Outline

Calculus for the Life Sciences I Lecture Notes – Applications of the Derivative Application of The Derivative Body Temperature Fluctuation Oritical Points Maxima and Minima Joseph M. Mahaffy, Second Derivative and Concavity $\langle mahaffy@math.sdsu.edu \rangle$ Second Derivative Test Points of Inflection Department of Mathematics and Statistics Dynamical Systems Group Examples Computational Sciences Research Center Cubic Polynomial San Diego State University San Diego, CA 92182-7720 Quartic Polynomial Absolute Maxima and Minima http://www-rohan.sdsu.edu/~jmahaffy Population Example Spring 2013 SDSU Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(1/41)-(2/41)**Body Temperature Fluctuation** Critical Points Application of The Derivative Application of The Derivative Examples Examples Second Derivative and Concavity **Points of Inflection** Applications of the Derivative Menstrual Cycle **Body Temperature Fluctuation during the Menstrual** Cycle **Applications of the Derivative** • Mammals regulate their body temperature in a narrow • Sketching Graphs range to maintain optimal physiological responses • Finding Maxima and Minima • Variations in body temperature occur during exercise, • Optimal Values stress, infection, and other normal situations • Points of Inflection or Steepest parts of a Function • Neurological control of the temperature • Variations include • Circadian rhythms (a few tenths of a degree Celsius)

• Menstrual cycle - Ovulation often corresponds to the sharpest rise in temperature

5050

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative Test

Female Basal Body Temperature

Female Basal Body Temperature

$$T(t) = -0.0002762 t^3 + 0.01175 t^2 - 0.1121 t + 36.41$$

- The high and low temperatures occur when the curve has slope of zero
- Find the derivative equal to zero
- The derivative of the temperature is

$$T'(t) = -0.0008286 t^2 + 0.02350 t - 0.1121$$

• Note that the derivative is a different function from the original function

SDSU

SDSU

3

Application of The Derivative Examples

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative Test

Female Basal Body Temperature

Female Basal Body Temperature

• The best cubic polynomial fitting the data above is

 $T(t) = -0.0002762 t^{3} + 0.01175 t^{2} - 0.1121 t + 36.41$

- Want to find the high and low temperatures
- Determine the time of peak fertility when the temperature is rising most rapidly

-(6/41)

Body Temperature Fluctuation

SDSU

Application of The Derivative Examples

Critical Points Second Derivative and Concavity **Points of Inflection**

Female Basal Body Temperature

Maximum and Minimum

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

• The roots of the derivative (quadratic equation) are

t = 6.069 and 22.29 days

• Thus,

Minimum at t = 6.069 with $T(6.069) = 36.1^{\circ}C$

Maximum at t = 22.29 with $T(22.29) = 36.7^{\circ}C$

- There is only a $0.6^{\circ}C$ difference between the high and low basal body temperature during a 28 day menstrual cycle by the approximating function
- The data varied by $0.75^{\circ}C$

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection

Female Basal Body Temperature

Maximum Increase in Temperature

- The maximum increase in temperature is when the derivative is at a maximum
- This is the vertex of the quadratic function, T'(t)
- The maximum occurs at the midpoint between the roots of the quadratic equation
- Alternately, the derivative of T'(t) or the second derivative of T(t) equal to zero gives the maximum
- The second derivative is

$$T''(t) = -0.0016572 t + 0.02350$$

Application of The Derivative Examples

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection

Female Basal Body Temperature

- The second derivative is zero at the **Point of Inflection** at t = 14.18 with $T(14.18) = 36.4^{\circ}C$
- The maximum rate of change in body temperature is

 $T'(14.18) = 0.054^{\circ}C/day$

• This model suggests that the peak fertility occurs on **day** 14, which is consistent with what is known about ovulation

5

a

b

505

6

Body Temperature Fluctuation Critical Points **Maxima and Minima** Second Derivative and Concavity Second Derivative Test Points of Inflection

Maxima, Minima, and Critical Points

Maxima and Minima

- A high point of the graph is where f(x) changes from increasing to decreasing
- A low point on a graph is where f(x) changes from decreasing to increasing
- If f(x) is a smooth function, then either case has the derivative passing through zero

Definition: A smooth function f(x) is said to have a **local** or relative maximum at a point c, if f'(c) = 0 and f'(x) changes from positive to negative for values of x near c. Similarly, a smooth function f(x) is said to have a **local** or relative minimum at a point c, if f'(c) = 0 and f'(x) changes from negative to positive for values of x near c. Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (13/41)

Critical Points

Maxima and Minima

Points of Inflection

Second Derivative Test

Second Derivative and Concavity

Application of The Derivative Examples

Example – Graphing a Polynomial

Graphing a Polynomial Consider

$$f(x) = x^3 - 6x^2 - 15x + 2$$

- Find critical points, maxima, and minima
- Sketch a graph of the function

Application of The Derivative Examples Body Temperature Fluctuation Critical Points **Maxima and Minima** Second Derivative and Concavity Second Derivative Test Points of Inflection

Maxima, Minima, and Critical Points

Critical Points

3

Definition: If f(x) is a smooth function with $f'(x_c) = 0$, then x_c is said to be a **critical point** of f(x)

- Critical points help find the local high and low points on a graph
- Some critical points are neither maxima or minima

SDSU

2

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) – (14/41) Application of The Derivative Examples Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection Example – Graphing a Polynomial

With the function

$$f(x) = x^3 - 6x^2 - 15x + 2$$

we have the derivative

$$f'(x) = 3x^2 - 12x - 15 = 3(x+1)(x-5)$$

- The critical points (f'(x) = 0) are $x_c = -1$ or 5
- Since f(-1) = 10, a local maximum occurs at (-1, 10)
- Since f(5) = -98, a local minimum occurs at (5, -98)
- The *y*-intercept is (0, 2)

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection

3

Example – Graphing a Polynomial

This gives enough for a reasonable sketch of the graph Note the *x*-intercepts are very hard to find

Second Derivative Test

Second Derivative Test: Let f(x) be a smooth function. Suppose that $f'(x_c) = 0$, so x_c is a critical point of f. If $f''(x_c) < 0$, then x_c is a **relative maximum**. If $f''(x_c) > 0$, then x_c is a **relative minimum**.

If $f''(x_c) = 0$, then we get **no information** about the function at the critical point x_c Application of The Derivative Examples Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection

Second Derivative and Concavity

Second Derivative and Concavity

- Since the derivative is itself a function, then if it is differentiable, one can take its derivative to find the second derivative often denoted f''(x)
- If the first derivative is increasing or the second derivative is positive, then the original function is **concave upward**
- If the first derivative is decreasing or the second derivative is negative, then the original function is **concave downward**
- The second derivative is a measure of the concavity of a function
- For smooth functions, the **maxima** generally occur where the function is **concave downward**, while **minima** occur where the function is **concave upward**

Example – Graphing a Polynomial

Continuing the example $f(x) = x^3 - 6x^2 - 15x + 2$

- The second derivative is f''(x) = 6x 12
- Recall the critical points occurred at $x_c = -1$ and 5
- The second derivative at the critical point $x_c = -1$ gives

$$f''(-1) = -18$$

- The function is concave downward at −1, so this is a relative maximum
- The second derivative at the critical point $x_c = 5$ gives

f''(5) = 18

• The function is concave upward, so this is a relative minimum

5050

Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test Points of Inflection

Points of Inflection

Points of Inflection

- When the second derivative is zero, then the function is usually changing from concave upward to concave downward or visa versa
- This is known as a **point of inflection**
- A point of inflection is where the derivative function has a maximum or minimum, so the function is increasing or decreasing most rapidly
- From an applications point of view, if the function is describing a population, then the point of inflection would be where the population is increasing or decreasing most rapidly
- The point of inflection measures when the change of a function is its greatest or smallest

Application of The Derivative Examples Body Temperature Fluctuation Critical Points Maxima and Minima Second Derivative and Concavity Second Derivative Test **Points of Inflection**

Example – Graphing a Polynomial

Continuing the example

$$f(x) = x^3 - 6x^2 - 15x + 2$$

• The second derivative is

$$f''(x) = 6x - 12$$

- The point of inflection is f''(x) = 0, which is when x = 2
- The point of inflection occurs at (2, -44)

SDSU

5

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(21/41)-(22/41)**Cubic Polynomial Cubic Polynomial** Application of The Derivative Application of The Derivative Examples Absolute Maxima and Minima Examples Absolute Maxima and Minima **Population Example** Example – Graphing a Cubic Polynomial Example – Graphing a Cubic Polynomial 2 Graphing a Polynomial: Consider $y(x) = 12x - x^3$ The *y*-intercept for $y(x) = 12 x - x^3$ is (0,0) The *x*-intercepts satisfy • Find the intercepts $x(12-x^2)=0$ • Find critical points, maxima, and minima • Find the points of inflection $x = 0, \pm 2\sqrt{3}$ • Sketch the graphs of the function, its derivative, and the second derivative 5050 5050

Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example

3

SDSU

5

5050

Example – Graphing a Cubic Polynomial

Maxima and Minima: The derivative of $y(x) = 12 x - x^3$ is

$$y'(x) = 12 - 3x^2 = -3(x^2 - 4)$$

The **critical points** satisfy $y'(x_c) = 0$, so

$$x_c = -2$$
 and $x_c = 2$

• Evaluating the original function at the critical points

$$y(-2) = -16$$
 and $y(2) = 16$

-(25/41)

- The extrema for the function are (-2, -16) and (2, 16)
- Clearly, (-2, -16) is a **minimum** and (2, 16) is a **maximum**

Application of The Derivative Examples

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example

Example – Graphing a Cubic Polynomial

Application of The Derivative Examples Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example

Example – Graphing a Cubic Polynomial

Point of Inflection: The second derivative of $y(x) = 12 x - x^3$ is u''(x) = -6 x

• The second derivative test gives

- y''(-2) = 12 is concave upward, so $x_c = -2$ is a minimum
- y''(2) = -12 is concave downward, so $x_c = 2$ is a maximum

-(26/41)

- The **Point of Inflection** occurs at $x_p = 0$
- Concavity of the curve changes at (0,0)

Application of The Derivative Examples

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example

Example – Graphing a Quartic Polynomial

Graphing a Polynomial: Consider

$$y(x) = x^4 - 8x^2$$

- Find the intercepts
- Find critical points, maxima, and minima
- Find the points of inflection
- Sketch the graphs of the function, its derivative, and the second derivative

Skip Example

Application of The Derivative Examples	Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example	Application of The Derivative Examples	Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example
Example – Graphing a Quartic Polynomial 2		Example – Graphing a Quartic Polynomial 3	
The <i>y</i> -intercept for $y(x) = x^4 - 8x^2$ is (0,0) The <i>x</i> -intercepts satisfy $x^2(x^2 - 8) = 0$ $x = 0, \pm 2\sqrt{2}$		 Maxima and Minima: The derivative of y(x) = x⁴ - 8 x² is y'(x) = 4 x³ - 16 x = 4 x(x - 2)(x + 2) The critical points satisfy y'(x_c) = 0, so x_c = -2, 0, 2 Evaluating the original function at the critical points y(-2) = -16, y(0) = 0, and y(2) = -16 The extrema for the function are (-2, -16), (0, 0), and (2, -16) Clearly, (-2, -16) and (2, -16) are minima and (0, 0) is a 	
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (29/41)		Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (30/41)	
Application of The Derivative Examples Example – Graphing a Qua	Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example Artic Polynomial	Application of The Derivative Examples Example – Graphing a Qua	Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example Trtic Polynomial 5
The second derivative of $y(x) = x^4 - 8x^2$ is $y''(x) = 12x^2 - 16$ • The second derivative test gives • $y''(-2) = 32$ is concave upward, so $x_c = -2$ is a minimum • $y''(0) = -16$ is concave downward, so $x_c = 0$ is a maximum • $y''(2) = 32$ is concave upward, so $x_c = 2$ is a minimum		Points of Inflection: Since the second derivative of $y(x) = x^4 - 8x^2$ is $y''(x) = 12x^2 - 16 = 4(3x^2 - 4)$ • The points of inflection occur when $y''(x) = 0$ • $3x_p^2 - 4 = 0$, when $x_p = \pm \frac{2}{\sqrt{3}}$ • Inflection points are $x_p \approx (\pm 1.155, -8.889)$	

Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima Population Example

Example – Graphing a Quartic Polynomial

Smooth functions on a closed interval always have an **absolute minimum** and an **absolute maximum**

Theorem: Suppose that f(x) is a continuous, differentiable function on a closed interval I = [a, b], then f(x) achieves its **absolute minimum** (or maximum) on I and its minimum (or maximum) occurs either at a point where f'(x) = 0 or at one of the endpoints of the interval

This **theorem** says to find the function values at all the critical points and the endpoints of the interval, then this small set of values contains the **absolute minimum** and **absolute maximum**

Application of The Derivative Examples Cubic Polynomial Quartic Polynomial **Absolute Maxima and Minima** Population Example

Absolute Maxima and Minima

Absolute Maxima and Minima: Often we are interested in finding the largest or smallest population over a period of time

Definition: An absolute minimum for a function f(x) occurs at a point x = c, if $f(c) \le f(x)$ for all x in the domain of f.

Definition: Similarly, an **absolute maximum** for a function f(x) occurs at a point x = c, if $f(c) \ge f(x)$ for all x in the domain of f.

SDSU

Example – Study of a Population

Study of a Population

- The ocean water is monitored for fecal contamination by counting certain types of bacteria in a sample of seawater
- Over a week where rain occurred early in the week, data were collected on one type of fecal bacteria
- The population of the particular bacteria (in thousand/cc), P(t), were best fit by the cubic polynomial

$$P(t) = -t^3 + 9t^2 - 15t + 40,$$

where t is in days

5050

6

Population Example

Example – Study of a Population

Study of a Population

- Find the rate of change in population per day, dP/dt
- What is the rate of change in the population on the third day?
- Find relative and absolute minimum and maximum populations of the bacteria over the time of the surveys
- Determine when the bacterial count is most rapidly increasing
- Sketch a graph of this polynomial fit to the population of bacteria
- When did the rain most likely occur?

Population Example

Example – Study of a Population

Rate of Change in Population: The derivative of $P(t) = -t^3 + 9t^2 - 15t + 40$ is

 $\frac{dP}{dt} = -3\,t^2 + 18\,t - 15$

Evaluating this on the third day

 $\frac{dP(3)}{dt} = 12(\times 1000/\text{cc/day})$

SDSU

5050

3

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(37/41)Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(38/41)Application of The Derivative Absolute Maxima and Minima Absolute Maxima and Minima Examples Examples **Population Example Population Example** Example – Study of a Population Example – Study of a Population 54 **Critical Points:** We found **Point of Inflection:** The bacteria is increasing most rapidly when the second derivative is zero $\frac{dP}{dt} = -3t^2 + 18t - 15 = -3(t-1)(t-5)$ Since $P'(t) = -3t^2 + 18t - 15$, the second derivative is P''(t) = -6t + 18 = -6(t - 3)• The **critical points** are • $t_c = 1$ and $t_c = 5$ • **Relative Minimum** at $t_c = 1$ with $P(1) = 33(\times 1000/\text{cc})$ • The population is increasing most rapidly at t = 3 with • **Relative Maximum** at $t_c = 5$ with $P(5) = 65 (\times 1000/cc)$ $P(3) = 49(\times 1000/cc)$ • The endpoint values are P(0) = 40 and P(7) = 33• This maximum increase is • By the theorem above $P'(3) = 12(\times 1000/\text{cc/dav})$ • The absolute maximum occurs at t = 5 with P(5) = 65• The absolute minimum occurs at t = 1 and 7 with P(1) = P(7) = 33

2

SDSU

Cubic Polynomial Quartic Polynomial Absolute Maxima and Minima **Population Example**

6

Example – Study of a Population

Graph of

$$P(t) = -t^3 + 9t^2 - 15t + 40,$$

From the graph, we can guess that the rain fell on the second day of the week with storm runoff polluting the water in the days following

