
Fall 2015 Math 337

MatLab - Systems of Differential Equations

This section examines systems of differential equations. It goes through the key steps of solving
systems of differential equations through the numerical methods of MatLab along with its graphical
solutions. The system of differential equations is introduced. Analysis begins with finding equilibria.
Near an equilibrium the linear behavior is most important, which requires studying eigenvalue
problems. Numerical routines can simulate the system of differential equations, while the special
routine pplane allows easy study of the system with excellent graphics.

The general two dimensional autonomous system of differential equations in the state variables
x1(t) and x2(t) can be written:

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2),

where the functions f1 and f2 may be nonlinear. This section will concentrate on the case when f1
and f2 are linear to parallel the lecture notes, Systems of Two First Order Equations. The
Greenhouse/Rockbed Model from the lecture notes is given by the linear system of differential
equations:

(

u̇1
u̇2

)

=

(

−13
8

3
4

1
4 −1

4

)(

u1
u2

)

+

(

14
0

)

.

This example will provide the primary case for our MatLab commands listed below.

Equilibria

Equilibria occur when the derivative is zero. In the general case where the right hand side
of the system of differential equations is nonlinear, this problem can be very complex. However,
when the functions f1 and f2 are linear, then finding equilibria reduces to solving a linear system
of equations. This is very basic for MatLab and can be accomplished in a number of ways.

For the greenhouse/rockbed model above, the equilibrium model satisfies:

(

−13
8

3
4

1
4 −1

4

)(

u1e
u2e

)

=

(

−14
0

)

. (1)

This is more simply written:
Aue = b,

where A is the matrix of coefficients, ue is the equilibrium solution, and b is the nonhomogeneous
vector from the external environment.

Below we provide three ways in MatLab to find ue, the equilibrium solution. The two most
common means to solving this linear system are to use the program linsolve or to take advantage
of MatLab’s ability to invert a matrix. Define the variables, then the following commands readily
provide the solution.

A = [-13/8 3/4;1/4 -1/4]; b = [-14;0];

u = linsolve(A,b)

u = inv(A)*b

Both results produce the variable u = [16, 16]T for the equilibrium solution.
The third method is to use the row-reduced echelon form for transforming an augmented matrix

into the identity with the solution in the last column. The MatLab program for this is rref. (There
used to be a common teaching tool called rrefmovie, which showed all the steps of the process
including the names of the operation, but this function appears to have been removed after Version
10 of MatLab.) Below we show the commands necessary for this solution method.

B = [A,b]

rref(B)

The results are the following:

B =

[

−1.6250 0.7500 −14.0000
0.2500 −0.2500 0

] [

1 0 16
0 1 16

]

Linear Analysis

As noted in the lecture notes, Systems of Two First Order Equations, the original state
variable, u, is translated to the new state variable, v = u−ue, resulting in the new linear system
of differential equations centered at the origin:

(

v̇1
v̇2

)

=

(

−13
8

3
4

1
4 −1

4

)(

v1
v2

)

(2)

or more simply
v̇ = Av.

For this problem we seek solutions v(t) = ξeλt, and the result is the eigenvalue problem:

(A− λI)ξ = 0, where det |A− λI| = 0,

provides the characteristic equation for the eigenvalues and ξ are the corresponding eigenvectors.
For this system with distinct real eigenvalues, λ1 and λ2, and corresponding eigenvectors, ξ(1) and
ξ(2), the solution of System (2) satisfies:

v(t) = c1ξ
(1)eλ1t + c2ξ

(2)eλ2t,

where c1 and c2 are arbitrary constants.
Once again MatLab is an excellent program for solving this eigenvalue problem. The MatLab

command

[v,d] = eig(A)

produces the eigenvalues on the diagonal of matrix d with the corresponding eigenvectors appearing
as columns of matrix v. For this example MatLab produces:

d =

[

−1.7500 0
0 −0.1250

]

v =

[

−0.9864 −0.4472
0.1644 −0.8944

]

, (3)

which gives the general solution to System (2) as

v(t) = c1

(

−0.9864
0.1644

)

e−1.75t + c2

(

0.4472
0.8944

)

e−0.125t.

Solution to the System of Linear Differential Equations

Since u(t) = v(t) + ue, it follows that the general solution to (1) is

u(t) = c1

(

−0.9864
0.1644

)

e−1.75t + c2

(

−0.4472
−0.8944

)

e−0.125t +

(

16
16

)

.

The specific solution to an initial value problem, where u(0) = u0, is readily found using MatLab
and solving the vector equation:

c1ξ
(1) + c2ξ

(2) + ue = u0.

We use our example above with u0 = [5, 25]T (or v0 = [−11, 9]T) to illustrate the appropriate
MatLab commands. (Assume that the eigenvectors are stored in v as presented in (3).) Let
c = [c1, c2]

T be vector for which MatLab is solving, then

v0 = [-11, 9]’;

c = linsolve(v,v0)

produces the solution c = [14.5050,−7.3962]T , so the unique solution to the IVP is

u(t) = 14.5050

(

−0.9864
0.1644

)

e−1.75t + 7.3962

(

0.4472
0.8944

)

e−0.125t +

(

16
16

)

.

The MatLab’s numerical solver, ode23, extends easily to systems of 1st order differential equa-
tions. Below we show how to both use the numerical solver and the exact solution above to graph
the u(t). First the right hand side of System (1) is made into a MatLab function

1 func t i on yp = greenhouse (t , y)
2 % Greenhouse DE (rhs)
3 yt1 = −(13/8)∗y (1) +(3/4)∗y (2) + 14 ;
4 yt2 = (1/4) ∗y (1) − (1/4) ∗y (2) ;
5 yp = [yt1 , yt2] ’ ;
6 end

The function plotting the numerical and exact solutions is given by

1 myt i t l e = ’ Greenhouse/Rockbed ’ ; % T i t l e
2 xlab = ’ t hr s ’ ; % X−l a b e l
3 ylab = ’ Temperature ($ˆ\ c i r c$C) ’ ; % Y−l a b e l
4

5 u0 = [5 , 2 5] ’ ;
6 [t , u] = ode23 (@greenhouse , [0 , 1 0] , u0) ; % s imulate heat with ode23
7 t t = l i n s pa c e (0 , 10 , 200) ;
8 u1 = −14.3077∗ exp (−1.75∗ t t) +3.3077∗exp (−0.125∗ t t)+16; % so l u t i o n u1
9 u2 = 2.3846∗ exp(−1.75∗ t t) +6.6154∗exp(−0.125∗ t t) +16; % so l u t i o n u2

10

11 p lo t (t , u (: , 1) , ’b− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot greenhouse a i r (numeric)
12 hold on % Plots Mult ip le graphs
13 p lo t (t , u (: , 2) , ’ r− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot greenhouse rocks (numeric)
14 p lo t (tt , u1 , ’ c : ’ , ’ LineWidth ’ , 1 . 5) ; % Plot greenhouse a i r , u1
15 p lo t (tt , u2 , ’m: ’ , ’ LineWidth ’ , 1 . 5) ; % Plot greenhouse rocks , u2
16 p lo t ([0 1 0] , [1 6 1 6] , ’ k : ’ , ’ LineWidth ’ , 1 . 5) ; % Plot equ i l i b r ium
17 g r id % Adds Gr i d l i n e s
18 t ex t (0 . 6 , 1 1 , ’ $u 1$ ’ , ’ c o l o r ’ , ’ b lue ’ , ’ FontSize ’ , 1 4 , . . .

19 ’FontName ’ , ’ Times New Roman ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’) ;
20 t ex t (3 , 22 , ’ $u 2$ ’ , ’ c o l o r ’ , ’ red ’ , ’ FontSize ’ , 1 4 , . . .
21 ’FontName ’ , ’ Times New Roman ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’) ;
22 l egend (’ Air (numeric) ’ , ’ Rockbed (numeric) ’ , ’ Air (exact) ’ , . . .
23 ’ Rockbed (exact) ’ , 4) ;
24

25 ax i s ([0 10 0 3 0]) ; % De f ine s l im i t s o f graph

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

u1

u2

t hrs

T
em

p
er
a
tu
re

(◦
C
)

Greenhouse/Rockbed

Air (numeric)
Rockbed (numeric)
Air (exact)
Rockbed (exact)

The graph shows how well the numerical routine ode23 in MatLab tracks the solution to System (1).
As we saw in the lecture notes, the heat transfers rapidly into the air compartment, then slowly
the solution tends toward the equilibrium solution.

Phase Portrait - 2D

This final section shows how to create two dimensional phase portraits and direction
fields. You begin by downloading the MatLab files for pplane and dfield by John Polking from
Rice University. The current version is pplane8, which is invoked by having this m-file in your
current directory and typing pplane8 in the command window of MatLab.

After invoking pplane8 a window appears where you type in your differential equation, including
the limits on your state variables. This will generate a new window showing the direction field
for the phase portrait. With the mouse you can click at any point and have a solution trajectory
be drawn. Default for this is both directions in time. (To get a forward trajectory only one
select Solution direction under the Options menu.) One of the most powerful features is the
ability of this program to find equilibria and determine the eigenvalues near that equilibrium.
This feature is found under the Solutions menu saying Find an equilibrium point. Select this
feature, then click on the graph where you think an equilibrium point may be. A large red dot

http://math.rice.edu/~dfield/

appears at the equilibrium, and a new window opens telling the coordinates of the equilibrium,
the nature of the equilibrium, and the eigenvalues and eigenvectors of the linearized system near
the equilibrium. Another useful feature under the Solutions menu is to Show nullclines. The
nullclines tell where trajectories are either horizontal or vertical. The intersection of two different
color nullclines shows the location of an equilibrium. Below is a figure showing the direction field
for our example. Four solutions were added along with the equilibrium and the nullclines.

Nonlinear Example

The pplane8 program is particularly useful for systems of two nonlinear differential equa-
tions. A competition model for two species y1 and y2 competing for the same resource satisfies the
following system of differential equations:

ẏ1 = 0.1y1(1− 0.022y1 − 0.03y2),

ẏ2 = 0.12y2(1− 0.037y1 − 0.024y2).

Though it is not the case for this system of differential equations, it can be quite challenging finding
the equilibria for a nonlinear system of differential equations. MatLab does have a powerful tool
for solving nonlinear systems of equations to find where they are zero, and it is called fsolve. The
MatLab function fsolve requires entering a function f(x), which can be a vector function, and an
initial guess, x0, then it tries to find the closest x that solves f(x) = 0. If we define the right hand
side of the DE above as the following MatLab function:

1 func t i on z = compet (y)
2 % compet i t ion model : f s o l v e f o r e q u i l i b r i a
3 zt1 = 0 .1∗ y (1) ∗(1−0.022∗y (1) −0.03∗y (2)) ;
4 zt2 = 0 .12∗y (2) ∗(1−0.037∗y (1) −0.024∗y (2)) ;
5 z = [zt1 , z t2] ;
6 end

If we enter the following in MatLab:

ye = fsolve(@compet,[10,20]);

then MatLab gives the unstable equilibrium

ye = [10.3093, 25.7732]T .

There are 3 other equilibria, which could be found by similarly using our compet function with
different initial guesses.

More easily, one can employ pplane as noted above. It readily finds equilibria and the eigenvalues
associated with each equilibrium. For example, pointing near ye = [10.3093, 25.7732]T , pplane8
finds this equilibrium, and tells you that it is a saddle node with eigenvalues λ1 = 0.01638 and
λ2 = −0.1133 (along with their corresponding eigenvectors). Below we show the figure produced
by pplane8.

