

2**Sockeye Salmon Populations**

Sockeye Salmon Populations – Problems

Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Sockeye Salmon Populations

Introduction Salmon Populations

• Salmon populations in the Pacific Northwest are becoming very endangered

Ricker's Model

- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon
 - Damming rivers interrupts the runs
 - Forestry allows the water to become too warm
 - Agriculture results in runoff pollution

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (Oncorhynchus nerka) in the Skeena river system in British Columbia
 - Largely uneffected by human development
 - Long time series of data 1908 to 1952
 - Provide good system to model
- SDSU Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(6/64)-(5/64)Salmon Populations Analysis of the Ricker's Model Salmon Populations **Ricker's** Model **Ricker's Model** Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Beverton-Holt and Hassell's Model Sockeye Salmon Populations Sockeye Salmon Populations 4 5

Sockeye Salmon Populations – Spawning Behavior

- Create table of sockeye salmon (Oncorhynchus nerka) in the Skeena river system
- Table lists four year averages from the starting year
- Since 4 and 5 year old salmon spawn, each grouping of 4 years is an approximation of the offspring of the previous 4 year average
- Model is complicated because the salmon have adapted to have either 4 or 5 year old mature adults spawn
- Simplify the model by ignoring this complexity

Sockeye Salmon Populations – Skeena River Table

Population in thousands

Year	Population	Year	Population
1908	1,098	1932	278
1912	740	1936	448
1916	714	1940	528
1920	615	1944	639
1924	706	1948	523
1928	510		

Four Year Averages of Skeena River Sockeye Salmon

5050

3

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right)$$

- Logistic growth model predicted certain yeast populations well
- This model does not fit the data for many organisms
- A major problem is that large populations in the model return a negative population in the next generation
- Several alternative models use only a **non-negative** updating function
- Fishery management has often used **Ricker's Model**

SDSU

5050

Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Ricker's Model – Salmon

Ricker's Model

- **Ricker's model** was originally formulated using studies of salmon populations
- Ricker's model is given by the equation

Introduction

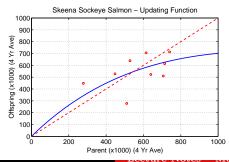
Salmon Populations

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

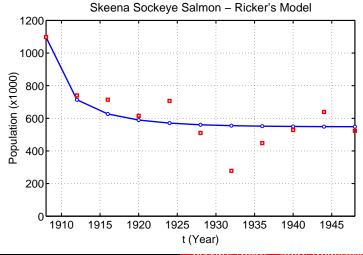
- The positive constants a and b are fit to the data
- Consider the Skeena river salmon data
 - The parent population of 1908-1911 is averaged to 1,098,000 salmon/year returning to the Skeena river watershed
 - It is assumed that the resultant offspring that return to spawn from this group occurs between 1912 and 1915, which averages 740,000 salmon/year

- Successive populations give data for updating functions
 - P_n is parent population, and P_{n+1} is surviving offspring
 - Nonlinear least squares fit of Ricker's function

$$P_{n+1} = 1.535 P_n e^{-0.000783 F}$$



Simulate the Ricker's model using the initial average in 1908 as a starting point



SDSU

Ricker's Model – Salmon

Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Summary of Ricker's Model for Skeena river salmon

Ricker's Model

Introduction

Salmon Populations

- Ricker's model levels off at a stable equilibrium around 550,000
- Model shows populations monotonically approaching the equilibrium
- There are a few fluctuations from the variations in the environment
- Low point during depression, suggesting bias from economic factors

Analysis of the Ricker's Model

Analysis of the Ricker's Model: General Ricker's Model

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

$$P_e = aP_e e^{-bP_e}$$

$$0 = P_e (ae^{-bP_e} - 1)$$

The equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(a)}{b}$

• The solution of Ricker's model is **unstable** and **oscillates**

as it grows away the equilibrium $P_e = \ln(a)/b$ provided

Note that a > 1 required for a positive equilibrium

5050

5050

5

- If 0 < a < 1, then $P_e = 0$ is stable and the population goes to extinction (also no positive equilibrium)
- If a > 1, then $P_e = 0$ is unstable and the population grows away from the equilibrium

 $e < a < e^2 \approx 7.389$

 $a > e^2 \approx 7.389$

Stability Analysis Skeena River Salmon Example Examples

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

- At $P_e = 0$, R'(0) = 1.535 > 1
 - This equilibrium is **unstable** (as expected)
- At $P_e = 547.3$, R'(547.3) = 0.571 < 1
 - This equilibrium is **stable** with solutions monotonically approaching the equilibrium, as observed in the simulation **SDSU**

Equilibria Stability Analysis Skeena River Salmon Example Examples

SDSU

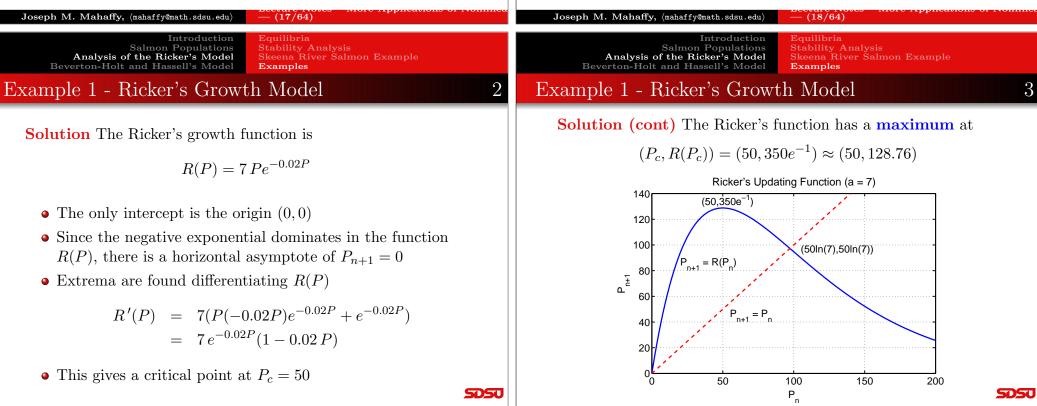
Example 1 - Ricker's Growth Model

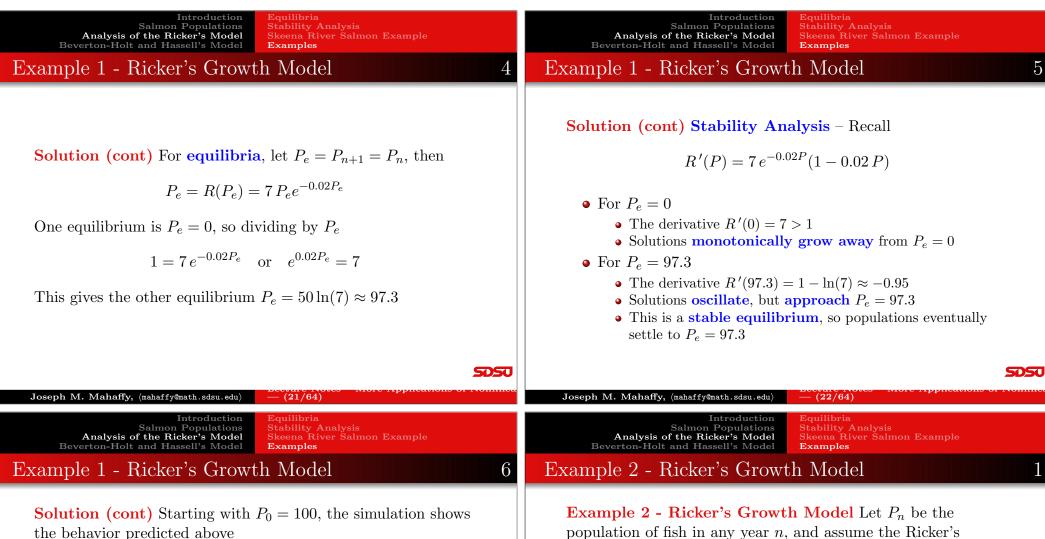
Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

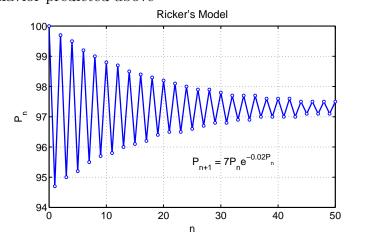
$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02P_r}$$

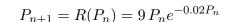
kip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria
- Let $P_0 = 100$, and simulate the model for 50 years





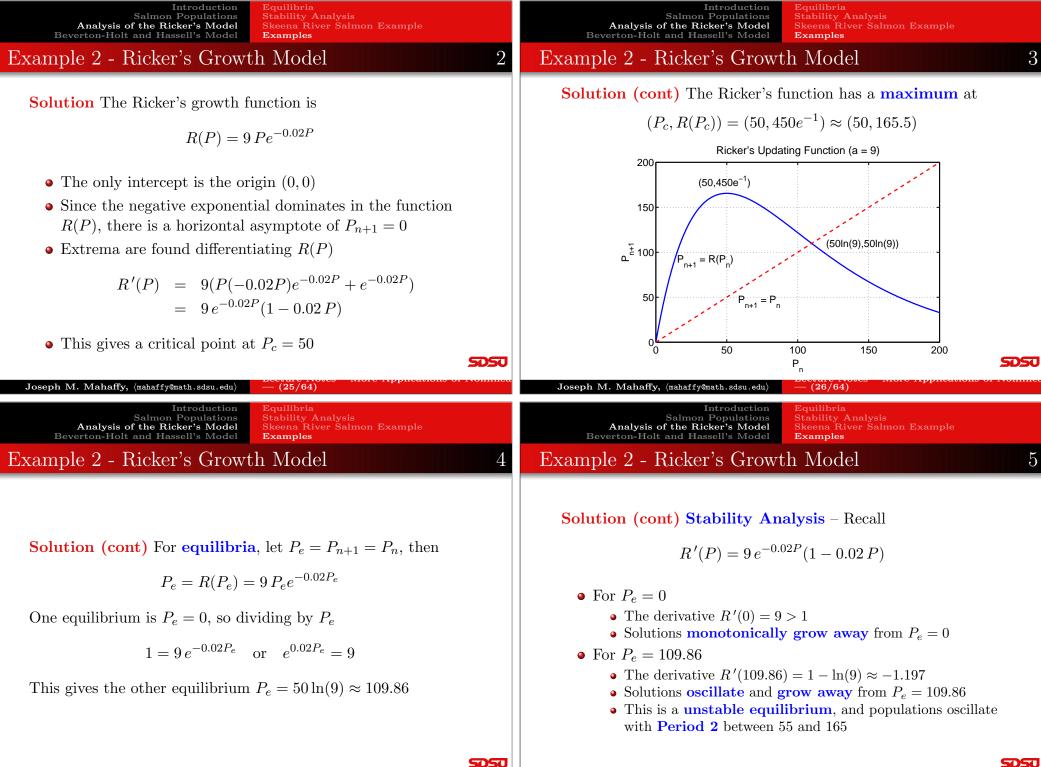


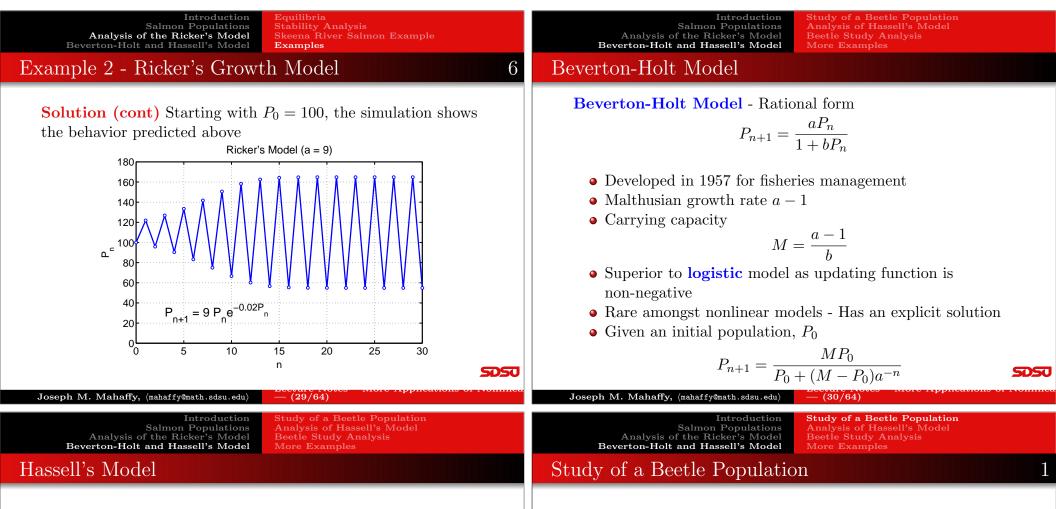


Skip Example

growth model

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria
- Let $P_0 = 100$, and simulate the model for 50 years





Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1+bP_n)^{\alpha}}$$

- Often used in insect populations
- Provides alternative to **logistic** and **Ricker's** growth models, extending the **Beverton-Holt** model
- $H(P_n)$ has **3 parameters**, *a*, *b*, and *c*, while logistic, Ricker's, and Beverton-Holt models have **2 parameters**
- Malthusian growth rate a 1, like Beverton-Holt model

Study of a Beetle Population

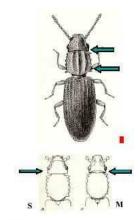
- In 1946, A. C. Crombie studied several beetle populations
- The food was strictly controlled to maintain a constant supply
- 10 grams of cracked wheat were added weekly
- Regular census of the beetle populations recorded
- These are experimental conditions for the Logistic growth model

SDSU

Study of a Beetle Population Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Examples

Study of a Beetle Population

Study of Oryzaephilus surinamensis, the saw-tooth grain beetle



5050

2

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population More Examples

Study of a Beetle Population

Data on Oryzaephilus surinamensis, the saw-tooth grain beetle

Week	Adults	Week	Adults
0	4	16	405
2	4	18	471
4	25	20	420
6	63	22	430
8	147	24	420
10	285	26	475
12	345	28	435
14	361	30	480

SDSU

3

$\mathbf{Joseph}~\mathbf{M}.~\mathbf{Mahaffy},~\langle \texttt{mahaffy@math.sdsu.edu} \rangle$	-(33/64)	$\textbf{Joseph M. Mahaffy}, \langle \texttt{mahaffy@math.sdsu.edu} \rangle$	-(34/64)	
Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model		Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model	Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples	
Study of a Beetle Population 4		Study of a Beetle Population	on	5

Study of a Beetle Population

Updating functions - Least squares best fit to data

Gorham 1987

- Plot the data, P_{n+1} vs. P_n , to fit an updating function
- Logistic growth model fit to data (SSE = 13,273)

$$P_{n+1} = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2} \right)$$

• **Beverton-Holt model** fit to data (SSE = 10,028)

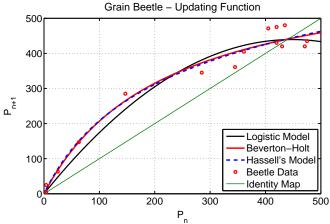
$$P_{n+1} = \frac{3.010\,P_n}{1+0.00456\,P_n}$$

• Hassell's growth model fit to data (SSE = 9,955)

$$P_{n+1} = \frac{3.269 \, P_n}{(1 + 0.00745 \, P_n)^{0.8126}}$$

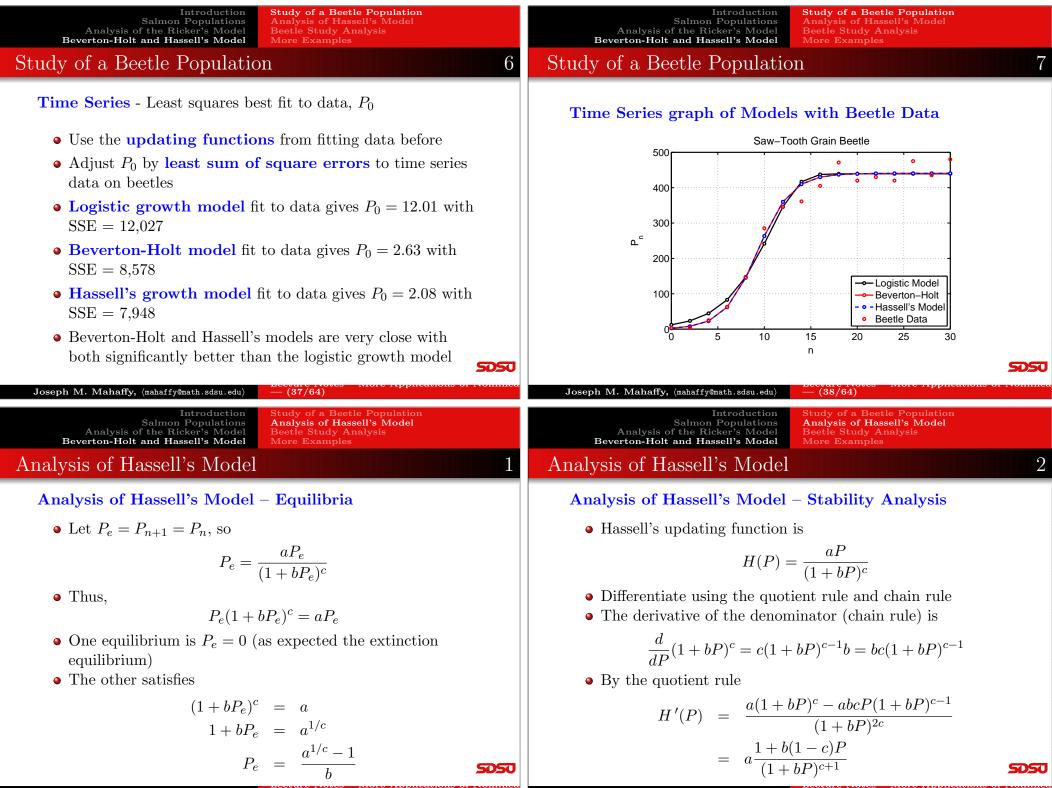
SDSU

SDSU



(36/64)

Graph of Updating functions and Beetle data



Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Amalysis of Lloggall'a Model Amalysis of Lloggall'a Model 2	Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model A no larging of Lloggoll'g Model
Analysis of Hassell's Model – Stability Analysis Analysis of Hassell's Model – Stability Analysis • The derivative is $H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$ • At $P_e = 0$, $H'(0) = a$ • Since $a > 1$, the zero equilibrium is unstable • Solutions monotonically growing away from the extinction equilibrium	Analysis of Hassell's Model 4 Analysis of Hassell's Model – Stability Analysis • The derivative is $H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$ • At $P_e = (a^{1/c} - 1)/b$, we find $H'(P_e) = a \frac{1 + (1 - c)(a^{1/c} - 1)}{(1 + (a^{1/c} - 1))^{c+1}}$ $= \frac{c}{a^{1/c}} + 1 - c$ • The stability of the carrying capacity equilibrium depends on both <i>a</i> and <i>c</i> , but not <i>b</i> • When $c = 1$ (Beverton-Holt model) $H'(P_e) = \frac{1}{a}$, so this equilibrium is monotonically stable
Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ - (41/64)	
Introduction Salmon Populations Analysis of the Ricker's ModelStudy of a Beetle Population Analysis of Hassell's ModelBeverton-Holt and Hassell's ModelBeetle Study Analysis More Examples	Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Deottle Cturdry A polyroid Deottle Cturdry A polyroid 2
Beetle Study Analysis 1	Beetle Study Analysis 2
Beetle Study Analysis – Logistic Growth Model $P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$	Beetle Study Analysis – Beverton-Holt Growth Model $P_{n+1} = B(P_n) = \frac{3.010 P_n}{1 + 0.00456 P_n}$
 The equilibria are P_e = 0 and 439.2 The derivative of the updating function is F'(P) = 1.962 - 0.00438 P 	 The equilibria are P_e = 0 and 440.8 The derivative of the updating function is $B'(P) = \frac{3.010}{(1+0.00456P)^2}$
• At $P_e = 0$, $F'(0) = 1.962$, so this equilibrium is monotonically unstable	• At $P_e = 0$, $B'(0) = 3.010$, so this equilibrium is monotonically unstable

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis – Hassell's Growth Model

 $P_{n+1} = H(P_n) = \frac{3.269 P_n}{(1 + 0.00745 P_n)^{0.8126}}$

• The equilibria are $P_e = 0$ and 442.4

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

 $p_0 = 200$

Analysis of the Ricker's Model

Example 1 - Beverton-Holt Model

 n_2

Beverton-Holt and Hassell's Model

• The derivative of the updating function is

Introduction

$$H'(P) = 3.269 \frac{1 + 0.001396 P}{(1 + 0.00745 P)^{1.8126}}$$

• At $P_e = 0$, H'(0) = 3.269, so this equilibrium is monotonically unstable

Solution - Beverton-Holt Model: Iterate the model with

 $p_1 = \frac{20(200)}{(1+0.02(200))} = 800$

• At $P_e = 442.4$, H'(442.4) = 0.3766, so this equilibrium is monotonically stable

-(45/64)

More Examples

Study of a Beetle Population

Analysis of Hassell's Model

Introduction

Study of a Beetle Population Analysis of Hassell's Model More Examples

Example 1 - Beverton-Holt Model

Example 1 - Beverton-Holt Model: Suppose that a population of insects (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = B(p_n) = \frac{20 \, p_n}{1 + 0.02 \, p_n}$$

2

SDSU

5050

- Assume that $p_0 = 200$ and find the population for the next 3 weeks
- Simulate the model for 10 weeks
- Graph the **updating function** with the identity map
- Determine the **equilibria** and analyze their **stability**

SDSU

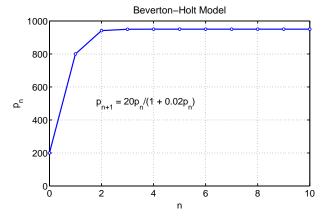
3

-(46/64)Introduction Study of a Beetle Population Analysis of Hassell's Model Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Examples 2

Example 1 - Beverton-Holt Model

Solution (cont): The explicit solution for this model is

$$p_n = \frac{950 \, p_0}{p_0 + (950 - p_0)20^{-n}} = \frac{950}{1 + 3.75(20)^{-n}}$$



$$p_2 = \frac{20(800)}{(1+0.02(800))} = 941$$

$$p_3 = \frac{20(941)}{(1+0.02(941))} = 949.6$$

From before, the **carrying capacity** for the Beverton-Holt model is

$$M = \frac{a-1}{b} = \frac{19}{0.02} = 950$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (47/64)

Analysis of Hassell's Model Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model More Examples

Study of a Beetle Population

Example 1 - Beverton-Holt Model

Solution (cont): Graphing the Updating function

Introduction

$$B(p) = \frac{20\,p}{1+0.02\,p}$$

- The only intercept is the origin
- There is a **horizontal asymptote** satisfying

$$\lim_{p \to \infty} B(p) = \frac{20}{0.02} = 1000$$

• Biologically, this asymptote means that there is a maximum number in the next generation no matter how large the population starts

SDSU

5050

4

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1 + 0.02 p_e = 20$$
 or $p_e = 950$

• The derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

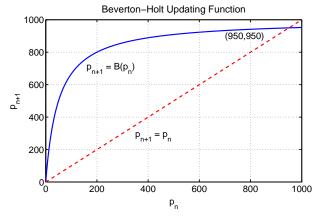
(51/64)

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population More Examples

Example 1 - Beverton-Holt Model

Solution (cont): The updating function and identity map



Solution (cont): Analysis of Beverton-Holt model -

Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

- Equilibrium $p_e = 0$ has B'(0) = 20
- The **extinction equilibrium** is **unstable** with solutions monotonically growing away
- The equilibrium $p_e = 950$ has $B'(950) = \frac{1}{20}$
- The carrying capacity equilibrium is stable with solutions monotonically approaching

Example 2 - Hassell's Model

Example 2 - Hassell's Model: Suppose that a population of butterflies (measured in weeks) grows according to the discrete dynamical model

Study of a Beetle Population

Analysis of Hassell's Model

More Examples

$$p_{n+1} = H(p_n) = \frac{81 \, p_n}{(1 + 0.002 \, p_n)^4}$$

Skip Example

- Assume that $p_0 = 200$ and find the population for the next 2 weeks
- Simulate the model for 20 weeks
- Graph the **updating function** with the identity map
- Determine the **equilibria** and analyze their **stability**

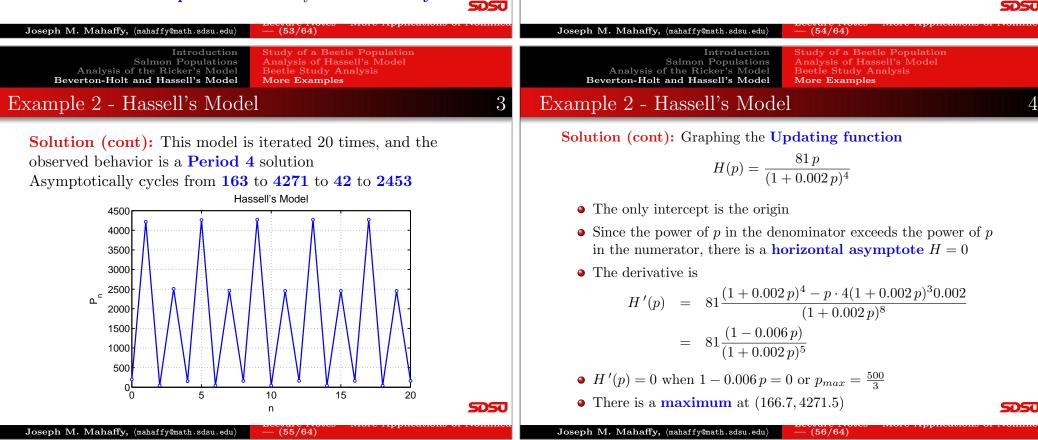
Example 2 - Hassell's Model

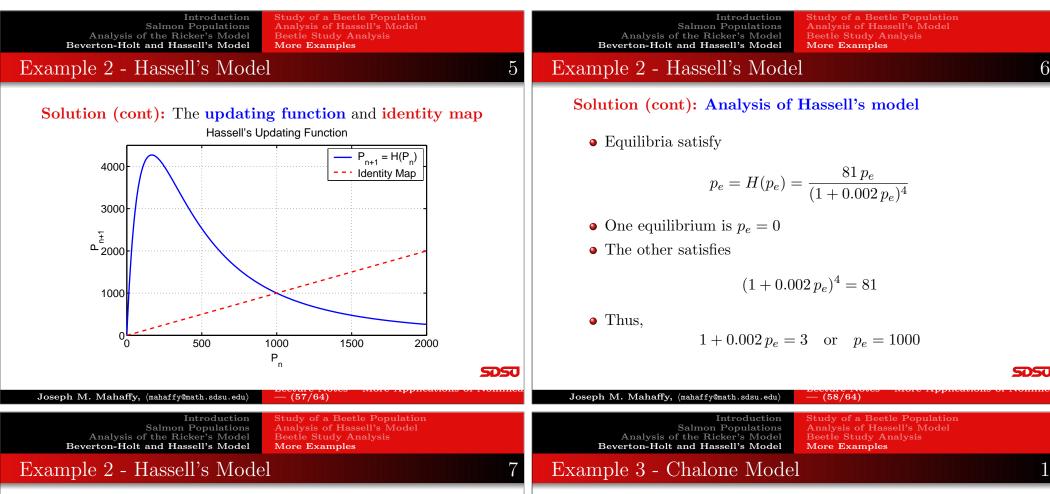
Solution - Hassell's Model: Iterate the model with $p_0 = 200$

 $\mathbf{2}$

$$p_1 = \frac{81(200)}{(1+0.002(200))^4} = 4217$$
$$p_2 = \frac{81(4217)}{(1+0.002(4217))^4} = 43$$

These iterations show dramatic population swings, suggesting instability in the model





Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 \, p)}{(1 + 0.002 \, p)^5}$$

- Equilibrium $p_e = 0$ has H'(0) = 81
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 1000$ has $H'(1000) = -\frac{5}{3}$
- The $p_e = 1000$ equilibrium is unstable with solutions oscillating and moving away from p_e

SDSU

Example 3 - Chalone Model or Model for Cellular **Division with Inhibition:** A biochemical agent, **chalone**, is released by a cell to inhibit mitosis of nearby cells, preventing the over crowding of cells.

6

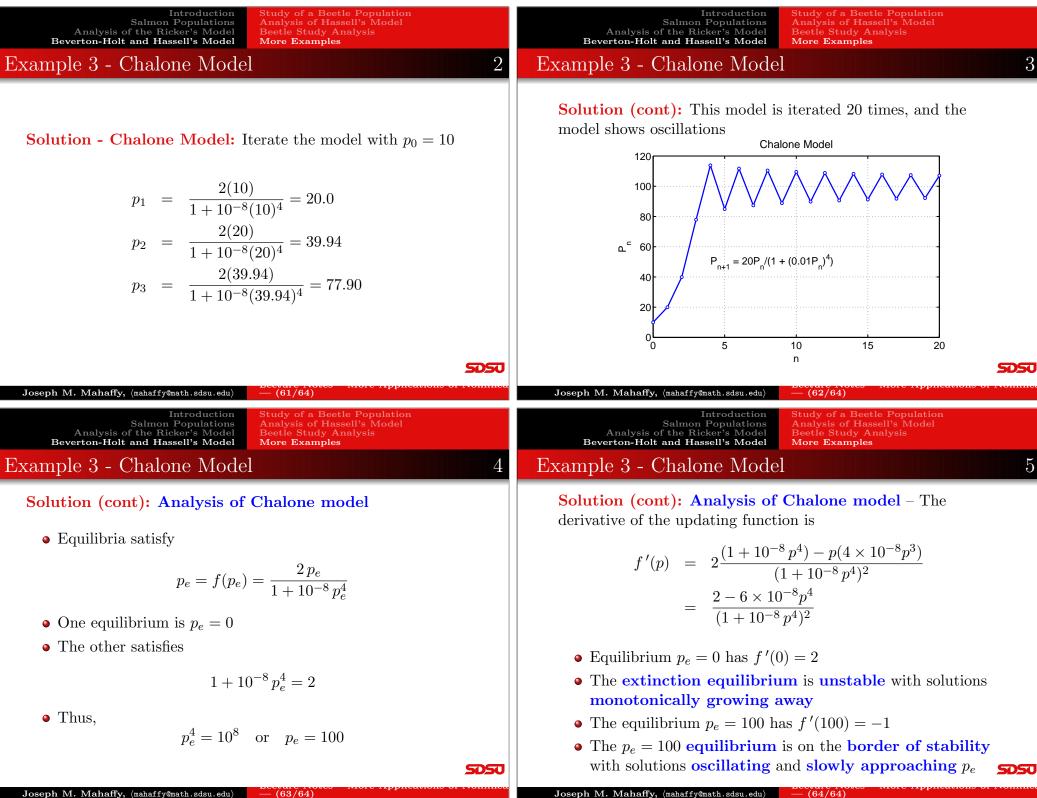
5050

This was an early model for **cancer**, speculating that this control breaks down

$$p_{n+1} = f(p_n) = \frac{2 p_n}{1 + 10^{-8} p_n^4}$$

Skip Example

- Let $p_0 = 10$ and find the population for the next 2 generations
- Simulate the model for 20 weeks
- Determine the **equilibria** and analyze their **stability**



 $\textbf{Joseph M. Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$