
Spring 2010 Complete Solutions Review Exam 3

1. a. Write f(x) as powers of x as much as possible (remove denominators), so

f(x) = 6x3 + 2x−2 − e2x(x2 − 9).

Apply power rules, product rule, and the rules for exponential yielding

f ′(x) = 6(3x2) + 2(−2x−3)−
(
e2x(2x) + 2e2x(x2 − 9)

)

= 18x2 − 4
x3
− 2e2x(x2 + x− 9)

b. Use the properties of logarithms to write

g(x) = 2e−3x + 2 ln(x)− 5.

Use the rules of differentiation of exponentials and logarithms to give

g′(x) = 2(−3)e−3x +
2
x

+ 0

=
2
x
− 6e−3x

c. Leave h(x) in the form,

h(x) = 2x6 ln(x)− ex2+4x +
1
2
e−4x.

Apply power rules, product rule, chain rule, and the rules for exponentials and logarithms yielding

h′(x) = 2
(

(6x5) ln(x) + x6
(

1
x

))
− ex2+4x(2x+ 4) +

−4
2
e−4x

= 12x5 ln(x) + 2x5 − (2x+ 4)ex
2+4x − 2e−4x

d. Write k(t) as powers of t as much as possible, so

k(t) =
1
4
t2 − 4t−

1
2 +

2 + e2t

t2 − 3
.

Apply power rules, the rules for logarithms, and quotient rule yielding

k′(t) =
(

2
4

)
t− 4

(
−1

2

)
t−

3
2 +

2(t2 − 3)e2t − 2t(2 + e2t)
(t2 − 3)2

=
t

2
+

2√
t3

+
2(t2 − 3)e2t − 2t(2 + e2t)

(t2 − 3)2

e. Write p(w) as powers of w, so

p(w) =
2 ln(w) + w

w3 − 8
− w2/5 + w−3e−w.



Apply power rules, product rule, and the rules for exponentials to give

p′(w) =
(w3 − 8)(2/w + 1)− 3w2(2 ln(w) + w)

(w3 − 8)2
− 2

5
w−3/5 +

(
w−3(−e−w)− 3w−4e−w

)

=
(w3 − 8)(2/w + 1)− 3w2(2 ln(w) + w)

(w3 − 8)2
− 2

5
w−3/5 − e−w

w3

(
1 +

3
w

)

f. Write q(z) as powers of z and use properties of logarithms, so

q(z) = 2Az ln(z)−Bz1/2 + Cz−3.

Apply power rules and the rules for logarithms to give

q′(z) = 2A
(
z

z
+ ln(z)

)
− B

2
z−1/2 + C(−3)z−4

= 2A(1 + ln(z))− B

2
√
z
− 3C
z4

g. Write r(x) as follows:

r(x) = e2x(x3 − 5x+ 7)4 − 7x
(x2 + 2x+ 5)1/2

.

Apply the product, quotient, and chain rule to obtain

r ′(x) =
(
e2x4(x3 − 5x+ 7)3(3x2 − 5) + 2e2x(x3 − 5x+ 7)4

)

−7(x2 + 2x+ 5)1/2 − (7x/2)(x2 + 2x+ 5)−1/2(2x+ 2)
(x2 + 2x+ 5)

= 2e2x(x3 − 5x+ 7)3(x3 + 6x2 − 5x− 3)− 7(x+ 5)
(x2 + 2x+ 5)3/2

h. Leave F (y) as
F (y) = (3y2 − 4y + 6)5 + ln(2y + 9).

Apply the chain rule to obtain

F ′(y) = 5(3y2 − 4y + 6)4(6y − 4) +
2

2y + 9

2. a. y = 27x− x3

Domain is all x.
y-intercept: y(0) = 0, so (0, 0).
x-intercepts: 27x− x3 = x(27− x2) = 0, so x = 0 and x = ±√27 = ±3

√
3.

No asymptotes
Derivative y ′(x) = 27− 3x2

Extrema are where y ′(x) = −3(x2 − 9) = 0, so x = ±3. With y(−3) = 27(−3)− (−3)3 = −54 and
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Problem 2a Problem 2b

y(3) = 54. Thus, (3, 54) is a maximum, and (−3,−54) is a minimum.
Second derivative y ′′(x) = −3(2)x = −6x.
Point of inflection (y ′′ = 0): At x = 0 or (0, 0).

b. y = x4 − 4x
Domain is all x.
y-intercept: y(0) = 0, so (0, 0).
x-intercept: x4 − 4x = x(x3 − 4) = 0, so x = 0 and x = 3

√
4 ' 1.587.

No asymptotes
Derivative y ′(x) = 4x3 − 4
Extrema are where y ′(x) = 4(x3 − 1) = 0, so x = 1. With y(1) = 14 − 4(1) = −3, (1,−3) is a
minimum.
Second derivative y ′′(x) = 12x2.
Point of inflection (y ′′ = 0): At x = 0 or (0, 0).

c. y = x3 + 3x2 + 3x+ 1
Domain is all x.
y-intercept: y(0) = 1, so (0, 1).
x-intercept: x3 + 3x2 + 3x+ 1 = (x+ 1)3 = 0, so x = −1.
No asymptotes
Derivative y ′(x) = 3x2 + 3(2)x+ 3 = 3x2 + 6x+ 3
Extrema are where y ′(x) = 3(x+ 1)2 = 0, so x = −1 is a critical point. y(−1) = 0, but (−1, 0) is
a saddle point (neither maximum or minimum.
Second derivative y ′′(x) = 3(2)x+ 6 = 6x+ 6.
Point of inflection (y ′′ = 0): At x = −1 or (−1, 0).
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d. y = 18x2 − x4

Domain is all x.
y-intercept: y(0) = 0, so (0, 0).
x-intercept: x2(18− x2) = −x2(x+ 3

√
2)(x− 3

√
2) = 0, so x = 0 and x = ±3

√
2.

No asymptotes
Derivative y ′(x) = 36x− 4x3 = 4x(9− x2)
Critical points satisfy y ′(x) = −4x(x2 − 9) = 0, so x = 0,±3. With y(0) = 0, (0, 0) is a minimum.
When x = ±3,y(±3) = 81, so there are local maxima at (−3, 81) and (3, 81).
Second derivative y ′′(x) = 36− 12x2 = 12(3− x2).
Point of inflection (y ′′ = 0): At x = ±√3, giving (±√3, 45).

e. y = x+
4
x

= x+ 4x−1

Domain is all x 6= 0.
Since there is a vertical asymptote at x = 0, there is no y-intercept.
We solve y = x2+4

x = 0 or x2 + 4 = 0, so no x-intercepts.
Derivative y ′(x) = 1− 4x−2 = x2−4

x2

Critical points satisfy y ′(x) = 0, so x2 − 4 = 0 or x = ±2. With y(−2) = −4, (−2,−4) is a local
maximum. With y(2) = 4, (2, 4) is a local minimum.
Second derivative y ′′(x) = 8x−3, which is never zero, so no points of inflection.
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Problem 2e Problem 2f

f. y = 4xe−0.02x

Domain is all x.
y-intercept: y(0) = 0, so (0, 0), which is also, the only x-intercept.
Horizontal asymptote: As x→∞, y → 0, so y = 0 is a horizontal asymptote (looking to the right).
Derivative: By the product rule, y ′(x) = 4x(−0.02)e−0.02x + 4e−0.02x = 4e−0.02x(1− 0.02x)
Critical points satisfy y ′(x) = 0, so 1 − 0.02x = 0 or x = 50. With y(50) = 200e−1 ' 73.576,
(50, 73.576) is a maximum.
Second derivative y ′′(x) = 4e−0.02x(−0.02) + 4(−0.02)e−0.02x(1− 0.02x) = −0.16(1− 0.01x)e−0.02x.
Point of inflection (y ′′ = 0): At x = 100, y(100) = 400e−2 ' 54.134. Thus, (100, 54.134).

g. y = (x+ 3) ln(x+ 3)
Domain is x > −3. The y-intercept is 3 ln(3) ' 3.2958.
x-intercept: Where (x+ 3) ln(x+ 3) = 0, which occurs when ln(x+ 3) = 0 or x = −2.
There are no asymptotes. (It can be shown that as x→ −3, y → 0.)
Derivative: By the product rule, y ′(x) = x+3

x+3 + ln(x+ 3) = 1 + ln(x+ 3).



Critical points satisfy y ′(x) = 0, so ln(x+3) = −1 or x+3 = e−1 ' 0.3679, so x ' −2.6321. When
x = e−1 − 3, y = −e−1 and is a minimum.
Second derivative y ′′(x) = 1

x+3 > 0 for x > −3. There is no point of inflection, and the function is
concave up.
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Problem 2g Problem 2h

h. y = (x− 4)e2x

Domain is all x.
y-intercept: y(0) = −4, so (0,−4).
x-intercept: Since the exponential function is not zero, y = 0 when x = 4.
Horizontal asymptote: As x→ −∞, y → 0, so y = 0 is a horizontal asymptote (looking to the left).
Derivative: By the product rule, y ′(x) = 2(x− 4)e2x + e2x = (2x− 7)e2x.
Critical points satisfy y ′(x) = 0, so 2x − 7 = 0 or x = 3.5. With y(3.5) = −0.5e7 ' −548.3,
(3.5,−548.3) is a minimum.
Second derivative y ′′(x) = 2(2x− 7)e2x + 2e2x = 4(x− 3)e2x.
Point of inflection (y ′′ = 0): At x = 3, y(3) = −e6 ' −403.4. Thus, (3,−402.4).

i. y =
4x2

x+ 3
Domain all x 6= −3
x and y-intercept: (0, 0).
Vertical asymptote: x = −3
Derivative: By the quotient rule, y ′(x) = 4(2x(x+3)−x2)

(x+3)2 = 4x(x+6)
(x+3)2 .

Critical points satisfy y ′(x) = 0, so x = 0 and x = −6. When x = 0, y = 0 and is a minimum.
When x = −6, y = −48 and is a maximum.
Second derivative y ′′(x) = 4((x2+6x+9)(2x+6)−(x2+6x)(2x+6))

(x+3)4 = 36(2x+6)
(x+3)4 . There is no point of inflec-

tion, as y ′′(x) = 0 at x = −3, the vertical asymptote.

j. y =
2 e2x

x− 1
Domain is all x 6= 1.
y-intercept: y(0) = −2, so (0,−2).
No x-intercept: The numerator is clearly never zero.
Vertical asymptote: x = 1.
Horizontal asymptote: As x→ −∞, y → 0, so y = 0 is a horizontal asymptote (looking to the left).
Derivative: By the product rule, y ′(x) = 2((x−1)2e2x−e2x)

(x−1)2 = 2e2x(2x−3)
(x−1)2 .

Critical points satisfy y ′(x) = 0, so 2x−3 = 0 or x = 1.5. With y(1.5) = 2e3

0.5 ' 80.342, (1.5, 80.342)



Problem 2i Problem 2j

is a minimum.
Second derivative y ′′(x) = 2((x2−2x+1)(4x−4)e2x−(2x−3)(2x−2)e2x)

(x−1)4 = 4e2x(2x2−6x+5)
(x−1)3 .

There are no points of inflection, since y ′′ 6= 0.

3. a. The temperature is given by T (t) = 0.002t3 − 0.09t2 + 1.2t + 32, which upon differentiation
becomes

dT

dt
= 0.006 t2 − 0.18 t+ 1.2.

At noon, T ′(12) = 0.006(144)− 0.18(12) = −0.096 ◦C/hr.

b. To find extrema, solve T ′(t) = 0.006(t2 − 30t+ 2000) = 0.006(t− 10)(t− 20) = 0. It follows
t = 10 and t = 20, so T (10) = 2 − 9 + 12 + 32 = 37 and T (20) = 16 − 36 + 24 + 32 = 36. The
maximum temperature of the subject occurs at 10 AM with a temperature of 37 ◦C, while the
minimum temperature of the subject occurs at 8 PM (t = 20) with a temperature of 36 ◦C.

4. a. P ′(t) = 3t2 − 18t+ 15. P ′(2) = −9 thousand algae/cc/day.

b. There is a maximum at t = 1 with P (1) = 37. There is a minimum at t = 5 with P (5) = 5.
The population is increasing for t ∈ (0, 1) and t ∈ (5, 7). It is decreasing for t ∈ (1, 5)

c. The population at the beginning and end are P (0) = 30 and P (7) = 37. Below is the graph.



5. a. The rate of change in growth rate as a function of nutrient application is

dR

dn
= −10

n2 − 1
(1 + n2)2 .

The rate of change in the growth rate when n = 2 is R ′(2) = −1.2 (mm/day/mg/l)

b. There is a maximum at n = 1 (and a minimum occurs at n = −1, which is outside the
domain) with R(1) = 5.

c. The n and R-intercept is (0, 0), and there is a horizontal asymptote at R = 0. Below is a
graph of the function.

6. a. Since h(t) = 40
(
e−0.005t − e−0.15t

)
, it follows that

h′(t) = 40
(
−0.005e−0.005t − (−0.15)e( − 0.15t)

)
= 40(0.15e( − 0.15t)− 0.005e−0.005t).

The maximum occurs when h′(t) = 0, so 0.15e( − 0.15t) = 0.005e−0.005t or e−0.005te0.15t = 0.15
0.005 .

Thus, e(.15−.005)t = e0.145t = 30 or 0.145t = ln(30). The maximum is at tc = 1
0.145 ln(30) '

23.46 days. The maximum concentration is h(tc) = 40
(
e−0.005tc − e−0.15tc

)
= 34.39 ng/dl.

b. The only intercept is (0, 0). There is a horizontal asymptote at h = 0, since limt→∞ h(t) = 0.
Maple can be used to show the h(t) = 20 at t = 5.0 and 138.6, so the hormone level remains above
20 ng/dl of blood for about 134 days. The graph is shown below.

7. By the product rule, the derivative is P ′(r) = 0.04e−0.2r−0.008re−0.2r.The maximum probability
occurs when the derivative is zero, 0.04e−0.2r−0.008re−0.2r = 0.04e−0.2r(1−0.2r) or 0.2r = 1. Thus,



the maximum probability of a seed landing occurs at r = 5 m with a probability of P (5) = 0.0736.
The graph of the probability density function has an intercept at (0, 0) (P (0) = 0), a horizontal
asymptote of P = 0 (since for large r, P becomes arbitrarily small), and a local maximum of
(5, 0.0736).
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8. a. The equilibrium satisfies Ne(0.8 − 0.04 ln(Ne)) = 0. Since N = 0 is not in the domain.
Thus, the equilibrium satisfies 0.04 ln(Ne) = 0.8 or ln(Ne) = 20. It follows that the equilibrium is
Ne = 4.852× 108.

b. By the product rule, the derivative is G′(N) = −N(0.04/N) + (0.8 − 0.04 ln(N)) = 0.76 −
0.04 ln(N). The maximum growth rate satisfies 0.76 − 0.04 ln(N) = 0 or ln(N) = 19. Thus, the
maximum rate of growth occurs at Nmax = e19 = 1.785 × 108 with a maximum growth rate of
G(Nmax) = 7.139× 106.

9. a. The concentration of glucose is given by g(t) = 70+90e−0.7t, so for it to reach 90 mg/100 ml of
blood, we need 90 = 70 + 90e−0.7t or 20 = 90e( − 0.7t). It follows that e0.7t = 90

20 or 0.7t = ln
(

90
20

)
.

this takes about t = 2.15 hours. Note that this function has a g-intercept of 160 and a horizontal
asymptote of g = 70. The graph for the concentration of glucose in the blood is below.

b. The rate of change of glucose per hour is

dg

dt
= 0 + 90(−0.7)e−0.7t = −63e−0.7t.

At t = 1, g′(1) = −63e−0.7 = −31.28 mg/100 ml of blood/hour.

c. The level of insulin satisfies the function i(t) = 10(e−0.4t − e−0.5t), so

i′(t) = 10(−0.4e−0.4t + 0.5e−0.5t) = 5e−0.5t − 4e−0.4t.

The concentration is maximum where i′(t) = 0, so 5e−0.5t = 4e−0.4t or 5
4 = e−0.4te0.5t = e0.1t. It

follows that t = 10 ln
(

5
4

)
= 2.23 hr. The maximum concentration is i(2.23) = 10(e−0.4(2.23) −

e−0.5(2.23)) = 0.819. This graph starts at (0, 0) and asymptotically approaches zero for large time.
A graph of the insulin concentration is below also.

d. The rate of change of insulin per hour was computed above (i′(t)). The rate of change at
t = 1 is i′(1) = 5e−0.5 − 4e−0.4 = 0.351 units/hour.



glucose insulin

10. The radioactive decay of white lead (210Pb) satisfies the equation R(t) = R0e
−kt. With a

half-life of 22 years, we have R0/2 = R0e
−22k, so e22k = 2 or 22k = ln(2). Thus, the decay

constant k = ln(2)
22 = 0.03151 yr−1. If the painting has 5% of the original amount of 210Pb left, then

.05R0 = R0e
−0.03151t so t = ln(0.05)

0.03151 = 95.1 years old.

11. a. The colony of Escherichia coli satisfies P (t) = 1000e0.01t, so to find doubling time we solve
1000e0.01t = 2000 or e0.01t = 2. Thus, the doubling time is 0.01t = ln(2) or t = 100 ln(2) = 69.3 min.

b. The mutant satisfies M(t) = ekt and doubles in 25 min. It follows that e25k = 2 or k =
ln(2)
25 = 0.02773. If the mutant colony is 20% of the population of the colony, then the original

population is 4 times the mutant population. (20% mutant and 80% original). Thus, we must
solve 1000e0.01t = 4ekt or ekte−0.01t = e(0.02773−0.01)t = e0.01773t = 250. Thus, 0.01773t = ln(250) or
t = ln(250)

k−0.01 = 311.5 min.

c. The original population at t = 500 is P (500) = 1000e5 = 148, 413 bacteria. The mutant
population is M(500) = e500k = 1, 048, 576 bacteria. The rate of growth of the original population
is dP

dt = 1000(0.01)e0.01t = 10e0.01t, which at t = 500 gives P ′(500) = 10e5 = 1, 484 bacteria/min.
The rate of growth of the mutant colony is dM

dt = kekt = 0.02773e0.02773t, which at t = 500 gives
M ′(500) = ke500k = 0.02772e13.86 = 29, 073 bacteria/min.

12. a. The derivative of the Ricker’s updating function is

dR

dP
= 2.7 e−0.004P (1− 0.004P ).

The R and P -intercept is the origin, (0, 0), and there is a horizontal asymptote at R = 0. There is
a relative maximum at P = 250 with R(P ) = 675 e−1 = 248.32. Below is the graph.

b. The equilibria satisfy Pe = 2.7Pee−0.004Pe , so either Pe = 0 or 1 = 2.7e−0.004Pe . The latter
gives e0.004Pe = 2.7 or Pe = 250 ln(2.7) = 248.31.

c. If Pe = 0, then R ′(0) = 2.7 > 1, so the equilibrium at Pe = 0 is unstable. If Pe = 248.31,
then R ′(248.31) = 0.006748 < 1, so the equilibrium at Pe = 248.31 is stable.
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13. a. The derivative of the Beverton-Holt’s updating function is

dB

dP
=

4(1 + 0.002P )− 4P (0.002)
(1 + 0.002P )2

=
4

(1 + 0.002P )2
.

The B and P -intercept is the origin, (0, 0), and there is a horizontal asymptote at B = 2000. There
are no extrema as this function is strictly increasing to its horizontal asymptote. Below is the
graph.
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b. The equilibria satisfy

Pe =
4Pe

1 + 0.002Pe
,

so either Pe = 0 or 1 + 0.002Pe = 4. The latter gives Pe = 1500.

c. If Pe = 0, then B ′(0) = 4 > 1, so the equilibrium at Pe = 0 is unstable. If Pe = 1500, then
B ′(1500) = 0.25 < 1, so the equilibrium at Pe = 1500 is stable.

14. a. The derivative of Hassell’s updating function is

dH

dP
= 20

(1 + 0.004P )4 · 1− 4P (1 + 0.004P )3(0.004)
(1 + 0.004P )8

=
20(1− 0.012P )
(1 + 0.004P )5

.

The H and P -intercept is the origin, (0, 0), and there is a horizontal asymptote at H = 0. There is
a critical point at Pc = 1

0.012 = 83.333 with H(Pc) = 527.34. This is clearly a maximum. Since the
power of the denominator exceeds that of the numerator, there is a horizontal asymptote of H = 0.
Below is the graph.
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b. The equilibria satisfy

Pe =
20Pe

(1 + 0.004Pe)4
,

so either Pe = 0 or (1 + 0.004Pe)4 = 20. The latter gives Pe = 278.7.

c. If Pe = 0, then H ′(0) = 20 > 1, so the equilibrium at Pe = 0 is unstable. If Pe = 278.7, then
H ′(278.7) = −1.1085 < −1, so the equilibrium at Pe = 278.7 is unstable and oscillatory.

15. a. The equilibria satisfy

Pe =
2Pe

1 + 0.0025P 2
e

or Pe(1 + 0.0025P 2
e ) = 2Pe.

Thus, either Pe = 0 or 1 + 0.0025P 2
e = 2. The latter implies that 0.0025P 2

e = 1 or P 2
e = 400. Thus,

Pe = ±20, but since the population density cannot be negative Pe = 20.

b. From the quotient rule,

f ′(Pn) =
(1 + 0.0025P 2

n)2− 2Pn(0.005Pn)(
1 + 0.0025Pn2

)2

=
2− 0.005Pn2

(
1 + 0.0025Pn2

)2 .

The maximum occurs when f ′(Pn) = 0, which is when the numerator above is zero. Thus, 2 −
0.005P 2

n = 0 or P 2
n = 400. It follows that the maximum mitotic increase occurs at Pn = 20, which

is also the equilibrium.

c. A sketch of f(P ) is below. The only intercept is (0, 0). As Pn → ∞, the denominator
of f(Pn) gets larger faster than the numerator (higher power of Pn), so f(Pn) → 0, so there is a
horizontal asymptote at Pn+1 = 0. From Part b., the maximum occurs at (20, 20).

16. a. By the quotient rule, the derivative is

Y ′(t) =
(1 + 19e−0.1t)0− 1000((−1.9)e−0.1t)

(1 + 19e−0.1t)2

=
1900e−0.1t

(1 + 19e−0.1t)2
=

1900e−0.1t

1 + 38e−0.1t + 361e−0.2t
.
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The second derivative is

Y ′′(t) =
−190e−0.1t(1 + 38e−0.1t + 361e−0.2t)− 1900e−0.1t(−3.8e−0.1t − 72.2e−0.2t)

(1 + 19e−0.1t)4

=
190e−0.1t(19e−0.1t − 1)

(1 + 19e−0.1t)3
.

The second derivative is 0 when 19e−0.1t − 1 = 0 or e0.1t = 19. t = 10 ln(19) = 29.44. Thus, there
is a point of inflection at (29.44, 500).

b. Only intercept is (0, 50). As t → ∞, e−0.1t → 0, so Y (t) → 1000, which gives a horizontal
asymptote of Y = 1000. A graph of Y (t) is below to the left. Since the population starts at 50, it
doubles when it reaches 100. Solving Y (t) = 1000

1+19e−0.1t = 100 gives 1 + 19e−0.1t = 10, so e0.1t = 19
9 .

Thus, this population doubles when t = 10 ln
(

19
9

)
= 7.47 hr.

c. Y (t) is increasing most rapidly at the point of inflection, so t = 29.44 hr. Substituting
this value into the derivative gives the population increasing at a rate of 25 yeast/cc/hr. The
only intercept is (0, 4.75). Since the numerator has a decaying exponential function, the horizontal
asymptote is Y ′ = 0. A sketch of Y ′(t) is below to the right. The maximum for Y ′(t) is (29.44, 25).

d. The Malthusian growth model doubles when it reaches 100. Solving 100 = 50e0.1t gives
e0.1t = 2 or t = 10 ln(2). Thus, the doubling time for the Malthusian growth model is t = 6.93 hr.
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17. a. From the von Bertalanffy equation, it is easy to see that the graph passes through the origin,
giving the t and L-intercepts to both be 0. As t→∞, L(t)→ 16, so there is a horizontal asymptote
of L = 16. The graph of the length of the sculpin is below to the left.

b. The composite function satisfies:

W (t) = 0.07
(
16(1− e−0.4t)

)3
= 286.72(1− e−0.4t)3.

This function again passes through the origin, and it is easy to see that it has a horizontal asymptote
at W = 286.72.
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c. We apply the chain rule to differentiate W (t). The result is

W ′(t) = 3 · 286.72(1− e−0.4t)2(0.4)e−0.4t = 344.064(1− e−0.4t)2e−0.4t.

The second derivative combines the product rule and the chain rule, giving:

W ′′(t) = 344.064
(
−0.4(1− e−0.4t)2e−0.4t + 2(1− e−0.4t)0.4e−0.4te−0.4t

)

= 137.6256(1− e−0.4t)e−0.4t
(
−(1− e−0.4t) + 2e−0.4t

)

= 137.6256(1− e−0.4t)e−0.4t
(
3e−0.4t − 1

)
.

The point of inflection is when the sculpin has its maximum weight gain, and this occurs when

W ′′(t) = 137.6256(1− e−0.4t)e−0.4t
(
3e−0.4t − 1

)
= 0.

or
(3e−0.4t − 1) = 0 or e0.4t = 3 or t =

5 ln(3)
2

' 2.7465.

The maximum weight gain is
W ′(2.7465) = 50.97 g/yr.


