1. a. Write $f(x)$ as powers of $x$ as much as possible (remove denominators), so

$$
f(x)=6 x^{3}+2 x^{-2}-e^{2 x}\left(x^{2}-9\right)
$$

Apply power rules, product rule, and the rules for exponential yielding

$$
\begin{aligned}
f^{\prime}(x) & =6\left(3 x^{2}\right)+2\left(-2 x^{-3}\right)-\left(e^{2 x}(2 x)+2 e^{2 x}\left(x^{2}-9\right)\right) \\
& =18 x^{2}-\frac{4}{x^{3}}-2 e^{2 x}\left(x^{2}+x-9\right)
\end{aligned}
$$

b. Use the properties of logarithms to write

$$
g(x)=2 e^{-3 x}+2 \ln (x)-5
$$

Use the rules of differentiation of exponentials and logarithms to give

$$
\begin{aligned}
g^{\prime}(x) & =2(-3) e^{-3 x}+\frac{2}{x}+0 \\
& =\frac{2}{x}-6 e^{-3 x}
\end{aligned}
$$

c. Leave $h(x)$ in the form,

$$
h(x)=2 x^{6} \ln (x)-e^{x^{2}+4 x}+\frac{1}{2} e^{-4 x}
$$

Apply power rules, product rule, chain rule, and the rules for exponentials and logarithms yielding

$$
\begin{aligned}
h^{\prime}(x) & =2\left(\left(6 x^{5}\right) \ln (x)+x^{6}\left(\frac{1}{x}\right)\right)-e^{x^{2}+4 x}(2 x+4)+\frac{-4}{2} e^{-4 x} \\
& =12 x^{5} \ln (x)+2 x^{5}-(2 x+4) e^{x^{2}+4 x}-2 e^{-4 x}
\end{aligned}
$$

d. Write $k(t)$ as powers of $t$ as much as possible, so

$$
k(t)=\frac{1}{4} t^{2}-4 t^{-\frac{1}{2}}+\frac{2+e^{2 t}}{t^{2}-3} .
$$

Apply power rules, the rules for logarithms, and quotient rule yielding

$$
\begin{aligned}
k^{\prime}(t) & =\left(\frac{2}{4}\right) t-4\left(-\frac{1}{2}\right) t^{-\frac{3}{2}}+\frac{2\left(t^{2}-3\right) e^{2 t}-2 t\left(2+e^{2 t}\right)}{\left(t^{2}-3\right)^{2}} \\
& =\frac{t}{2}+\frac{2}{\sqrt{t^{3}}}+\frac{2\left(t^{2}-3\right) e^{2 t}-2 t\left(2+e^{2 t}\right)}{\left(t^{2}-3\right)^{2}}
\end{aligned}
$$

e. Write $p(w)$ as powers of $w$, so

$$
p(w)=\frac{2 \ln (w)+w}{w^{3}-8}-w^{2 / 5}+w^{-3} e^{-w}
$$

Apply power rules, product rule, and the rules for exponentials to give

$$
\begin{aligned}
p^{\prime}(w) & =\frac{\left(w^{3}-8\right)(2 / w+1)-3 w^{2}(2 \ln (w)+w)}{\left(w^{3}-8\right)^{2}}-\frac{2}{5} w^{-3 / 5}+\left(w^{-3}\left(-e^{-w}\right)-3 w^{-4} e^{-w}\right) \\
& =\frac{\left(w^{3}-8\right)(2 / w+1)-3 w^{2}(2 \ln (w)+w)}{\left(w^{3}-8\right)^{2}}-\frac{2}{5} w^{-3 / 5}-\frac{e^{-w}}{w^{3}}\left(1+\frac{3}{w}\right)
\end{aligned}
$$

f. Write $q(z)$ as powers of $z$ and use properties of logarithms, so

$$
q(z)=2 A z \ln (z)-B z^{1 / 2}+C z^{-3} .
$$

Apply power rules and the rules for logarithms to give

$$
\begin{aligned}
q^{\prime}(z) & =2 A\left(\frac{z}{z}+\ln (z)\right)-\frac{B}{2} z^{-1 / 2}+C(-3) z^{-4} \\
& =2 A(1+\ln (z))-\frac{B}{2 \sqrt{z}}-\frac{3 C}{z^{4}}
\end{aligned}
$$

g. Write $r(x)$ as follows:

$$
r(x)=e^{2 x}\left(x^{3}-5 x+7\right)^{4}-\frac{7 x}{\left(x^{2}+2 x+5\right)^{1 / 2}} .
$$

Apply the product, quotient, and chain rule to obtain

$$
\begin{aligned}
r^{\prime}(x)= & \left(e^{2 x} 4\left(x^{3}-5 x+7\right)^{3}\left(3 x^{2}-5\right)+2 e^{2 x}\left(x^{3}-5 x+7\right)^{4}\right) \\
& -\frac{7\left(x^{2}+2 x+5\right)^{1 / 2}-(7 x / 2)\left(x^{2}+2 x+5\right)^{-1 / 2}(2 x+2)}{\left(x^{2}+2 x+5\right)} \\
= & 2 e^{2 x}\left(x^{3}-5 x+7\right)^{3}\left(x^{3}+6 x^{2}-5 x-3\right)-\frac{7(x+5)}{\left(x^{2}+2 x+5\right)^{3 / 2}}
\end{aligned}
$$

h. Leave $F(y)$ as

$$
F(y)=\left(3 y^{2}-4 y+6\right)^{5}+\ln (2 y+9) .
$$

Apply the chain rule to obtain

$$
F^{\prime}(y)=5\left(3 y^{2}-4 y+6\right)^{4}(6 y-4)+\frac{2}{2 y+9}
$$

2. a. $y=4 x e^{-0.02 x}$

Domain is all $x$.
$y$-intercept: $y(0)=0$, so $(0,0)$, which is also, the only $x$-intercept.
Horizontal asymptote: As $x \rightarrow \infty, y \rightarrow 0$, so $y=0$ is a horizontal asymptote (looking to the right). Derivative: By the product rule, $y^{\prime}(x)=4 x(-0.02) e^{-0.02 x}+4 e^{-0.02 x}=4 e^{-0.02 x}(1-0.02 x)$
Critical points satisfy $y^{\prime}(x)=0$, so $1-0.02 x=0$ or $x=50$. With $y(50)=200 e^{-1} \simeq 73.576$, $(50,73.576)$ is a maximum.
Second derivative $y^{\prime \prime}(x)=4 e^{-0.02 x}(-0.02)+4(-0.02) e^{-0.02 x}(1-0.02 x)=-0.16(1-0.01 x) e^{-0.02 x}$. Point of inflection $\left(y^{\prime \prime}=0\right)$ : At $x=100, y(100)=400 e^{-2} \simeq 54.134$. Thus, $(100,54.134)$.


Problem 2a


Problem 2b
b. $y=(x+3) \ln (x+3)$

Domain is $x>-3$. The $y$-intercept is $3 \ln (3) \simeq 3.2958$.
$x$-intercept: Where $(x+3) \ln (x+3)=0$, which occurs when $\ln (x+3)=0$ or $x=-2$.
There are no asymptotes. (It can be shown that as $x \rightarrow-3, y \rightarrow 0$.)
Derivative: By the product rule, $y^{\prime}(x)=\frac{x+3}{x+3}+\ln (x+3)=1+\ln (x+3)$.
Critical points satisfy $y^{\prime}(x)=0$, so $\ln (x+3)=-1$ or $x+3=e^{-1} \simeq 0.3679$, so $x \simeq-2.6321$. When $x=e^{-1}-3, y=-e^{-1}$ and is a minimum.
Second derivative $y^{\prime \prime}(x)=\frac{1}{x+3}>0$ for $x>-3$. There is no point of inflection, and the function is concave up.
c. $y=(x-4) e^{2 x}$

Domain is all $x$.
$y$-intercept: $y(0)=-4$, so $(0,-4)$.
$x$-intercept: Since the exponential function is not zero, $y=0$ when $x=4$.
Horizontal asymptote: As $x \rightarrow-\infty, y \rightarrow 0$, so $y=0$ is a horizontal asymptote (looking to the left).
Derivative: By the product rule, $y^{\prime}(x)=2(x-4) e^{2 x}+e^{2 x}=(2 x-7) e^{2 x}$.
Critical points satisfy $y^{\prime}(x)=0$, so $2 x-7=0$ or $x=3.5$. With $y(3.5)=-0.5 e^{7} \simeq-548.3$, $(3.5,-548.3)$ is a minimum.
Second derivative $y^{\prime \prime}(x)=2(2 x-7) e^{2 x}+2 e^{2 x}=4(x-3) e^{2 x}$.
Point of inflection $\left(y^{\prime \prime}=0\right)$ : At $x=3, y(3)=-e^{6} \simeq-403.4$. Thus, $(3,-402.4)$.
d. $y=\frac{10(x-2)}{(1+0.5 x)^{3}}$

Domain is all $x \neq-2$.
$y$-intercept: $y(0)=-20$, so $(0,-20)$.
$x$-intercept: Numerator equal to zero, so $x=2$ or $(2,0)$
Vertical asymptote: $x=-2$.


Problem 2c


Problem 2d

Horizontal asymptote: The power of the denominator exceeds the power of the numerator, so $y=0$ is a horizontal asymptote
Derivative: By the quotient rule, $y^{\prime}(x)=10 \frac{(1+0.5 x)^{3}-(x-2) 3(1+0.5 x)^{2}(0.5)}{(1+0.5 x)^{6}}=\frac{10(4-x)}{(1+0.5 x)^{4}}$.
Critical points satisfy $y^{\prime}(x)=0$, so $4-x=0$ or $x=4$. With $y(4)=\frac{20}{27} \simeq 0.7407,(4,0.7407)$ is a relative maximum.
Second derivative $y^{\prime \prime}(x)=10 \frac{-(1+0.5 x)^{4}-(4-x) 4(1+0.5 x)^{3}(0.5)}{(1+0.5 x)^{8}}=\frac{15(x-6)}{(1+0.5 x)^{5}}$.
Since $y^{\prime \prime}(x)=0$ and $x=6$, there is a point of inflection at $\left(6, \frac{5}{8}\right)$.
e. $y=\frac{2 e^{2 x}}{x-1}$

Domain is all $x \neq 1$.
$y$-intercept: $y(0)=-2$, so $(0,-2)$.
No $x$-intercept: The numerator is clearly never zero.
Vertical asymptote: $x=1$.
Horizontal asymptote: As $x \rightarrow-\infty, y \rightarrow 0$, so $y=0$ is a horizontal asymptote (looking to the left).
Derivative: By the quotient rule, $y^{\prime}(x)=\frac{2\left((x-1) 2 e^{2 x}-e^{2 x}\right)}{(x-1)^{2}}=\frac{2 e^{2 x}(2 x-3)}{(x-1)^{2}}$.
Critical points satisfy $y^{\prime}(x)=0$, so $2 x-3=0$ or $x=1.5$. With $y(1.5)=\frac{2 e^{3}}{0.5} \simeq 80.342,(1.5,80.342)$ is a minimum.
Second derivative $y^{\prime \prime}(x)=\frac{2\left(\left(x^{2}-2 x+1\right)(4 x-4) e^{2 x}-(2 x-3)(2 x-2) e^{2 x}\right)}{(x-1)^{4}}=\frac{4 e^{2 x}\left(2 x^{2}-6 x+5\right)}{(x-1)^{3}}$.
There are no points of inflection, since $y^{\prime \prime} \neq 0$.


Problem 2e


Problem 2f
f. $y=\frac{4 x^{2}}{x+3}$

Domain all $x \neq-3$
$x$ and $y$-intercept: $(0,0)$.
Vertical asymptote: $x=-3$
Derivative: By the quotient rule, $y^{\prime}(x)=\frac{4\left(2 x(x+3)-x^{2}\right)}{(x+3)^{2}}=\frac{4 x(x+6)}{(x+3)^{2}}$.
Critical points satisfy $y^{\prime}(x)=0$, so $x=0$ and $x=-6$. When $x=0, y=0$ and is a minimum. When $x=-6, y=-48$ and is a maximum.
Second derivative $y^{\prime \prime}(x)=\frac{4\left(\left(x^{2}+6 x+9\right)(2 x+6)-\left(x^{2}+6 x\right)(2 x+6)\right)}{(x+3)^{4}}=\frac{36(2 x+6)}{(x+3)^{4}}$. There is no point of inflection, as $y^{\prime \prime}(x)=0$ at $x=-3$, the vertical asymptote.
3. a. The rate of change in growth rate as a function of nutrient application is

$$
\frac{d R}{d n}=-10 \frac{n^{2}-1}{\left(1+n^{2}\right)^{2}}
$$

The rate of change in the growth rate when $n=2$ is $R^{\prime}(2)=-1.2(\mathrm{~mm} / \mathrm{day} / \mathrm{mg} / \mathrm{l})$
b. There is a maximum at $n=1$ (and a minimum occurs at $n=-1$, which is outside the domain) with $R(1)=5$.
c. The $n$ and $R$-intercept is $(0,0)$, and there is a horizontal asymptote at $R=0$. Below is a graph of the function.

4. a. Since $h(t)=40\left(e^{-0.005 t}-e^{-0.15 t}\right)$, it follows that

$$
h^{\prime}(t)=40\left(-0.005 e^{-0.005 t}-(-0.15) e^{-0.15 t}\right)=40\left(0.15 e^{-0.15 t}-0.005 e^{-0.005 t}\right)
$$

The maximum occurs when $h^{\prime}(t)=0$, so $0.15 e^{-0.15 t}=0.005 e^{-0.005 t}$ or $e^{-0.005 t} e^{0.15 t}=\frac{0.15}{0.005}$. Thus, $e^{(.15-.005) t}=e^{0.145 t}=30$ or $0.145 t=\ln (30)$. The maximum is at $t_{c}=\frac{1}{0.145} \ln (30) \simeq 23.46$ days. The maximum concentration is $h\left(t_{c}\right)=40\left(e^{-0.005 t_{c}}-e^{-0.15 t_{c}}\right)=34.39 \mathrm{ng} / \mathrm{dl}$.
b. The only intercept is $(0,0)$. There is a horizontal asymptote at $h=0$, since $\lim _{t \rightarrow \infty} h(t)=0$. Maple can be used to show the $h(t)=20$ at $t=5.0$ and 138.6 , so the hormone level remains above $20 \mathrm{ng} / \mathrm{dl}$ of blood for about 134 days. The graph is shown below.
5. By the product rule, the derivative is $P^{\prime}(r)=0.04 e^{-0.2 r}-0.008 r e^{-0.2 r}$. The maximum probability occurs when the derivative is zero, $0.04 e^{-0.2 r}-0.008 r e^{-0.2 r}=0.04 e^{-0.2 r}(1-0.2 r)$ or $0.2 r=1$. Thus, the maximum probability of a seed landing occurs at $r=5 \mathrm{~m}$ with a probability of $P(5)=0.0736$.


The graph of the probability density function has an intercept at $(0,0)(P(0)=0)$, a horizontal asymptote of $P=0$ (since for large $r, P$ becomes arbitrarily small), and a local maximum of (5, 0.0736).

6. a. The equilibrium satisfies $N_{e}\left(0.8-0.04 \ln \left(N_{e}\right)\right)=0$. Since $N=0$ is not in the domain. Thus, the equilibrium satisfies $0.04 \ln \left(N_{e}\right)=0.8$ or $\ln \left(N_{e}\right)=20$. It follows that the equilibrium is $N_{e}=4.852 \times 10^{8}$.
b. By the product rule, the derivative is $G^{\prime}(N)=-N(0.04 / N)+(0.8-0.04 \ln (N))=0.76-$ $0.04 \ln (N)$. The maximum growth rate satisfies $0.76-0.04 \ln (N)=0$ or $\ln (N)=19$. Thus, the maximum rate of growth occurs at $N_{\max }=e^{19}=1.785 \times 10^{8}$ with a maximum growth rate of $G\left(N_{\max }\right)=7.139 \times 10^{6}$.
c. Evaluating $G\left(2 \times 10^{8}\right)=7.089 \times 10^{6}$, so the tumor is growing with this population of cells. Evaluating $G^{\prime}\left(2 \times 10^{8}\right)=-0.004553$, so the rate of growth of the tumor is decreasing with this population of cells.
7. a. The concentration of glucose is given by $g(t)=70+90 e^{-0.7 t}$, so for it to reach $90 \mathrm{mg} / 100 \mathrm{ml}$ of blood, we need $90=70+90 e^{-0.7 t}$ or $\left.20=90 e^{( }-0.7 t\right)$. It follows that $e^{0.7 t}=\frac{90}{20}$ or $0.7 t=\ln \left(\frac{90}{20}\right)$. this takes about $t=2.15$ hours. Note that this function has a $g$-intercept of 160 and a horizontal asymptote of $g=70$. The graph for the concentration of glucose in the blood is below.
b. The rate of change of glucose per hour is

$$
\frac{d g}{d t}=0+90(-0.7) e^{-0.7 t}=-63 e^{-0.7 t}
$$

At $t=1, g^{\prime}(1)=-63 e^{-0.7}=-31.28 \mathrm{mg} / 100 \mathrm{ml}$ of blood/hour.
c. The level of insulin satisfies the function $i(t)=10\left(e^{-0.4 t}-e^{-0.5 t}\right)$, so

$$
i^{\prime}(t)=10\left(-0.4 e^{-0.4 t}+0.5 e^{-0.5 t}\right)=5 e^{-0.5 t}-4 e^{-0.4 t}
$$

The concentration is maximum where $i^{\prime}(t)=0$, so $5 e^{-0.5 t}=4 e^{-0.4 t}$ or $\frac{5}{4}=e^{-0.4 t} e^{0.5 t}=e^{0.1 t}$. It follows that $t=10 \ln \left(\frac{5}{4}\right)=2.23 \mathrm{hr}$. The maximum concentration is $i(2.23)=10\left(e^{-0.4(2.23)}-\right.$ $\left.e^{-0.5(2.23)}\right)=0.819$. This graph starts at $(0,0)$ and asymptotically approaches zero for large time. A graph of the insulin concentration is below also.
d. The rate of change of insulin per hour was computed above $\left(i^{\prime}(t)\right)$. The rate of change at $t=1$ is $i^{\prime}(1)=5 e^{-0.5}-4 e^{-0.4}=0.351$ units/hour.

glucose

insulin
8. The radioactive decay of white lead ( $\left.{ }^{210} \mathrm{~Pb}\right)$ satisfies the equation $R(t)=R_{0} e^{-k t}$. With a halflife of 22 years, we have $R_{0} / 2=R_{0} e^{-22 k}$, so $e^{22 k}=2$ or $22 k=\ln (2)$. Thus, the decay constant $k=\frac{\ln (2)}{22}=0.03151 \mathrm{yr}^{-1}$. If the painting has $5 \%$ of the original amount of ${ }^{210} \mathrm{~Pb}$ left, then $.05 R_{0}=R_{0} e^{-0.03151 t}$ so $t=\frac{\ln (0.05)}{0.03151}=95.1$ years old.
9. a. The colony of Escherichia coli satisfies $P(t)=1000 e^{0.01 t}$, so to find doubling time we solve $1000 e^{0.01 t}=2000$ or $e^{0.01 t}=2$. Thus, the doubling time is $0.01 t=\ln (2)$ or $t=100 \ln (2)=69.3 \mathrm{~min}$.
b. The mutant satisfies $M(t)=e^{k t}$ and doubles in 25 min . It follows that $e^{25 k}=2$ or $k=$ $\frac{\ln (2)}{25}=0.02773$. If the mutant colony is $20 \%$ of the population of the colony, then the original population is 4 times the mutant population. ( $20 \%$ mutant and $80 \%$ original). Thus, we must solve $1000 e^{0.01 t}=4 e^{k t}$ or $e^{k t} e^{-0.01 t}=e^{(0.02773-0.01) t}=e^{0.01773 t}=250$. Thus, $0.01773 t=\ln (250)$ or $t=\frac{\ln (250)}{k-0.01}=311.5 \mathrm{~min}$.
c. The original population at $t=500$ is $P(500)=1000 e^{5}=148,413$ bacteria. The mutant population is $M(500)=e^{500 k}=1,048,576$ bacteria. The rate of growth of the original population
is $\frac{d P}{d t}=1000(0.01) e^{0.01 t}=10 e^{0.01 t}$, which at $t=500$ gives $P^{\prime}(500)=10 e^{5}=1,484$ bacteria $/ \mathrm{min}$. The rate of growth of the mutant colony is $\frac{d M}{d t}=k e^{k t}=0.02773 e^{0.02773 t}$, which at $t=500$ gives $M^{\prime}(500)=k e^{500 k}=0.02772 e^{1} 3.86=29,073$ bacteria $/ \mathrm{min}$.
10. a. The derivative of the Ricker's updating function is

$$
\frac{d R}{d P}=2.7 e^{-0.004 P}(1-0.004 P)
$$

The $R$ and $P$-intercept is the origin, $(0,0)$, and there is a horizontal asymptote at $R=0$. There is a relative maximum at $P=250$ with $R(P)=675 e^{-1}=248.32$. Below is the graph.

b. The equilibria satisfy $P_{e}=2.7 P_{e} e^{-0.004 P_{e}}$, so either $P_{e}=0$ or $1=2.7 e^{-0.004 P_{e}}$. The latter gives $e^{0.004 P_{e}}=2.7$ or $P_{e}=250 \ln (2.7)=248.31$.
c. If $P_{e}=0$, then $R^{\prime}(0)=2.7>1$, so the equilibrium at $P_{e}=0$ is unstable. If $P_{e}=248.31$, then $R^{\prime}(248.31)=0.006748<1$, so the equilibrium at $P_{e}=248.31$ is stable.
11. a. The derivative of the Beverton-Holt's updating function is

$$
\frac{d B}{d P}=\frac{4(1+0.002 P)-4 P(0.002)}{(1+0.002 P)^{2}}=\frac{4}{(1+0.002 P)^{2}}
$$

The $B$ and $P$-intercept is the origin, $(0,0)$, and there is a horizontal asymptote at $B=2000$. There are no extrema as this function is strictly increasing to its horizontal asymptote. Below is the graph.
b. The equilibria satisfy

$$
P_{e}=\frac{4 P_{e}}{1+0.002 P_{e}},
$$

so either $P_{e}=0$ or $1+0.002 P_{e}=4$. The latter gives $P_{e}=1500$.
c. If $P_{e}=0$, then $B^{\prime}(0)=4>1$, so the equilibrium at $P_{e}=0$ is unstable. If $P_{e}=1500$, then $B^{\prime}(1500)=0.25<1$, so the equilibrium at $P_{e}=1500$ is stable.
12. a. The derivative of Hassell's updating function is

$$
\frac{d H}{d P}=20 \frac{(1+0.004 P)^{4} \cdot 1-4 P(1+0.004 P)^{3}(0.004)}{(1+0.004 P)^{8}}=\frac{20(1-0.012 P)}{(1+0.004 P)^{5}} .
$$



The $H$ and $P$-intercept is the origin, $(0,0)$, and there is a horizontal asymptote at $H=0$. There is a critical point at $P_{c}=\frac{1}{0.012}=83.333$ with $H\left(P_{c}\right)=527.34$. This is clearly a maximum. Since the power of the denominator exceeds that of the numerator, there is a horizontal asymptote of $H=0$. Below is the graph.

b. The equilibria satisfy

$$
P_{e}=\frac{20 P_{e}}{\left(1+0.004 P_{e}\right)^{4}},
$$

so either $P_{e}=0$ or $\left(1+0.004 P_{e}\right)^{4}=20$. The latter gives $P_{e}=278.7$.
c. If $P_{e}=0$, then $H^{\prime}(0)=20>1$, so the equilibrium at $P_{e}=0$ is unstable. If $P_{e}=278.7$, then $H^{\prime}(278.7)=-1.1085<-1$, so the equilibrium at $P_{e}=278.7$ is unstable and oscillatory.
13. a. The equilibria satisfy

$$
P_{e}=\frac{2 P_{e}}{1+0.0025 P_{e}^{2}} \quad \text { or } \quad P_{e}\left(1+0.0025 P_{e}^{2}\right)=2 P_{e} .
$$

Thus, either $P_{e}=0$ or $1+0.0025 P_{e}^{2}=2$. The latter implies that $0.0025 P_{e}^{2}=1$ or $P_{e}^{2}=400$. Thus, $P_{e}= \pm 20$, but since the population density cannot be negative $P_{e}=20$.
b. From the quotient rule,

$$
f^{\prime}\left(P_{n}\right)=\frac{\left(1+0.0025 P_{n}^{2}\right) 2-2 P_{n}\left(0.005 P_{n}\right)}{\left(1+0.0025 P_{n}^{2}\right)^{2}}
$$

$$
=\frac{2-0.005 P_{n}^{2}}{\left(1+0.0025 P_{n}^{2}\right)^{2}} .
$$

The maximum occurs when $f^{\prime}\left(P_{n}\right)=0$, which is when the numerator above is zero. Thus, $2-$ $0.005 P_{n}^{2}=0$ or $P_{n}^{2}=400$. It follows that the maximum mitotic increase occurs at $P_{n}=20$, which is also the equilibrium.
c. A sketch of $f(P)$ is below. The only intercept is $(0,0)$. As $P_{n} \rightarrow \infty$, the denominator of $f\left(P_{n}\right)$ gets larger faster than the numerator (higher power of $P_{n}$ ), so $f\left(P_{n}\right) \rightarrow 0$, so there is a horizontal asymptote at $P_{n+1}=0$. From Part b., the maximum occurs at (20,20).

14. a. For the population model with the Allee effect, $N_{n+1}=N_{n}+0.1 N_{n}\left(1-\frac{1}{9}\left(N_{n}-5\right)^{2}\right)$ with (population in thousands) $N_{0}=4$, the next two generations are

$$
\begin{aligned}
& N_{1}=4+0.1(4)\left(1-\frac{1}{9}(4-5)^{2}\right)=4.356 \\
& N_{2}=4.356+0.1(4.356)\left(1-\frac{1}{9}(4.356-5)^{2}\right)=4.771
\end{aligned}
$$

in thousands of birds.
b. $N_{e}=N_{e}+0.1 N_{e}\left(1-\frac{1}{9}\left(N_{e}-5\right)^{2}\right)$, so $0.1 N_{e}\left(1-\frac{1}{9}\left(N_{e}-5\right)^{2}\right)=0$. Thus, $N_{e}=0$ or $\left(N_{e}-5\right)^{2}=9$. It follows that the equilibria are $N_{e}=0,2$, and 8 .
c. From the expanded model, $N_{n+1}=A\left(N_{n}\right)=\frac{37}{45} N_{n}+\frac{1}{9} N_{n}^{2}-\frac{1}{90} N_{n}^{3}$, the derivative is $A^{\prime}(N)=$ $\frac{37}{45}+\frac{2}{9} N-\frac{1}{30} N^{2}$. At $N_{e}=0, A^{\prime}(0)=\frac{37}{45}$, so this equilibrium is a stable equilibrium with solutions monotonically approaching 0 . At $N_{e}=2, A^{\prime}(2)=\frac{17}{15}$, so this equilibrium is an unstable equilibrium with solutions monotonically moving away from 2 . At $N_{e}=8, A^{\prime}(8)=\frac{7}{15}$, so this equilibrium is a stable equilibrium with solutions monotonically approaching 8 .
d. Biologically, these results imply that if the population is below 2 thousand, then it will go to extinction $\left(N_{e}=0\right)$. If the population is above 2 thousand, then the population of birds will grow to a carrying capacity of $N_{e}=8$ thousand.
15. a. From $P_{3}$, we have $P_{3}=68.34=28.49(1+r)^{3}$, so $(1+r)=(68.34 / 28.49)^{1 / 3}=1.33863$. Thus, $r=0.33863$. Doubling time satisfies $2 P_{0}=P_{0}(1+r)^{n}$ or $n=\ln (2) / \ln (1+r)=2.377$ decades or 23.77 years.
b. The model predicts the population in 2000 is $P_{5}=28.49(1.33863)^{5}=122.46$ million. The percent error is $100 \frac{(122.46-99.93)}{99.93}=22.55 \%$.
c. From the logistic model, we obtain $P_{1}=39.32$ million and $P_{2}=52.79$ million.
d. To find equilibria, we solve $P_{e}=1.48 P_{e}-0.0035 P_{e}^{2}$, which gives $P_{e}=0$ or $P_{e}=137.14$ million. The derivative of the updating function is $F^{\prime}(P)=1.48-0.007 P$, so $F^{\prime}(137.14)=0.52$. It follows that this equilibrium is stable with solutions monotonically approaching this carrying capacity equilibrium.
16. a. Since $Y(t)=1000\left(1+19 e^{-0.1 t}\right)^{-1}$, the chain rule gives

$$
\begin{aligned}
Y^{\prime}(t) & =-1000\left(1+19 e^{-0.1 t}\right)^{-2}\left(-1.9 e^{-0.1 t}\right) \\
& =\frac{1900 e^{-0.1 t}}{\left(1+19 e^{-0.1 t}\right)^{2}}
\end{aligned}
$$

The second derivative is

$$
\begin{aligned}
Y^{\prime \prime}(t) & =1900 \frac{\left(1+19 e^{-0.1 t}\right)^{2}\left(-0.1 e^{-0.1 t}\right)-e^{-0.1 t} 2\left(1+19 e^{-0.1 t}\right)\left(-1.9 e^{-0.1 t}\right)}{\left(1+19 e^{-0.1 t}\right)^{4}} \\
& =\frac{190 e^{-0.1 t}\left(19 e^{-0.1 t}-1\right)}{\left(1+19 e^{-0.1 t}\right)^{3}} .
\end{aligned}
$$

The second derivative is 0 when $19 e^{-0.1 t}-1=0$ or $e^{0.1 t}=19 . t=10 \ln (19)=29.44$. Thus, there is a point of inflection at $(29.44,500)$.
b. Only intercept is $(0,50)$. As $t \rightarrow \infty, e^{-0.1 t} \rightarrow 0$, so $Y(t) \rightarrow 1000$, which gives a horizontal asymptote of $Y=1000$. A graph of $Y(t)$ is below to the left. Since the population starts at 50 , it doubles when it reaches 100 . Solving $Y(t)=\frac{1000}{1+19 e^{-0.1 t}}=100$ gives $1+19 e^{-0.1 t}=10$, so $e^{0.1 t}=\frac{19}{9}$. Thus, this population doubles when $t=10 \ln \left(\frac{19}{9}\right)=7.47 \mathrm{hr}$.
c. $Y(t)$ is increasing most rapidly at the point of inflection, so $t=29.44 \mathrm{hr}$. Substituting this value into the derivative gives the population increasing at a rate of 25 yeast/cc/hr. The only intercept is $(0,4.75)$. Since the numerator has a decaying exponential function, the horizontal asymptote is $Y^{\prime}=0$. A sketch of $Y^{\prime}(t)$ is below to the right. The maximum for $Y^{\prime}(t)$ is $(29.44,25)$.
d. The Malthusian growth model doubles when it reaches 100 . Solving $100=50 e^{0.1 t}$ gives $e^{0.1 t}=2$ or $t=10 \ln (2)$. Thus, the doubling time for the Malthusian growth model is $t=6.93 \mathrm{hr}$.
17. a. From the von Bertalanffy equation, it is easy to see that the graph passes through the origin, giving the $t$ and $L$-intercepts to both be 0 . As $t \rightarrow \infty, L(t) \rightarrow 16$, so there is a horizontal asymptote of $L=16$. The graph of the length of the sculpin is below to the left.
b. The composite function satisfies:

$$
W(t)=0.07\left(16\left(1-e^{-0.4 t}\right)\right)^{3}=286.72\left(1-e^{-0.4 t}\right)^{3} .
$$

This function again passes through the origin, and it is easy to see that it has a horizontal asymptote at $W=286.72$.

c. We apply the chain rule to differentiate $W(t)$. The result is

$$
W^{\prime}(t)=3 \cdot 286.72\left(1-e^{-0.4 t}\right)^{2}(0.4) e^{-0.4 t}=344.064\left(1-e^{-0.4 t}\right)^{2} e^{-0.4 t} .
$$

The second derivative combines the product rule and the chain rule, giving:

$$
\begin{aligned}
W^{\prime \prime}(t) & =344.064\left(-0.4\left(1-e^{-0.4 t}\right)^{2} e^{-0.4 t}+2\left(1-e^{-0.4 t}\right) 0.4 e^{-0.4 t} e^{-0.4 t}\right) \\
& =137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(-\left(1-e^{-0.4 t}\right)+2 e^{-0.4 t}\right) \\
& =137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(3 e^{-0.4 t}-1\right) .
\end{aligned}
$$

The point of inflection is when the sculpin has its maximum weight gain, and this occurs when

$$
W^{\prime \prime}(t)=137.6256\left(1-e^{-0.4 t}\right) e^{-0.4 t}\left(3 e^{-0.4 t}-1\right)=0
$$

or

$$
\left(3 e^{-0.4 t}-1\right)=0 \quad \text { or } \quad e^{0.4 t}=3 \quad \text { or } \quad t=\frac{5 \ln (3)}{2} \simeq 2.7465 .
$$

The maximum weight gain is

$$
W^{\prime}(2.7465)=50.97 \mathrm{~g} / \mathrm{yr} .
$$

