1. a. The best straight line fit found by Trendline for the Lineweaver-Burk plot with $x=1 /[S]$ and $y=1 / R([S])$ is

$$
y=23.005 x+0.2343
$$

Thus, the value of $1 / V_{\max }=0.2343$, and the slope gives $K_{m} / V_{\max }=23.005$. It follows that $V_{\max }=4.268$ and $K_{m}=98.186$. This method for finding the parameters for this experiment on cytochrome P450 mediated demethylation of the substrate $[S]$ amitriptyline (AMI) to nortriptyline (N) by human liver microsomes gives a Michaelis-Menten reaction rate of

$$
R([S])=\frac{4.268[S]}{98.186+[S]} .
$$

b. The Michaelis-Menten model above with the parameters found from the Lineweaver-Burk best fitting line has $[S]$ and R-intercepts of $(0,0)$ (as is true of all Michaelis-Menten reaction kinetic models). There is a horizontal asymptote of $R=4.268$, which clearly appears high from the experimental data. Below is a table of the data, the model prediction, and the percent error at various concentrations of [AMI]. There is a graph of this model and the one found in the next part at the end of the solutions to this problem.

[AMI] $(\mu \mathrm{M})$	N formation nmol $/ \mathrm{min} / \mathrm{mg}$	MM Model	\% Error
15	0.6	0.5656	-5.73
50	1.35	1.4401	6.67
100	2.17	2.1535	-0.76
200	2.68	2.8626	6.82
500	3.12	3.5675	14.34

c. With the model

$$
R([S])=\frac{3.738[S]}{80.63+[S]},
$$

the $[S]$ and R-intercepts are $(0,0)$. There is a horizontal asymptote of $R=3.738$, which matches the experimental data very well. Below is a table of the data, the model prediction, and the percent error at various concentrations of [AMI]. Note that these errors are significantly better than the ones from the Lineweaver-Burk plot.

[AMI] $(\mu \mathrm{M})$	N formation nmol $/ \mathrm{min} / \mathrm{mg}$	MM Model	\% Error
15	0.6	0.5864	-2.27
50	1.35	1.4309	5.99
100	2.17	2.0696	-4.63
200	2.68	2.6643	-0.59
500	3.12	3.2193	3.18

Below is a graph of the data and the two models. Clearly the second model is better because it fits the data over the entire range much better.

2. a. Consider the functions,

$$
f(x)=x^{2}-3 x-5 \quad \text { and } \quad g(x)=\frac{20 x}{1.4+x} .
$$

For $f(x)$, the y-intercept is $(0,-5)$, and the x-intercepts are $(-1.1926,0)$ and $(4.1926,0)$. For $g(x)$, the x and y-intercept is $(0,0)$. The vertex for $f(x)$ is $(1.5,-7.25)$. The function $g(x)$ has a vertical asymptote at $x=-1.4$ and a horizontal asymptote at $y=20$.
b. There are three points of intersection as can be seen in the graph below. The three points of intersection are $(-4.5189,28.977),(-0.24347,-4.2103)$, and $(6.3624,16.393)$.

