Calculus for the Life Sciences I Lecture Notes – More Applications of Nonlinear Dynamical Systems

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/\sim jmahaffy$

Spring 2013

-(1/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Outline

Salmon PopulationsRicker's Model

Analysis of the Ricker's Model

- Equilibria
- Stability Analysis
- Skeena River Salmon Example
- Examples

Beverton-Holt and Hassell's Model

- Study of a Beetle Population
- Analysis of Hassell's Model
- Beetle Study Analysis
- More Examples

-(2/64)

Introduction - Population Models

Introduction - Population Models

• Simplest (linear) model - Malthusian or exponential growth model

-(3/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Introduction - Population Models

Introduction - Population Models

• Simplest (linear) model - Malthusian or exponential growth model

-(3/64)

★ 문 ► ★ 문 ►

• Logistic growth model is a quadratic model

Introduction - Population Models

Introduction - Population Models

- Simplest (linear) model Malthusian or exponential growth model
- Logistic growth model is a quadratic model
 - Malthusian growth term and a term for crowding effects
 - Has a carrying capacity reflecting natural limits to populations
 - Quadratic updating function becomes negative for large populations

-(3/64)

(日) (四) (日) (日) (日)

Introduction - Population Models

Introduction - Population Models

- Simplest (linear) model Malthusian or exponential growth model
- Logistic growth model is a quadratic model
 - Malthusian growth term and a term for crowding effects
 - Has a carrying capacity reflecting natural limits to populations
 - Quadratic updating function becomes negative for large populations
- Ecologists have modified the logistic growth model to make the updating function more realistic and better able to handle largely fluctuating populations

-(3/64)

(日) (四) (日) (日) (日)

Introduction - Population Models

Introduction - Population Models

- Simplest (linear) model Malthusian or exponential growth model
- Logistic growth model is a quadratic model
 - Malthusian growth term and a term for crowding effects
 - Has a carrying capacity reflecting natural limits to populations
 - Quadratic updating function becomes negative for large populations
- Ecologists have modified the logistic growth model to make the updating function more realistic and better able to handle largely fluctuating populations

-(3/64)

・ロト ・ 同ト ・ ヨト ・ ヨト

- Ricker's model used in fishery management
- Hassell's model used for insects

Introduction - Population Models

Introduction - Population Models

- Simplest (linear) model Malthusian or exponential growth model
- Logistic growth model is a quadratic model
 - Malthusian growth term and a term for crowding effects
 - Has a carrying capacity reflecting natural limits to populations
 - Quadratic updating function becomes negative for large populations
- Ecologists have modified the logistic growth model to make the updating function more realistic and better able to handle largely fluctuating populations

-(3/64)

- Ricker's model used in fishery management
- Hassell's model used for insects
- Differentiation needed to analyze these models

Ricker's Model

-(4/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

SDSU > < ≣ > ≣ • ९९२

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ricker's Model

-(4/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

• Salmon are unique in that they breed in specific fresh water lakes and die

∃ >

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

- Salmon are unique in that they breed in specific fresh water lakes and die
- Their offspring migrate to the ocean and mature for about 4-5 years

-(4/64)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

- Salmon are unique in that they breed in specific fresh water lakes and die
- Their offspring migrate to the ocean and mature for about 4-5 years
- Mature salmon migrate at the same time to return to the exact same lake or river bed where they hatched

-(4/64)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

- Salmon are unique in that they breed in specific fresh water lakes and die
- Their offspring migrate to the ocean and mature for about 4-5 years
- Mature salmon migrate at the same time to return to the exact same lake or river bed where they hatched

-(4/64)

• Adult salmon breed and die

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Life Cycle

- Salmon are unique in that they breed in specific fresh water lakes and die
- Their offspring migrate to the ocean and mature for about 4-5 years
- Mature salmon migrate at the same time to return to the exact same lake or river bed where they hatched
- Adult salmon breed and die
- Their bodies provide many essential nutrients that nourish the stream of their young

-(4/64)

Ricker's Model

Sockeye Salmon Populations

2

Sockeye Salmon Populations – Problems

• Salmon populations in the Pacific Northwest are becoming very endangered

- (5/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Problems

• Salmon populations in the Pacific Northwest are becoming very endangered

-(5/64)

• Many salmon spawning runs have become extinct

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Problems

- Salmon populations in the Pacific Northwest are becoming very endangered
- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon

-(5/64)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Problems

- Salmon populations in the Pacific Northwest are becoming very endangered
- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon

-(5/64)

• Damming rivers interrupts the runs

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Problems

- Salmon populations in the Pacific Northwest are becoming very endangered
- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon

-(5/64)

- Damming rivers interrupts the runs
- Forestry allows the water to become too warm

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Problems

- Salmon populations in the Pacific Northwest are becoming very endangered
- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon

-(5/64)

- Damming rivers interrupts the runs
- Forestry allows the water to become too warm
- Agriculture results in runoff pollution

Ricker's Model

-(6/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

• The life cycle of the salmon is an example of a complex discrete dynamical system

∃ >

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ricker's Model

-(6/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system in British Columbia

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system in British Columbia

-(6/64)

• Largely uneffected by human development

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system in British Columbia

-(6/64)

- Largely uneffected by human development
- Long time series of data 1908 to 1952

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system in British Columbia

-(6/64)

- Largely uneffected by human development
- Long time series of data 1908 to 1952
- Provide good system to model

Ricker's Model

-(7/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Spawning Behavior

• Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system

Ricker's Model

-(7/64)

Sockeye Salmon Populations

Sockeye Salmon Populations – Spawning Behavior

- Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system
- Table lists four year averages from the starting year

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Spawning Behavior

- Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system
- Table lists four year averages from the starting year
- Since 4 and 5 year old salmon spawn, each grouping of 4 years is an approximation of the offspring of the previous 4 year average

-(7/64)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Spawning Behavior

- Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system
- Table lists four year averages from the starting year
- Since 4 and 5 year old salmon spawn, each grouping of 4 years is an approximation of the offspring of the previous 4 year average
- Model is complicated because the salmon have adapted to have either 4 or 5 year old mature adults spawn

-(7/64)

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Spawning Behavior

- Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system
- Table lists four year averages from the starting year
- Since 4 and 5 year old salmon spawn, each grouping of 4 years is an approximation of the offspring of the previous 4 year average
- Model is complicated because the salmon have adapted to have either 4 or 5 year old mature adults spawn

-(7/64)

・ロト ・同ト ・ヨト ・ヨト

• Simplify the model by ignoring this complexity

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations – Skeena River Table

Population in thousands

Year	Population	Year	Population
1908	1,098	1932	278
1912	740	1936	448
1916	714	1940	528
1920	615	1944	639
1924	706	1948	523
1928	510		

Four Year Averages of Skeena River Sockeye Salmon

- (8/64)

Ricker's Model

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

505 स≣र्मेडर ≣ •0९

Image: Image:

-(9/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

Ricker's Model

- (9/64)

• = • • = •

• Logistic growth model predicted certain yeast populations well

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

• Logistic growth model predicted certain yeast populations well

-(9/64)

• This model does not fit the data for many organisms

Ricker's Model

・ロト ・同ト ・ヨト ・ヨト

ker's Model

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

- Logistic growth model predicted certain yeast populations well
- This model does not fit the data for many organisms
- A major problem is that large populations in the model return a negative population in the next generation

-(9/64)

・ロト ・同ト ・ヨト ・ヨト

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

Ricker's Model

- Logistic growth model predicted certain yeast populations well
- This model does not fit the data for many organisms
- A major problem is that large populations in the model return a negative population in the next generation

-(9/64)

• Several alternative models use only a **non-negative** updating function

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

Ricker's Model

- Logistic growth model predicted certain yeast populations well
- This model does not fit the data for many organisms
- A major problem is that large populations in the model return a negative population in the next generation
- Several alternative models use only a **non-negative** updating function
- Fishery management has often used **Ricker's Model**

-(9/64)

(日) (四) (日) (日) (日)

Ricker's Model

-(10/64)

• = • • = •

Ricker's Model – Salmon

Ricker's Model

• **Ricker's model** was originally formulated using studies of salmon populations

Ricker's Model

Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

-(10/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU = १९९९

프 문 문 프 문

Ricker's Model

Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

-(10/64)

• The positive constants a and b are fit to the data

- ⇒ >

Ricker's Model

Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

-(10/64)

- The positive constants a and b are fit to the data
- Consider the Skeena river salmon data

Ricker's Model

Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

- The positive constants a and b are fit to the data
- Consider the Skeena river salmon data
 - The parent population of 1908-1911 is averaged to 1,098,000 salmon/year returning to the Skeena river watershed

-(10/64)

・ロト ・同ト ・ヨト ・ヨト

Ricker's Model

Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

- The positive constants a and b are fit to the data
- Consider the Skeena river salmon data
 - The parent population of 1908-1911 is averaged to 1,098,000 salmon/year returning to the Skeena river watershed

・ロト ・同ト ・ヨト ・ヨト

• It is assumed that the resultant offspring that return to spawn from this group occurs between 1912 and 1915, which averages 740,000 salmon/year

Ricker's Model

Ricker's Model – Salmon

• Successive populations give data for updating functions

-(11/64)

3

Ricker's Model

-(11/64)

Ricker's Model – Salmon

- Successive populations give data for updating functions
 - P_n is parent population, and P_{n+1} is surviving offspring

3

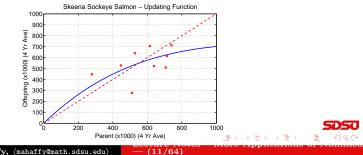
Ricker's Model

Ricker's Model – Salmon

• Successive populations give data for updating functions

- P_n is parent population, and P_{n+1} is surviving offspring
- Nonlinear least squares fit of Ricker's function

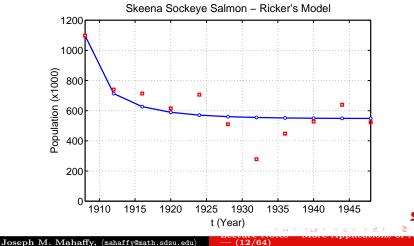
$$P_{n+1} = 1.535 \, P_n e^{-0.000783 \, P_n}$$



Ricker's Model – Salmon

Simulate the Ricker's model using the initial average in 1908 as a starting point

Ricker's Model



4

Ricker's Model

Image: Image:

-(13/64)

Ricker's Model – Salmon

Summary of Ricker's Model for Skeena river salmon

• Ricker's model levels off at a stable equilibrium around 550,000

Ricker's Model

Ricker's Model – Salmon

Summary of Ricker's Model for Skeena river salmon

- Ricker's model levels off at a stable equilibrium around 550,000
- Model shows populations monotonically approaching the equilibrium

-(13/64)

A B > A B >

Ricker's Model

Ricker's Model – Salmon

Summary of Ricker's Model for Skeena river salmon

- Ricker's model levels off at a stable equilibrium around 550,000
- Model shows populations monotonically approaching the equilibrium
- There are a few fluctuations from the variations in the environment

-(13/64)

Ricker's Model

Ricker's Model – Salmon

Summary of Ricker's Model for Skeena river salmon

- Ricker's model levels off at a stable equilibrium around 550,000
- Model shows populations monotonically approaching the equilibrium
- There are a few fluctuations from the variations in the environment

-(13/64)

• Low point during depression, suggesting bias from economic factors

Equilibria Stability Analysis Skeena River Salmon Example Examples

Image: Image:

-(14/64)

- 씨 코 씨 씨 코 씨

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibria Stability Analysis Skeena River Salmon Example Examples

Image: Image:

-(14/64)

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

Equilibria Stability Analysis Skeena River Salmon Example Examples

Image: Image:

-(14/64)

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

$$P_e = aP_e e^{-bP_e}$$
$$0 = P_e (ae^{-bP_e} - 1)$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU = १९९९

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

$$P_e = aP_e e^{-bP_e}$$
$$0 = P_e (ae^{-bP_e} - 1)$$

The equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(a)}{b}$

(14/64)

Equilibria Skeena River Salmon Example

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

$$P_e = aP_e e^{-bP_e}$$
$$0 = P_e (ae^{-bP_e} - 1)$$

The equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(a)}{b}$

Note that a > 1 required for a positive equilibrium

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

2

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

 $R(P) = aPe^{-bP}$

-(15/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

2

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

$$R(P) = aPe^{-bP}$$

Derivative of the Ricker Updating Function

$$R'(P) = a(P(-be^{-bP}) + e^{-bP}) = ae^{-bP}(1 - bP)$$

-(15/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

2

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

$$R(P) = aPe^{-bP}$$

Derivative of the Ricker Updating Function

$$R'(P) = a(P(-be^{-bP}) + e^{-bP}) = ae^{-bP}(1 - bP)$$

At the **Equilibrium** $P_e = 0$

$$R(0) = a$$

-(15/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

・ロト ・同ト ・ヨト ・ヨト

Analysis of the Ricker's Model

2

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

$$R(P) = aPe^{-bP}$$

Derivative of the Ricker Updating Function

$$R'(P) = a(P(-be^{-bP}) + e^{-bP}) = ae^{-bP}(1 - bP)$$

At the **Equilibrium** $P_e = 0$

$$R(0) = a$$

• If 0 < a < 1, then $P_e = 0$ is stable and the population goes to extinction (also no positive equilibrium)

-(15/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

2

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

$$R(P) = aPe^{-bP}$$

Derivative of the Ricker Updating Function

$$R'(P) = a(P(-be^{-bP}) + e^{-bP}) = ae^{-bP}(1 - bP)$$

At the **Equilibrium** $P_e = 0$

$$R(0) = a$$

- If 0 < a < 1, then $P_e = 0$ is stable and the population goes to extinction (also no positive equilibrium)
- If a > 1, then $P_e = 0$ is unstable and the population grows away from the equilibrium

-(15/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1-bP)$$

-(16/64)

3

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Stability Analysis Skeena River Salmon Example

Analysis of the Ricker's Model

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1-bP)$$

At the **Equilibrium** $P_e = \frac{\ln(a)}{b}$

 $R(\ln(a)/b) = ae^{-\ln(a)}(1 - \ln(a)) = 1 - \ln(a)$

-(16/64)

・ロト ・同ト ・ヨト ・ヨト

Introduction Equilib Salmon Populations Stabilit Analysis of the Ricker's Model Skeena Beverton-Holt and Hassell's Model

Equilibria Stability Analysis Skeena River Salmon Example Examples

・ロト ・同ト ・ヨト ・ヨト

Analysis of the Ricker's Model

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1-bP)$$

At the **Equilibrium** $P_e = \frac{\ln(a)}{b}$

$$R(\ln(a)/b) = ae^{-\ln(a)}(1 - \ln(a)) = 1 - \ln(a)$$

 The solution of Ricker's model is stable and monotonically approaches the equilibrium P_e = ln(a)/b provided 1 < a < e ≈ 2.7183

-(16/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

(日) (四) (日) (日) (日)

Analysis of the Ricker's Model

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1-bP)$$

At the **Equilibrium** $P_e = \frac{\ln(a)}{b}$

$$R(\ln(a)/b) = ae^{-\ln(a)}(1 - \ln(a)) = 1 - \ln(a)$$

- The solution of Ricker's model is stable and monotonically approaches the equilibrium P_e = ln(a)/b provided 1 < a < e ≈ 2.7183
- The solution of Ricker's model is **stable** and **oscillates as it approaches** the equilibrium $P_e = \ln(a)/b$ provided $e < a < e^2 \approx 7.389$

-(16/64)

Equilibria Stability Analysis Skeena River Salmon Example Examples

Analysis of the Ricker's Model

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1-bP)$$

At the **Equilibrium** $P_e = \frac{\ln(a)}{b}$

$$R(\ln(a)/b) = ae^{-\ln(a)}(1 - \ln(a)) = 1 - \ln(a)$$

- The solution of Ricker's model is stable and monotonically approaches the equilibrium P_e = ln(a)/b provided 1 < a < e ≈ 2.7183
- The solution of Ricker's model is **stable** and **oscillates as it approaches** the equilibrium $P_e = \ln(a)/b$ provided $e < a < e^2 \approx 7.389$
- The solution of Ricker's model is **unstable** and **oscillates** as it grows away the equilibrium $P_e = \ln(a)/b$ provided $a > e^2 \approx 7.389$

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

 $P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$

-(17/64)

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

-(17/64)

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

-(17/64)

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

-(17/64)

• At
$$P_e = 0$$
, $R'(0) = 1.535 > 1$

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

-(17/64)

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

At P_e = 0, R'(0) = 1.535 > 1
This equilibrium is unstable (as expected)
At P_e = 547.3, R'(547.3) = 0.571 < 1
This equilibrium is stable with solutions monotonically approaching the equilibrium, as observed in the simulation \$\$

Example 1 - Ricker's Growth Model

Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02P_n}$$

-(18/64)

Skip Example

SDSU ののの 手 《手》《手》《**小**》 < □ >

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02P_n}$$

Skip Example

• Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes

-(18/64)

・ロト ・同ト ・ヨト ・ヨト

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria

-(18/64)

Example 1 - Ricker's Growth Model

Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria

-(18/64)

• Let $P_0 = 100$, and simulate the model for 50 years

Example 1 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P)=7\,Pe^{-0.02P}$

Example 1 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P)=7\,Pe^{-0.02P}$

-(19/64)

• The only intercept is the origin (0,0)

Example 1 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P) = 7 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$

-(19/64)

・ロト ・同ト ・ヨト ・ヨト

Example 1 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P) = 7 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 7(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= 7 e^{-0.02P}(1 - 0.02 P)

-(19/64)

Example 1 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P) = 7 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 7(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= 7 e^{-0.02P}(1 - 0.02 P)

-(19/64)

• This gives a critical point at $P_c = 50$

Equilibria
Stability Analysis
Skeena River Salmon Example
Examples

Example 1 - Ricker's Growth Model

3

Solution (cont) The Ricker's function has a maximum at

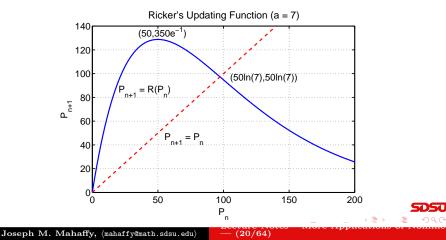
 $(P_c, R(P_c)) = (50, 350e^{-1}) \approx (50, 128.76)$

(20/64)

Example 1 - Ricker's Growth Model

Solution (cont) The Ricker's function has a maximum at

 $(P_c, R(P_c)) = (50, 350e^{-1}) \approx (50, 128.76)$



Example 1 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 7 P_e e^{-0.02P_e}$$

-(21/64)

イロト イポト イヨト イヨト

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Stability Analysis Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 7 P_e e^{-0.02P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

$$1 = 7 e^{-0.02P_e}$$
 or $e^{0.02P_e} = 7$

-(21/64)

Example 1 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 7 P_e e^{-0.02P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

$$1 = 7 e^{-0.02P_e}$$
 or $e^{0.02P_e} = 7$

-(21/64)

(日) (四) (日) (日) (日)

This gives the other equilibrium $P_e = 50 \ln(7) \approx 97.3$

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

-(22/64)

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

-(22/64)

• For $P_e = 0$

Example 1 - Ricker's Growth Model

5

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

-(22/64)

- For $P_e = 0$
 - The derivative R'(0) = 7 > 1

ヘロマ 山田 マルビマ 山田 シュロシ

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 7 > 1
- Solutions monotonically grow away from $P_e = 0$

-(22/64)

SDSU

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 7 > 1
- Solutions monotonically grow away from $P_e = 0$

-(22/64)

• For $P_e = 97.3$

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 7 > 1
- Solutions monotonically grow away from $P_e = 0$

-(22/64)

- For $P_e = 97.3$
 - The derivative $R'(97.3) = 1 \ln(7) \approx -0.95$

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 7 > 1
- Solutions monotonically grow away from $P_e = 0$

-(22/64)

- For $P_e = 97.3$
 - The derivative $R'(97.3) = 1 \ln(7) \approx -0.95$
 - Solutions oscillate, but approach $P_e = 97.3$

Example 1 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 7 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

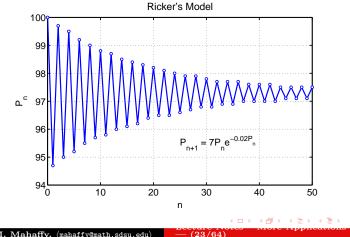
- The derivative R'(0) = 7 > 1
- Solutions monotonically grow away from $P_e = 0$
- For $P_e = 97.3$
 - The derivative $R'(97.3) = 1 \ln(7) \approx -0.95$
 - Solutions oscillate, but approach $P_e = 97.3$
 - This is a **stable equilibrium**, so populations eventually settle to $P_e = 97.3$

-(22/64)

(日) (四) (日) (日) (日)

Example 1 - Ricker's Growth Model

Solution (cont) Starting with $P_0 = 100$, the simulation shows the behavior predicted above



Example 2 - Ricker's Growth Model

1

Example 2 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 9 P_n e^{-0.02P_n}$$

-(24/64)

Skip Example

5050 ののの ま くまとくまとく むと

Example 2 - Ricker's Growth Model

Example 2 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 9 P_n e^{-0.02P_n}$$

Skip Example

• Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes

-(24/64)

・ロト ・同ト ・ヨト ・ヨト

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Skeena River Salmon Example Examples

Example 2 - Ricker's Growth Model

Example 2 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 9 P_n e^{-0.02P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria

-(24/64)

Example 2 - Ricker's Growth Model

Example 2 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 9 P_n e^{-0.02P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria

-(24/64)

• Let $P_0 = 100$, and simulate the model for 50 years

Example 2 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P)=9\,Pe^{-0.02P}$

-(25/64)

Example 2 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P)=9\,Pe^{-0.02P}$

-(25/64)

• The only intercept is the origin (0,0)

Example 2 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P) = 9 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$

-(25/64)

・ロト ・同ト ・ヨト ・ヨト

Example 2 - Ricker's Growth Model

6

Solution The Ricker's growth function is

 $R(P) = 9 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 9(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= 9 e^{-0.02P}(1 - 0.02 P)

-(25/64)

Example 2 - Ricker's Growth Model

2

Solution The Ricker's growth function is

 $R(P) = 9 P e^{-0.02P}$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 9(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= 9 e^{-0.02P}(1 - 0.02 P)

-(25/64)

• This gives a critical point at $P_c = 50$

Example 2 - Ricker's Growth Model

3

Solution (cont) The Ricker's function has a maximum at

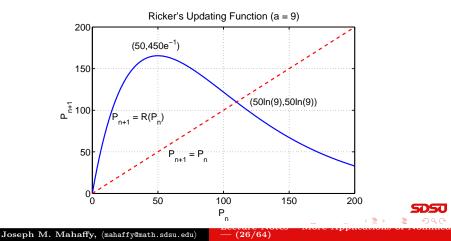
 $(P_c, R(P_c)) = (50, 450e^{-1}) \approx (50, 165.5)$

-(26/64)

Example 2 - Ricker's Growth Model

Solution (cont) The Ricker's function has a maximum at

 $(P_c, R(P_c)) = (50, 450e^{-1}) \approx (50, 165.5)$



Example 2 - Ricker's Growth Model

4

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 9 P_e e^{-0.02P_e}$$

-(27/64)

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Stability Analysis Skeena River Salmon Example Examples

Example 2 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 9 P_e e^{-0.02P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

$$1 = 9 e^{-0.02P_e}$$
 or $e^{0.02P_e} = 9$

-(27/64)

Example 2 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 9 P_e e^{-0.02P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

$$1 = 9 e^{-0.02P_e}$$
 or $e^{0.02P_e} = 9$

-(27/64)

(日) (四) (日) (日) (日)

This gives the other equilibrium $P_e = 50 \ln(9) \approx 109.86$

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

-(28/64)

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

-(28/64)

• For $P_e = 0$

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

• For
$$P_e = 0$$

• The derivative R'(0) = 9 > 1

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU

・ロト ・同ト ・ヨト ・ヨト

-(28/64)

 Introduction
 Equilibria

 Salmon Populations
 Stability Analysis

 Analysis of the Ricker's Model
 Skeena River Salmon Example

 Beverton-Holt and Hassell's Model
 Examples

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 9 > 1
- Solutions monotonically grow away from $P_e = 0$

-(28/64)

・ロト ・同ト ・ヨト ・ヨト

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 9 > 1
- Solutions monotonically grow away from $P_e = 0$

-(28/64)

・ロト ・同ト ・ヨト ・ヨト

• For $P_e = 109.86$

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 9 > 1
- Solutions monotonically grow away from $P_e = 0$

-(28/64)

• For
$$P_e = 109.86$$

• The derivative $R'(109.86) = 1 - \ln(9) \approx -1.197$

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

• For $P_e = 0$

- The derivative R'(0) = 9 > 1
- Solutions monotonically grow away from $P_e = 0$
- For $P_e = 109.86$
 - The derivative $R'(109.86) = 1 \ln(9) \approx -1.197$
 - Solutions oscillate and grow away from $P_e = 109.86$

-(28/64)

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9 e^{-0.02P} (1 - 0.02P)$$

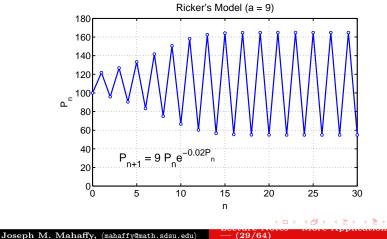
• For $P_e = 0$

- The derivative R'(0) = 9 > 1
- Solutions monotonically grow away from $P_e = 0$
- For $P_e = 109.86$
 - The derivative $R'(109.86) = 1 \ln(9) \approx -1.197$
 - Solutions oscillate and grow away from $P_e = 109.86$
 - This is a **unstable equilibrium**, and populations oscillate with **Period 2** between 55 and 165

-(28/64)

Example 2 - Ricker's Growth Model

Solution (cont) Starting with $P_0 = 100$, the simulation shows the behavior predicted above



Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

-(30/64)

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

-(30/64)

• Developed in 1957 for fisheries management

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

-(30/64)

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1
- Carrying capacity

$$M = \frac{a-1}{b}$$

-(30/64)

< E> < E>

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1
- Carrying capacity

$$M = \frac{a-1}{b}$$

(30/64)

· * E * * E *

• Superior to **logistic** model as updating function is non-negative

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1
- Carrying capacity

$$M = \frac{a-1}{b}$$

- Superior to **logistic** model as updating function is non-negative
- Rare amongst nonlinear models Has an explicit solution

(30/64)

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1+bP_n}$$

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1
- Carrying capacity

$$M = \frac{a-1}{b}$$

- Superior to **logistic** model as updating function is non-negative
- Rare amongst nonlinear models Has an explicit solution
- Given an initial population, P_0

(30/64)

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^c}$$

-(31/64)

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^c}$$

-(31/64)

• Often used in insect populations

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^c}$$

- Often used in insect populations
- Provides alternative to **logistic** and **Ricker's** growth models, extending the **Beverton-Holt** model

-(31/64)

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^c}$$

- Often used in insect populations
- Provides alternative to **logistic** and **Ricker's** growth models, extending the **Beverton-Holt** model
- $H(P_n)$ has **3 parameters**, *a*, *b*, and *c*, while logistic, Ricker's, and Beverton-Holt models have **2 parameters**

-(31/64)

Introduction	Study of a Beetle Population
Salmon Populations	Analysis of Hassell's Model
Analysis of the Ricker's Model	Beetle Study Analysis
Beverton-Holt and Hassell's Model	More Examples

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^c}$$

- Often used in insect populations
- Provides alternative to **logistic** and **Ricker's** growth models, extending the **Beverton-Holt** model
- $H(P_n)$ has **3 parameters**, *a*, *b*, and *c*, while logistic, Ricker's, and Beverton-Holt models have **2 parameters**
- Malthusian growth rate a 1, like Beverton-Holt model

-(31/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

-(32/64)

Study of a Beetle Population

Study of a Beetle Population

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

• In 1946, A. C. Crombie studied several beetle populations

-(32/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

• In 1946, A. C. Crombie studied several beetle populations

-(32/64)

• The food was strictly controlled to maintain a constant supply

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

• In 1946, A. C. Crombie studied several beetle populations

-(32/64)

- The food was strictly controlled to maintain a constant supply
- 10 grams of cracked wheat were added weekly

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

• In 1946, A. C. Crombie studied several beetle populations

(32/64)

- The food was strictly controlled to maintain a constant supply
- 10 grams of cracked wheat were added weekly
- Regular census of the beetle populations recorded

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

- In 1946, A. C. Crombie studied several beetle populations
- The food was strictly controlled to maintain a constant supply
- 10 grams of cracked wheat were added weekly
- Regular census of the beetle populations recorded
- These are experimental conditions for the Logistic growth model

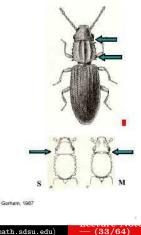
-(32/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

2

Study of *Oryzaephilus surinamensis*, the saw-tooth grain beetle



Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Data on *Oryzaephilus surinamensis*, the saw-tooth grain beetle

Week	Adults	Week	Adults
0	4	16	405
2	4	18	471
4	25	20	420
6	63	22	430
8	147	24	420
10	285	26	475
12	345	28	435
14	361	30	480

-(34/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

4

Updating functions - Least squares best fit to data

• Plot the data, P_{n+1} vs. P_n , to fit an updating function

-(35/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

-(35/64)

Study of a Beetle Population

4

Updating functions - Least squares best fit to data

- Plot the data, P_{n+1} vs. P_n , to fit an updating function
- Logistic growth model fit to data (SSE = 13,273)

$$P_{n+1} = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2} \right)$$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

4

Updating functions - Least squares best fit to data

- Plot the data, P_{n+1} vs. P_n , to fit an updating function
- Logistic growth model fit to data (SSE = 13,273)

$$P_{n+1} = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2} \right)$$

• **Beverton-Holt model** fit to data (SSE = 10,028)

$$P_{n+1} = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

-(35/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Updating functions - Least squares best fit to data

- Plot the data, P_{n+1} vs. P_n , to fit an updating function
- Logistic growth model fit to data (SSE = 13,273)

$$P_{n+1} = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2} \right)$$

• **Beverton-Holt model** fit to data (SSE = 10,028)

$$P_{n+1} = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

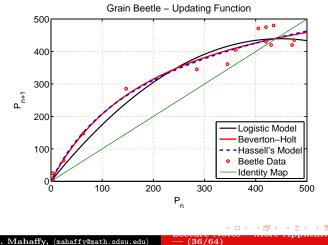
• Hassell's growth model fit to data (SSE = 9,955)

$$P_{n+1} = \frac{3.269 \, P_n}{(1+0.00745 \, P_n)^{0.8126}}$$

Study of a Beetle Population Analysis of Hassell's Model More Examples

Study of a Beetle Population

Graph of Updating functions and Beetle data



Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

6

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust P_0 by least sum of square errors to time series data on beetles

-(37/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust P_0 by **least sum of square errors** to time series data on beetles
- Logistic growth model fit to data gives $P_0 = 12.01$ with SSE = 12,027

-(37/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

- 씨 코 씨 씨 코 씨

Study of a Beetle Population

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust *P*₀ by **least sum of square errors** to time series data on beetles
- Logistic growth model fit to data gives $P_0 = 12.01$ with SSE = 12,027

-(37/64)

• **Beverton-Holt model** fit to data gives $P_0 = 2.63$ with SSE = 8,578

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust *P*₀ by **least sum of square errors** to time series data on beetles
- Logistic growth model fit to data gives $P_0 = 12.01$ with SSE = 12,027
- **Beverton-Holt model** fit to data gives $P_0 = 2.63$ with SSE = 8,578
- Hassell's growth model fit to data gives $P_0 = 2.08$ with SSE = 7,948

-(37/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust P_0 by **least sum of square errors** to time series data on beetles
- Logistic growth model fit to data gives $P_0 = 12.01$ with SSE = 12,027
- **Beverton-Holt model** fit to data gives $P_0 = 2.63$ with SSE = 8,578
- Hassell's growth model fit to data gives $P_0 = 2.08$ with SSE = 7,948

-(37/64)

• Beverton-Holt and Hassell's models are very close with both significantly better than the logistic growth model

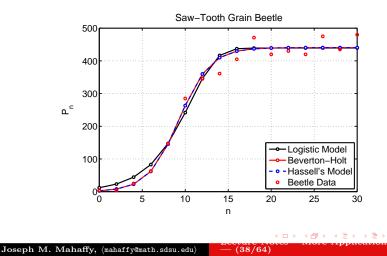
< ロ > < 部 > < き > < き >

6

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Time Series graph of Models with Beetle Data



7

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

1

Analysis of Hassell's Model – Equilibria

• Let
$$P_e = P_{n+1} = P_n$$
, so

$$P_e = \frac{aP_e}{(1+bP_e)^c}$$

-(39/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

-(39/64)

Analysis of Hassell's Model

1

Analysis of Hassell's Model – Equilibria

• Let
$$P_e = P_{n+1} = P_n$$
, so

$$P_e = \frac{aP_e}{(1+bP_e)^c}$$

• Thus,

$$P_e(1+bP_e)^c = aP_e$$

SDSU इ. १९९९

∃ >

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

-(39/64)

Analysis of Hassell's Model

1

Analysis of Hassell's Model – Equilibria

• Let
$$P_e = P_{n+1} = P_n$$
, so

$$P_e = \frac{aP_e}{(1+bP_e)^c}$$

• Thus,

$$P_e(1+bP_e)^c = aP_e$$

• One equilibrium is $P_e = 0$ (as expected the extinction equilibrium)

Study of a Beetle Population Analysis of Hassell's Model More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Equilibria

• Let
$$P_e = P_{n+1} = P_n$$
, so

$$P_e = \frac{aP_e}{(1+bP_e)^c}$$

• Thus,

$$P_e(1+bP_e)^c = aP_e$$

- One equilibrium is $P_e = 0$ (as expected the extinction equilibrium)
- The other satisfies

$$(1+bP_e)^c = a$$

$$1+bP_e = a^{1/c}$$

$$P_e = \frac{a^{1/c}-1}{b}$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

(39/04)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

2

Analysis of Hassell's Model – Stability Analysis

• Hassell's updating function is

$$H(P) = \frac{aP}{(1+bP)^c}$$

- (40/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

2

Analysis of Hassell's Model – Stability Analysis

• Hassell's updating function is

$$H(P) = \frac{aP}{(1+bP)^c}$$

-(40/64)

• Differentiate using the quotient rule and chain rule

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• Hassell's updating function is

$$H(P) = \frac{aP}{(1+bP)^c}$$

- Differentiate using the quotient rule and chain rule
- The derivative of the denominator (chain rule) is

$$\frac{d}{dP}(1+bP)^{c} = c(1+bP)^{c-1}b = bc(1+bP)^{c-1}$$

(40/64)

2

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• Hassell's updating function is

$$H(P) = \frac{aP}{(1+bP)^c}$$

- Differentiate using the quotient rule and chain rule
- The derivative of the denominator (chain rule) is

$$\frac{d}{dP}(1+bP)^{c} = c(1+bP)^{c-1}b = bc(1+bP)^{c-1}$$

• By the quotient rule

$$H'(P) = \frac{a(1+bP)^{c} - abcP(1+bP)^{c-1}}{(1+bP)^{2c}}$$
$$= a\frac{1+b(1-c)P}{(1+bP)^{c+1}}$$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

3

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

-(41/64)

0606 ୭୬୯ ≣ ≮≣⊁ ∢≣

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

3

프 - - - 프 - -

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

-(41/64)

• At
$$P_e = 0$$
, $H'(0) = a$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

-(41/64)

- A IB M A IB M

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

At P_e = 0, H'(0) = a
Since a > 1, the zero equilibrium is unstable

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

・ロト ・同ト ・ヨト ・ヨト

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

- At $P_e = 0, H'(0) = a$
 - Since a > 1, the zero equilibrium is **unstable**
 - Solutions monotonically growing away from the extinction equilibrium

-(41/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

-(42/64)

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

· * E * * E *

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

• At $P_e = (a^{1/c} - 1)/b$, we find

$$H'(P_e) = a \frac{1 + (1 - c)(a^{1/c} - 1)}{(1 + (a^{1/c} - 1))^{c+1}}$$
$$= \frac{c}{a^{1/c}} + 1 - c$$

-(42/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

• At $P_e = (a^{1/c} - 1)/b$, we find

$$H'(P_e) = a \frac{1 + (1 - c)(a^{1/c} - 1)}{(1 + (a^{1/c} - 1))^{c+1}}$$
$$= \frac{c}{a^{1/c}} + 1 - c$$

• The stability of the **carrying capacity equilibrium** depends on both *a* and *c*, but not *b*

-(42/64)

4

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

• At $P_e = (a^{1/c} - 1)/b$, we find

$$H'(P_e) = a \frac{1 + (1 - c)(a^{1/c} - 1)}{(1 + (a^{1/c} - 1))^{c+1}}$$
$$= \frac{c}{a^{1/c}} + 1 - c$$

- The stability of the **carrying capacity equilibrium** depends on both *a* and *c*, but not *b*
- When c = 1 (Beverton-Holt model) $H'(P_e) = \frac{1}{a}$, so this equilibrium is monotonically stable

-(42/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

1

Beetle Study Analysis – Logistic Growth Model

$$P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$$

-(43/64)

• The **equilibria** are $P_e = 0$ and 439.2

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

1

Beetle Study Analysis – Logistic Growth Model

$$P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$$

- The equilibria are $P_e = 0$ and 439.2
- The derivative of the updating function is

$$F'(P) = 1.962 - 0.00438 P$$

-(43/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis - Logistic Growth Model

$$P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$$

- The equilibria are $P_e = 0$ and 439.2
- The derivative of the updating function is

$$F'(P) = 1.962 - 0.00438 P$$

-(43/64)

• At $P_e = 0$, F'(0) = 1.962, so this equilibrium is monotonically unstable

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis – Logistic Growth Model

$$P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$$

- The equilibria are $P_e = 0$ and 439.2
- The derivative of the updating function is

$$F'(P) = 1.962 - 0.00438 P$$

• At $P_e = 0$, F'(0) = 1.962, so this equilibrium is monotonically unstable

• At $P_e = 439.2$, F'(439.2) = 0.038, so this equilibrium is monotonically stable

-(43/64)

Beetle Study Analysis

Beetle Study Analysis – Beverton-Holt Growth Model

$$P_{n+1} = B(P_n) = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

• The equilibria are $P_e = 0$ and 440.8

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Image: Image:

-(44/64)

Introduction Study of a Salmon Populations Analysis of Analysis of the Ricker's Model Beetle Stu Beverton-Holt and Hassell's Model More Exa

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

Beetle Study Analysis

Beetle Study Analysis – Beverton-Holt Growth Model

$$P_{n+1} = B(P_n) = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

- The equilibria are $P_e = 0$ and 440.8
- The derivative of the updating function is

$$B'(P) = \frac{3.010}{(1+0.00456\,P)^2}$$

-(44/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU

Beetle Study Analysis

Beetle Study Analysis – Beverton-Holt Growth Model

$$P_{n+1} = B(P_n) = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

- The equilibria are $P_e = 0$ and 440.8
- The derivative of the updating function is

$$B'(P) = \frac{3.010}{(1+0.00456\,P)^2}$$

-(44/64)

• At $P_e = 0$, B'(0) = 3.010, so this equilibrium is monotonically unstable

SDSU

Beetle Study Analysis

Beetle Study Analysis – Beverton-Holt Growth Model

$$P_{n+1} = B(P_n) = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

- The equilibria are $P_e = 0$ and 440.8
- The derivative of the updating function is

$$B'(P) = \frac{3.010}{(1+0.00456\,P)^2}$$

• At $P_e = 0$, B'(0) = 3.010, so this equilibrium is monotonically unstable

• At $P_e = 440.8$, B'(440.8) = 0.332, so this equilibrium is monotonically stable

-(44/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis – Hassell's Growth Model

$$P_{n+1} = H(P_n) = \frac{3.269 P_n}{(1 + 0.00745 P_n)^{0.8126}}$$

• The **equilibria** are $P_e = 0$ and 442.4

2

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis – Hassell's Growth Model

$$P_{n+1} = H(P_n) = \frac{3.269 P_n}{(1 + 0.00745 P_n)^{0.8126}}$$

- The equilibria are $P_e = 0$ and 442.4
- The derivative of the updating function is

$$H'(P) = 3.269 \frac{1 + 0.001396 P}{(1 + 0.00745 P)^{1.8126}}$$

-(45/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU

Beetle Study Analysis

Beetle Study Analysis – Hassell's Growth Model

$$P_{n+1} = H(P_n) = \frac{3.269 P_n}{(1 + 0.00745 P_n)^{0.8126}}$$

- The equilibria are $P_e = 0$ and 442.4
- The derivative of the updating function is

$$H'(P) = 3.269 \frac{1 + 0.001396 P}{(1 + 0.00745 P)^{1.8126}}$$

-(45/64)

• At $P_e = 0$, H'(0) = 3.269, so this equilibrium is monotonically unstable

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU

・ロト ・同ト ・ヨト ・ヨト

Study of a Beetle Population Analysis of Hassell's Model **Beetle Study Analysis** More Examples

Beetle Study Analysis

Beetle Study Analysis – Hassell's Growth Model

$$P_{n+1} = H(P_n) = \frac{3.269 P_n}{(1 + 0.00745 P_n)^{0.8126}}$$

- The equilibria are $P_e = 0$ and 442.4
- The derivative of the updating function is

$$H'(P) = 3.269 \frac{1 + 0.001396 P}{(1 + 0.00745 P)^{1.8126}}$$

• At $P_e = 0$, H'(0) = 3.269, so this equilibrium is monotonically unstable

• At $P_e = 442.4$, H'(442.4) = 0.3766, so this equilibrium is monotonically stable

-(45/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

2

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Example 1 - Beverton-Holt Model: Suppose that a population of insects (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = B(p_n) = \frac{20 \, p_n}{1 + 0.02 \, p_n}$$

-(46/64)

Skip Example

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Example 1 - Beverton-Holt Model: Suppose that a population of insects (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = B(p_n) = \frac{20 \, p_n}{1 + 0.02 \, p_n}$$

Skip Example

- Assume that $p_0 = 200$ and find the population for the next 3 weeks
- Simulate the model for 10 weeks
- Graph the **updating function** with the identity map
- Determine the **equilibria** and analyze their **stability**

(日) (四) (日) (日) (日)

Introduction Salmon Populations Analysis of Hassell's Model Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Examples

Example 1 - Beverton-Holt Model

2

Solution - Beverton-Holt Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{20(200)}{(1+0.02(200))} = 800$$

-(47/64)

Analysis of Hassell's Model More Examples

Example 1 - Beverton-Holt Model

Solution - Beverton-Holt Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{20(200)}{(1+0.02(200))} = 800$$
$$p_2 = \frac{20(800)}{(1+0.02(800))} = 941$$

-(47/64)

Introduction Study Salmon Populations Analys Analysis of the Ricker's Model Beetle Beverton-Holt and Hassell's Model More F

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution - Beverton-Holt Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{20(200)}{(1+0.02(200))} = 800$$

$$p_2 = \frac{20(800)}{(1+0.02(800))} = 941$$

$$p_3 = \frac{20(941)}{(1+0.02(941))} = 949.6$$

-(47/64)

Introduction Study of a Beetle Population Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Examples

Example 1 - Beverton-Holt Model

Analysis of Hassell's Model

Solution - Beverton-Holt Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{20(200)}{(1+0.02(200))} = 800$$

$$p_2 = \frac{20(800)}{(1+0.02(800))} = 941$$

$$p_3 = \frac{20(941)}{(1+0.02(941))} = 949.6$$

From before, the **carrying capacity** for the Beverton-Holt model is 10

$$M = \frac{a-1}{b} = \frac{19}{0.02} = 950$$

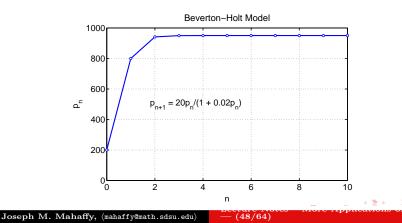
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(47/64)

Example 1 - Beverton-Holt Model

Solution (cont): The explicit solution for this model is

$$p_n = \frac{950 \, p_0}{p_0 + (950 - p_0)20^{-n}} = \frac{950}{1 + 3.75(20)^{-n}}$$



Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

4

Solution (cont): Graphing the Updating function

$$B(p) = \frac{20\,p}{1+0.02\,p}$$

-(49/64)

• The only intercept is the origin

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

4

Solution (cont): Graphing the Updating function

$$B(p) = \frac{20\,p}{1+0.02\,p}$$

- The only intercept is the origin
- There is a **horizontal asymptote** satisfying

$$\lim_{p \to \infty} B(p) = \frac{20}{0.02} = 1000$$

-(49/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

4

Solution (cont): Graphing the Updating function

$$B(p) = \frac{20\,p}{1+0.02\,p}$$

- The only intercept is the origin
- There is a **horizontal asymptote** satisfying

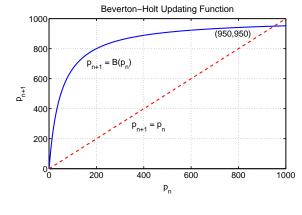
$$\lim_{p \to \infty} B(p) = \frac{20}{0.02} = 1000$$

-(49/64)

• Biologically, this asymptote means that there is a maximum number in the next generation no matter how large the population starts

Example 1 - Beverton-Holt Model

Solution (cont): The updating function and identity map



(50/64)

∃ >

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

-(51/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

-(51/64)

• One equilibrium is $p_e = 0$

UEUE うりの E イヨト イヨト (四ト イロト

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1 + 0.02 p_e = 20$$
 or $p_e = 950$

-(51/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1 + 0.02 p_e = 20$$
 or $p_e = 950$

• The derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

・ロト ・同ト ・ヨト ・ヨト

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model – Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

-(52/64)

• Equilibrium $p_e = 0$ has B'(0) = 20

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model –

Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

- Equilibrium $p_e = 0$ has B'(0) = 20
- The extinction equilibrium is unstable with solutions monotonically growing away

-(52/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model – Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

- Equilibrium $p_e = 0$ has B'(0) = 20
- The extinction equilibrium is unstable with solutions monotonically growing away

-(52/64)

• The equilibrium $p_e = 950$ has $B'(950) = \frac{1}{20}$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

7

Solution (cont): Analysis of Beverton-Holt model – Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

- Equilibrium $p_e = 0$ has B'(0) = 20
- The extinction equilibrium is unstable with solutions monotonically growing away

-(52/64)

- The equilibrium $p_e = 950$ has $B'(950) = \frac{1}{20}$
- The carrying capacity equilibrium is stable with solutions monotonically approaching

Example 2 - Hassell's Model

1

Example 2 - Hassell's Model: Suppose that a population of butterflies (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = H(p_n) = \frac{81 \, p_n}{(1 + 0.002 \, p_n)^4}$$

-(53/64)

Skip Example

Example 2 - Hassell's Model

Example 2 - Hassell's Model: Suppose that a population of butterflies (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = H(p_n) = \frac{81 \, p_n}{(1 + 0.002 \, p_n)^4}$$

Skip Example

• Assume that $p_0 = 200$ and find the population for the next 2 weeks

-(53/64)

- Simulate the model for 20 weeks
- Graph the **updating function** with the identity map
- Determine the **equilibria** and analyze their **stability**

・ロト ・ 同ト ・ ヨト ・ ヨト

 Introduction
 Study of a Beetle Population

 Salmon Populations
 Analysis of Hassell's Model

 Beverton-Holt and Hassell's Model
 More Examples

Example 2 - Hassell's Model

Solution - Hassell's Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{81(200)}{(1+0.002(200))^4} = 4217$$

-(54/64)

Introduction Study of Salmon Populations Analysis Analysis of the Ricker's Model Beetle S Beverton-Holt and Hassell's Model More Ex-

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 2 - Hassell's Model

Solution - Hassell's Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{81(200)}{(1+0.002(200))^4} = 4217$$
$$p_2 = \frac{81(4217)}{(1+0.002(4217))^4} = 43$$

-(54/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU

Introduction Study Salmon Populations Analy Analysis of the Ricker's Model Beetle Beverton-Holt and Hassell's Model More

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

・ロト ・同ト ・ヨト ・ヨト

Example 2 - Hassell's Model

Solution - Hassell's Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{81(200)}{(1+0.002(200))^4} = 4217$$

$$p_2 = \frac{81(4217)}{(1+0.002(4217))^4} = 43$$

These iterations show dramatic population swings, suggesting instability in the model

-(54/64)

Example 2 - Hassell's Model

Solution (cont): This model is iterated 20 times, and the observed behavior is a Period 4 solution Asymptotically cycles from 163 to 4271 to 42 to 2453

Hassell's Model 4500 4000 3500 3000 2500 م 2000 1500 1000 500 20 'n 5 10 15 n Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(55/64)

3

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81\,p}{(1+0.002\,p)^4}$$

Image: Image:

-(56/64)

 $\exists \rightarrow$

• The only intercept is the origin

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81\,p}{(1+0.002\,p)^4}$$

- The only intercept is the origin
- Since the power of p in the denominator exceeds the power of p in the numerator, there is a **horizontal asymptote** H = 0

-(56/64)

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81\,p}{(1+0.002\,p)^4}$$

- The only intercept is the origin
- Since the power of p in the denominator exceeds the power of p in the numerator, there is a **horizontal asymptote** H = 0
- The derivative is

$$H'(p) = 81 \frac{(1+0.002 \, p)^4 - p \cdot 4(1+0.002 \, p)^3 0.002}{(1+0.002 \, p)^8}$$
$$= 81 \frac{(1-0.006 \, p)}{(1+0.002 \, p)^5}$$

-(56/64)

・ロト ・同ト ・ヨト ・ヨト

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81\,p}{(1+0.002\,p)^4}$$

- The only intercept is the origin
- Since the power of p in the denominator exceeds the power of p in the numerator, there is a **horizontal asymptote** H = 0
- The derivative is

$$H'(p) = 81 \frac{(1+0.002 \, p)^4 - p \cdot 4(1+0.002 \, p)^3 0.002}{(1+0.002 \, p)^8}$$
$$= 81 \frac{(1-0.006 \, p)}{(1+0.002 \, p)^5}$$

-(56/64)

(日) (四) (日) (日) (日)

• H'(p) = 0 when 1 - 0.006 p = 0 or $p_{max} = \frac{500}{3}$

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81\,p}{(1+0.002\,p)^4}$$

- The only intercept is the origin
- Since the power of p in the denominator exceeds the power of p in the numerator, there is a **horizontal asymptote** H = 0
- The derivative is

$$H'(p) = 81 \frac{(1+0.002 \, p)^4 - p \cdot 4(1+0.002 \, p)^3 0.002}{(1+0.002 \, p)^8}$$
$$= 81 \frac{(1-0.006 \, p)}{(1+0.002 \, p)^5}$$

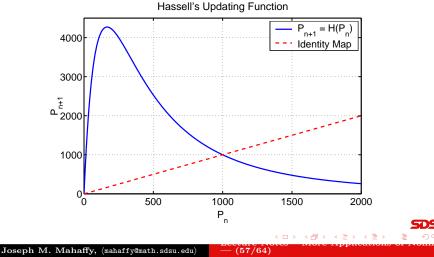
-(56/64)

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- H'(p) = 0 when 1 0.006 p = 0 or $p_{max} = \frac{500}{3}$
- There is a **maximum** at (166.7, 4271.5)

Example 2 - Hassell's Model

Solution (cont): The updating function and identity map



Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model

• Equilibria satisfy

$$p_e = H(p_e) = \frac{81 \, p_e}{(1 + 0.002 \, p_e)^4}$$

-(58/64)

6

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model

• Equilibria satisfy

$$p_e = H(p_e) = \frac{81 \, p_e}{(1 + 0.002 \, p_e)^4}$$

-(58/64)

• One equilibrium is $p_e = 0$

6

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model

• Equilibria satisfy

$$p_e = H(p_e) = \frac{81 \, p_e}{(1 + 0.002 \, p_e)^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$(1+0.002\,p_e)^4 = 81$$

-(58/64)

Image: Image:

- 씨 코 씨 씨 코 씨

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model

• Equilibria satisfy

$$p_e = H(p_e) = \frac{81 \, p_e}{(1 + 0.002 \, p_e)^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$(1+0.002\,p_e)^4 = 81$$

• Thus,

$$1 + 0.002 \, p_e = 3$$
 or $p_e = 1000$

-(58/64)

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 \, p)}{(1 + 0.002 \, p)^5}$$

・ロト ・ 同ト ・ ヨト ・

-(59/64)

• Equilibrium $p_e = 0$ has H'(0) = 81

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 \, p)}{(1 + 0.002 \, p)^5}$$

- Equilibrium $p_e = 0$ has H'(0) = 81
- The extinction equilibrium is unstable with solutions monotonically growing away

-(59/64)

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 \, p)}{(1 + 0.002 \, p)^5}$$

- Equilibrium $p_e = 0$ has H'(0) = 81
- The extinction equilibrium is unstable with solutions monotonically growing away

-(59/64)

・ロト ・同ト ・ヨト ・ヨト

• The equilibrium $p_e = 1000$ has $H'(1000) = -\frac{5}{3}$

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 \, p)}{(1 + 0.002 \, p)^5}$$

- Equilibrium $p_e = 0$ has H'(0) = 81
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 1000$ has $H'(1000) = -\frac{5}{3}$
- The $p_e = 1000$ equilibrium is unstable with solutions oscillating and moving away from p_e

-(59/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

1

Example 3 - Chalone Model or Model for Cellular Division with Inhibition: A biochemical agent, **chalone**, is released by a cell to inhibit mitosis of nearby cells, preventing the over crowding of cells.

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

Example 3 - Chalone Model or Model for Cellular Division with Inhibition: A biochemical agent, **chalone**, is released by a cell to inhibit mitosis of nearby cells, preventing the over crowding of cells.

This was an early model for **cancer**, speculating that this control breaks down

$$p_{n+1} = f(p_n) = \frac{2 p_n}{1 + 10^{-8} p_n^4}$$

-(60/64)

Skip Example

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

Example 3 - Chalone Model or Model for Cellular Division with Inhibition: A biochemical agent, **chalone**, is released by a cell to inhibit mitosis of nearby cells, preventing the over crowding of cells.

This was an early model for **cancer**, speculating that this control breaks down

$$p_{n+1} = f(p_n) = \frac{2 p_n}{1 + 10^{-8} p_n^4}$$

Skip Example

- Let $p_0 = 10$ and find the population for the next 2 generations
- Simulate the model for 20 weeks
- Determine the **equilibria** and analyze their **stability**

Introduction Study Salmon Populations Analys Analysis of the Ricker's Model Beetle Beverton-Holt and Hassell's Model More I

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

-(61/64)

Example 3 - Chalone Model

Solution - Chalone Model: Iterate the model with $p_0 = 10$

$$p_1 = \frac{2(10)}{1+10^{-8}(10)^4} = 20.0$$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

Solution - Chalone Model: Iterate the model with $p_0 = 10$

$$p_1 = \frac{2(10)}{1+10^{-8}(10)^4} = 20.0$$

$$p_2 = \frac{2(20)}{1+10^{-8}(20)^4} = 39.94$$

-(61/64)

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

Solution - Chalone Model: Iterate the model with $p_0 = 10$

$$p_{1} = \frac{2(10)}{1+10^{-8}(10)^{4}} = 20.0$$

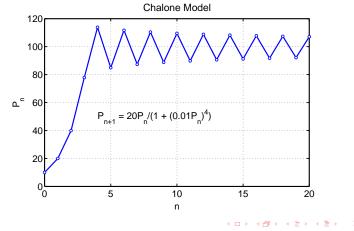
$$p_{2} = \frac{2(20)}{1+10^{-8}(20)^{4}} = 39.94$$

$$p_{3} = \frac{2(39.94)}{1+10^{-8}(39.94)^{4}} = 77.90$$

-(61/64)

Example 3 - Chalone Model

Solution (cont): This model is iterated 20 times, and the model shows oscillations



-(62/64)

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model

• Equilibria satisfy

$$p_e = f(p_e) = \frac{2 \, p_e}{1 + 10^{-8} \, p_e^4}$$

-(63/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

SDSU ∃ √ 4 €

 Introduction
 Study of a Beetle Population

 Salmon Populations
 Analysis of Hassell's Model

 Beverton-Holt and Hassell's Model
 More Examples

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model

• Equilibria satisfy

$$p_e = f(p_e) = \frac{2 \, p_e}{1 + 10^{-8} \, p_e^4}$$

-(63/64)

• One equilibrium is $p_e = 0$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Introduction Study of a Salmon Populations Analysis of Analysis of the Ricker's Model Beetle Stud Beverton-Holt and Hassell's Model More Exan

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model

• Equilibria satisfy

$$p_e = f(p_e) = \frac{2 p_e}{1 + 10^{-8} p_e^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1 + 10^{-8} \, p_e^4 = 2$$

-(63/64)

Introduction Study of a Salmon Populations Analysis o Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Exam

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Image: Image:

 $\exists \rightarrow$

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model

• Equilibria satisfy

$$p_e = f(p_e) = \frac{2 p_e}{1 + 10^{-8} p_e^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1+10^{-8}\,p_e^4=2$$

• Thus,

$$p_e^4 = 10^8$$
 or $p_e = 100$

-(63/64)

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model – The derivative of the updating function is

$$f'(p) = 2 \frac{(1+10^{-8} p^4) - p(4 \times 10^{-8} p^3)}{(1+10^{-8} p^4)^2}$$
$$= \frac{2-6 \times 10^{-8} p^4}{(1+10^{-8} p^4)^2}$$

-(64/64)

・ロト ・同ト ・ヨト ・ヨト

• Equilibrium $p_e = 0$ has f'(0) = 2

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model – The derivative of the updating function is

$$f'(p) = 2 \frac{(1+10^{-8} p^4) - p(4 \times 10^{-8} p^3)}{(1+10^{-8} p^4)^2}$$
$$= \frac{2-6 \times 10^{-8} p^4}{(1+10^{-8} p^4)^2}$$

- Equilibrium $p_e = 0$ has f'(0) = 2
- The extinction equilibrium is unstable with solutions monotonically growing away

-(64/64)

・ロト ・同ト ・ヨト ・ヨト

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model – The derivative of the updating function is

$$f'(p) = 2 \frac{(1+10^{-8} p^4) - p(4 \times 10^{-8} p^3)}{(1+10^{-8} p^4)^2}$$
$$= \frac{2-6 \times 10^{-8} p^4}{(1+10^{-8} p^4)^2}$$

- Equilibrium $p_e = 0$ has f'(0) = 2
- The extinction equilibrium is unstable with solutions monotonically growing away

-(64/64)

イロト イポト イヨト イヨト

• The equilibrium $p_e = 100$ has f'(100) = -1

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model – The derivative of the updating function is

$$f'(p) = 2 \frac{(1+10^{-8} p^4) - p(4 \times 10^{-8} p^3)}{(1+10^{-8} p^4)^2}$$
$$= \frac{2-6 \times 10^{-8} p^4}{(1+10^{-8} p^4)^2}$$

- Equilibrium $p_e = 0$ has f'(0) = 2
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 100$ has f'(100) = -1
- The $p_e = 100$ equilibrium is on the border of stability with solutions oscillating and slowly approaching p_e