1. a. $P_{1}=68.75, P_{2}=91.3$, and $P_{3}=116.1$.
b. The P_{n}-intercepts are $(0,0)$ and $(600,0)$, and the vertex is $(300,225)$. The equilibria are $P_{e}=0$ and 200. Since $F^{\prime}(P)=1.5-0.005 P$, we have $F^{\prime}(0)=1.5$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $F^{\prime}(200)=0.5$, and the equilibrium at $P_{e}=200$ is stable (monotonically).

Problem 1

Problem 2
2. a. $P_{1}=234.375, P_{2}=224.3$, and $P_{3}=217.49$. The equilibria are $P_{e}=0$ and 200 . Since $F^{\prime}(P)=1.25-0.0025 P$, we have $F^{\prime}(0)=1.25$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $F^{\prime}(200)=0.75$, and the equilibrium at $P_{e}=200$ is stable (monotonically).
b. The P_{n}-intercepts are $(0,0)$ and $(1000,0)$, and the vertex is $(500,312.5)$. The equilibria are $P_{e}=0$ and 200. Since $F^{\prime}(P)=1.25-0.0025 P$, we have $F^{\prime}(0)=1.25$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $F^{\prime}(200)=0.75$, and the equilibrium at $P_{e}=200$ is stable (monotonically).
3. a. The growth rate is zero at $P=0$ and 600 , and the vertex is $(300,4.5)$.
b. $P_{1}=102.5, P_{2}=105.05$, and $P_{3}=107.65$. The equilibria are $P_{e}=0$ and 600 . Since the updating function is $F(P)=P+0.03 P(1-P / 600)$, we have $F^{\prime}(P)=1.03-0.0001 P$. Thus, we find $F^{\prime}(0)=1.03$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $F^{\prime}(600)=0.97$, and the equilibrium at $P_{e}=600$ is stable (monotonically).

Problem 3

Problem 4
4. a. The growth rate is zero at $P=0$ and 2500 , and the vertex is $(1250,12.5)$.
b. $P_{1}=4900, P_{2}=4805.92$, and $P_{3}=4717.26$. The equilibria are $P_{e}=0$ and 2500. Since the updating function is $F(P)=P+0.02 P(1-0.0004 P)$, we have $F^{\prime}(P)=1.02-0.000016 P$. Thus, we find $F^{\prime}(0)=1.02$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $F^{\prime}(600)=0.96$, and the equilibrium at $P_{e}=2500$ is stable (monotonically).
5. a. $P_{1}=516, P_{2}=531.97$, and $P_{3}=547.87$.
b. The P_{n}-intercepts are $(8.1879,0)$ and $(10991.8,0)$, and the vertex is $(5500,3016)$. The equilibria are $P_{e}=100$ and 900 . Since $F^{\prime}(P)=1.1-0.0002 P$, we have $F^{\prime}(100)=1.08$, and the equilibrium at $P_{e}=900$ is unstable (monotonically). Also, we have $F^{\prime}(900)=0.92$, and the equilibrium at $P_{e}=900$ is stable (monotonically).

Problem 5

Problem 5 (close)
6. a. $P_{1}=1056, P_{2}=1111.7$, and $P_{3}=1166.4$.
b. The P_{n}-intercepts are $(36.779,0)$ and $(11963.2,0)$, and the vertex is $(6000,3556)$. The equilibria are $P_{e}=251.67$ and 1748.3. Since $F^{\prime}(P)=1.2-0.0002 P$, we have $F^{\prime}(251.67)=$ 1.1497, and the equilibrium at $P_{e}=1748.3$ is unstable (monotonically). Also, we have $F^{\prime}(1748.3)=$ 0.8503 , and the equilibrium at $P_{e}=1748.3$ is stable (monotonically).

Problem 6

Problem 6 (close)
7. a. $p_{1}=1250, p_{2}=1785.7$, and $p_{3}=1953.1$.
b. The p_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $p_{n+1}=2500$.
c. The equilibria are $p_{e}=0$ and 2000. Since

$$
B^{\prime}(p)=\frac{5}{(1+0.002 p)^{2}},
$$

we have $B^{\prime}(0)=5$, and the equilibrium at $p_{e}=0$ is unstable (monotonically). Also, we have $B^{\prime}(2000)=0.2$, and the equilibrium at $P_{e}=2000$ is stable (monotonically).

Problem 7

Problem 8
8. a. $p_{1}=500, p_{2}=192.3$, and $p_{3}=409.3$.
b. The p_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $p_{n+1}=0$. A maximum occurs at $(100,500)$.
c. The equilibria are $p_{e}=0$ and 300. Since

$$
H^{\prime}(p)=\frac{10-0.001 p^{2}}{\left(1+0.0001 p^{2}\right)^{2}},
$$

we have $H^{\prime}(0)=10$, and the equilibrium at $p_{e}=0$ is unstable (monotonically). Also, we have $H^{\prime}(300)=-0.8$, and the equilibrium at $P_{e}=300$ is stable (oscillatory).
9. a. $P_{1}=242.6, P_{2}=288.5$, and $P_{3}=272.7$.
b. The P_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $P_{n+1}=0$. A maximum occurs at (200, 294.3).
c. The equilibria are $P_{e}=0$ and 277.26. Since

$$
R^{\prime}(P)=4 e^{-0.005 P}(1-0.005 P),
$$

we have $R^{\prime}(0)=4$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $R^{\prime}(277.26)=-0.3863$, and the equilibrium at $P_{e}=277.26$ is stable (oscillatory).

Problem 9

Problem 10
10. a. $P_{1}=814.35, P_{2}=3246.3$, and $P_{3}=1137.1$.
b. The P_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $P_{n+1}=0$. A maximum occurs at ($1000,3310.9$).
c. The equilibria are $P_{e}=0$ and 2197.2. Since

$$
R^{\prime}(P)=9 e^{-0.001 P}(1-0.001 P)
$$

we have $R^{\prime}(0)=9$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $R^{\prime}(2197.2)=-1.197$, and the equilibrium at $P_{e}=2197.2$ is unstable (oscillatory).
13. a. $P_{1}=510.2, P_{2}=551.8$, and $P_{3}=536.5$.
b. The P_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $P_{n+1}=0$. A maximum occurs at $(250,625)$.
c. The equilibria are $P_{e}=0$ and 540.6. Since

$$
H^{\prime}(P)=\frac{10-0.04 P}{(1+0.004 P)^{3}},
$$

we have $H^{\prime}(0)=10$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $H^{\prime}(540.6)=-0.3675$, and the equilibrium at $P_{e}=0$ is stable (oscillatory).

Problem 13

Problem 14
14. a. $P_{1}=357.1, P_{2}=735.3$, and $P_{3}=932.8$.
b. The P_{n}-intercept is $(0,0)$, and there is a horizontal asymptote at $P_{n+1}=1250$.
c. The equilibria are $P_{e}=0$ and 1000. Since

$$
B^{\prime}(P)=\frac{5}{(1+0.004 P)^{2}},
$$

we have $B^{\prime}(0)=5$, and the equilibrium at $P_{e}=0$ is unstable (monotonically). Also, we have $B^{\prime}(1000)=0.2$, and the equilibrium at $P_{e}=1000$ is stable (monotonic).
15. a. $N_{1}=4.6, N_{2}=5.4$, and $N_{3}=6.465$.
b. The equilibria for this cubic equation are $N_{e}=0,2$, and 10 .
c. The derivative of the updating function is

$$
A^{\prime}(N)=\frac{3}{4}+\frac{3 N}{10}-\frac{3 N^{2}}{80}
$$

Thus, we have $A^{\prime}(0)=3 / 4$, and the equilibrium at $N_{e}=0$ is stable (monotonically). Also, we have $A^{\prime}(2)=1.2$, and the equilibrium at $N_{e}=2$ is unstable (monotonic). Finally, the equilibrium at $N_{e}=10$ has $A^{\prime}(10)=0$, and this equilibrium at $N_{e}=10$ is stable (monotonic).
d. This Allee effect shows that if the flamingo population falls below $N_{e}=2$ (thousand), then the population will tend toward zero (extinction). If the population is above $N_{e}=2$ (thousand), then the population will tend toward the carrying capacity of $N_{e}=10$ (thousand).

Problem 15

Problem 16
16. a. $V_{1}=4.68, V_{2}=7.48$, and $V_{3}=5.86$.
b. The equilibria for this cubic equation are $V_{e}=0,1$, and 7 .
c. The derivative of the updating function is

$$
M^{\prime}(V)=0.51+1.12 V-0.21 V^{3} .
$$

Thus, we have $M^{\prime}(0)=0.51$, so the equilibrium at $V_{e}=0$ is stable (monotonically). Also, we have $M^{\prime}(1)=1.42$, so the equilibrium at $V_{e}=1$ is unstable (monotonic). Finally, the equilibrium at $V_{e}=7$ has $M^{\prime}(7)=-1.94$, so this equilibrium at $V_{e}=7$ is unstable (oscillatory).
d. The dynamical model for a nerve cell shows that a small stimulus $\left(V_{0}<1\right)$ will return to rest with $V_{e}=0$. When the stimulus is larger $\left(V_{0}>1\right)$, then the nerve cell will fire continuously in an oscillatory manner with the voltage going above and below the unstable active equilibrium $V_{e}=7$.

