to reach 5 kg

Problem 1: The von Bertalanffy equation is

$$
W(a)=20.2\left(1-e^{-0.019 a}\right)
$$

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout
- 5.5 years to reach 2 kg
- 15 years to reach 5 kg

Problem 1: The von Bertalanffy equation is

$$
W(a)=20.2\left(1-e^{-0.019 a}\right)
$$

- Find the rate of change of weight, W, with respect to the age, a

Example - von Bertalanffy Model

Example: von Bertalanffy Model

- Fish grow as they age - Data on Lake Trout
- 5.5 years to reach 2 kg
- 15 years to reach 5 kg

Problem 1: The von Bertalanffy equation is

$$
W(a)=20.2\left(1-e^{-0.019 a}\right)
$$

- Find the rate of change of weight, W, with respect to the age, a
- Graph the solution of the von Bertalanffy equation

Derivative of Natural Logarithm

Example - von Bertalanffy Model

Solution 1: von Bertalanffy Model is written

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

Example - von Bertalanffy Model

Solution 1: von Bertalanffy Model is written

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

Differentiating the model with respect to age, a, gives

$$
\frac{d W}{d a}=-20.2(-0.019) e^{-0.019 a}=0.3838 e^{-0.019 a} \mathrm{~kg} / \mathrm{yr}
$$

Example - von Bertalanffy Model

Solution 1: von Bertalanffy Model is written

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

Differentiating the model with respect to age, a, gives

$$
\frac{d W}{d a}=-20.2(-0.019) e^{-0.019 a}=0.3838 e^{-0.019 a} \mathrm{~kg} / \mathrm{yr}
$$

This function is monotonically increasing (as we would expect for growth of a fish)

Example - von Bertalanffy Model

Solution 1 (cont): Graph of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

Example - von Bertalanffy Model

Solution 1 (cont): Graph of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- This equation goes through the origin

Example - von Bertalanffy Model

Solution 1 (cont): Graph of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- This equation goes through the origin
- For large values of a, the exponential decays to zero

Example - von Bertalanffy Model

Solution 1 (cont): Graph of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- This equation goes through the origin
- For large values of a, the exponential decays to zero
- Thus, there is a horizontal asymptote of $W=20.2$

Example - von Bertalanffy Model

Solution 1 (cont): Graph of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- This equation goes through the origin
- For large values of a, the exponential decays to zero
- Thus, there is a horizontal asymptote of $W=20.2$
- Asymptotically the fish grows to a weight of 20.2 kg

Example - von Bertalanffy Model

Solution 1 (cont): Graphing the von Bertalanffy Model

 von Bertalanffy Equation

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Problem 2: Inverse of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

Height and Weight Relationship for Children

Example - Inverse von Bertalanffy Model

Problem 2: Inverse of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- Solve the above equation for age, a, as a function of the weight, W

Example - Inverse von Bertalanffy Model

Problem 2: Inverse of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- Solve the above equation for age, a, as a function of the weight, W
- Differentiate this function, finding the rate of change of age with respect to weight

Example - Inverse von Bertalanffy Model

Problem 2: Inverse of von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

- Solve the above equation for age, a, as a function of the weight, W
- Differentiate this function, finding the rate of change of age with respect to weight
- Graph this function showing any intercepts and asymptotes

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2: The von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

$$
20.2 e^{-0.019 a}=20.2-W
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2: The von Bertalanffy Model

$$
W(a)=20.2-20.2 e^{-0.019 a}
$$

$$
\begin{aligned}
20.2 e^{-0.019 a} & =20.2-W \\
e^{0.019 a} & =\frac{20.2}{20.2-W}
\end{aligned}
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2: The von Bertalanffy Model

$$
\begin{aligned}
& W(a)=20.2-20.2 e^{-0.019 a} \\
& 20.2 e^{-0.019 a}=20.2-W \\
& e^{0.019 a}=\frac{20.2}{20.2-W} \\
& a=\frac{1}{0.019} \ln \left(\frac{20.2}{20.2-W}\right)
\end{aligned}
$$

Example - Inverse von Bertalanffy Model

Solution 2: The von Bertalanffy Model

$$
\begin{aligned}
& W(a)=20.2-20.2 e^{-0.019 a} \\
& 20.2 e^{-0.019 a}=20.2-W \\
& e^{0.019 a}=\frac{20.2}{20.2-W} \\
& a=\frac{1}{0.019} \ln \left(\frac{20.2}{20.2-W}\right) \\
& a(W)=\frac{1}{0.019}(\ln (20.2)-\ln (20.2-W))
\end{aligned}
$$

Example - Inverse von Bertalanffy Model

Solution 2: The von Bertalanffy Model

$$
\begin{aligned}
& W(a)=20.2-20.2 e^{-0.019 a} \\
& 20.2 e^{-0.019 a}=20.2-W \\
& e^{0.019 a}=\frac{20.2}{20.2-W} \\
& a=\frac{1}{0.019} \ln \left(\frac{20.2}{20.2-W}\right) \\
& a(W)=\frac{1}{0.019}(\ln (20.2)-\ln (20.2-W))
\end{aligned}
$$

The age, a, as a function of the weight, W, is

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

cannot be directly differentiated without the chain rule

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

cannot be directly differentiated without the chain rule
Consider the substitution, $Z=20.2-W$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

cannot be directly differentiated without the chain rule
Consider the substitution, $Z=20.2-W$
(Note that $\frac{d Z}{d W}=-1$)

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

cannot be directly differentiated without the chain rule
Consider the substitution, $Z=20.2-W$
(Note that $\frac{d Z}{d W}=-1$)

$$
a(Z)=158.2-52.63 \ln (Z)
$$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

cannot be directly differentiated without the chain rule
Consider the substitution, $Z=20.2-W$
$\left(\right.$ Note that $\left.\frac{d Z}{d W}=-1\right)$

$$
a(Z)=158.2-52.63 \ln (Z)
$$

Differentiating

$$
\frac{d a}{d Z}=-52.63 \frac{1}{Z}
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The derivative of the Inverse von Bertalanffy Model is

$$
\frac{d a}{d Z}=-52.63 \frac{1}{Z}
$$

Height and Weight Relationship for Children

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The derivative of the Inverse von Bertalanffy Model is

$$
\frac{d a}{d Z}=-52.63 \frac{1}{Z}
$$

We will show

$$
\frac{d a}{d W}=\frac{d a}{d Z} \times \frac{d Z}{d W}
$$

Height and Weight Relationship for Children

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The derivative of the Inverse von Bertalanffy Model is

$$
\frac{d a}{d Z}=-52.63 \frac{1}{Z}
$$

We will show

$$
\frac{d a}{d W}=\frac{d a}{d Z} \times \frac{d Z}{d W}
$$

Since $Z=20.2-W$ and $\frac{d Z}{d W}=-1$, the formula gives

$$
\frac{d a}{d W}=\frac{52.63}{20.2-W}
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

- $a(W)$ has a domain of $W<20.2$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

- $a(W)$ has a domain of $W<20.2$
- There is a vertical asymptote at $W=20.2$

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

- $a(W)$ has a domain of $W<20.2$
- There is a vertical asymptote at $W=20.2$
- The derivative shows that this function is strictly increasing

Example - Inverse von Bertalanffy Model

Solution 2 (cont): The Inverse von Bertalanffy Model

$$
a(W)=158.2-52.63 \ln (20.2-W)
$$

- $a(W)$ has a domain of $W<20.2$
- There is a vertical asymptote at $W=20.2$
- The derivative shows that this function is strictly increasing
- Since the function W(a) passes through the origin, its inverse function also passes through the origin

$$
a(0)=158.2-52.63 \ln (20.2)=0
$$

Height and Weight Relationship for Children Examples
von Bertalanffy Model
Inverse von Bertalanffy Model

Example - Inverse von Bertalanffy Model

Solution 2 (cont): Graphing the Inverse von Bertalanffy Model
 Inverse von Bertalanffy Equation

