
Spring 2018 Math 337

MatLab Programming

This second sheet shows some basic MatLab programming methods. We extend the ode23
options to assist finding specific times. We write a basic program for finding the time and once
again graph the solution.

Lake Pollution Example

The lake pollution problem with fairly simple assumptions is shown to not have an explicit
solution. Yet in practical cases, we need to find critical levels of pollution. Thus, the numerical
power of MatLab becomes invaluable. The model is described by:

dc(t)

dt
= −(0.001 + 0.0006 sin(0.0172t))

(
c(t) − 8e−0.002t

)
.

The RHS is written in a MatLab function:

1 f unc t i on yp = lake2 (t , y)
2

3 % Model f o r Lake Po l l u t i o n
4 f = 0.001+0.0006∗ s i n (0 .0172∗ t) ;
5 yp = −f ∗(y − 8∗ exp (−0.002∗ t)) ;
6 end

This is readily simulated for 2000 days with the command

1 [t , y] = ode23 (@lake2 , [0 , 2 0 0 0] , 0) ;

However, we want to determine when it first reaches 2 ppm of pollutant to an accuracy of
0.1 days. Below is a MatLab script demonstrating the while logical command in a program called
lake level.

1 % This s c r i p t f i n d s numer i ca l ly when p o l l u t i o n l e v e l exceeds 2 ppm
2 % Divide the time eva lua t i on in to s t ep s o f 0 . 1 (20 ,000 s t ep s)
3 t s = [0 : 0 . 1 : 2 0 0 0] ;
4 [t1 , y1] = ode23 (@lake2 , ts , 0) ; % Simulate the model (l ake2) at g iven t imes (t s)
5 n = 1 ; yc = y1 (n) ; % I n i t i a l i z e y f o r comparison to 2 ppm
6 whi le (yc < 2) % Continue execut ing t h i s loop u n t i l yc > 2
7 n = n+1; % I n c r e a s e the index
8 yc = y1 (n) ; tc = t1 (n) ; % Reset the yc and tc value to the new s o l u t i o n value
9 end

10 s p r i n t f (’ t = %.1 f . ’ , t c) % Print out the c r i t i c a l t va lue

We plot this result and include the critical time on the graph with this plot script (lake2 plot,
available from Math 337 Lecture Notes). Note: the script should begin with code described in the
MatLab Introduction for clearing the figure and Workspace and end with the font control and
the output (print) commands.

1 myt i t l e = ’ Lake Po l l u t i on ’ ; % T i t l e
2 xlab = ’ t days ’ ; % X−l a b e l
3 ylab = ’ $c (t) $ ppm ’ ; % Y−l a b e l
4

5 l a k e l e v e l % Simulate model and f i n d time p o l l u t i o n exceeds 2 ppm (subrout ine)
6

7 p lo t (t1 , y1 , ’b− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot concent ra t i on o f p o l l u t i o n
8 hold on % Plot s Mult ip l e graphs
9 p lo t ([tc , t c] , [0 , 3] , ’ r : ’ , ’ LineWidth ’ , 1 . 5) ; % Plot when reaches c r i t i c a l l e v e l

http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/matlab/basic_matlab.pdf

10 g r id % Adds G r i d l i n e s
11 t ex t (5 0 0 , 0 . 6 , ’ C r i t i c a l time ’ , ’ r o t a t i o n ’ ,90 , ’ c o l o r ’ , ’ red ’ , ’ FontSize ’ , 1 4 , . . .
12 ’FontName ’ , ’ Times New Roman ’) ;
13

14 xlim ([0 2000]) ; % Def ines l i m i t s o f graph
15 ylim ([0 3]) ;

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

C
ri
ti
ca

l
ti
m
e

t days

c
(t
)
p
p
m

Lake Pollution

Mercury in Lake Trout

This section shows the programs required to support the lecture notes on the build-up of mercury
(Hg) in Lake Trout. There are three critical steps to modeling this phenomenon. The lecture notes
contain 4 sets of data: 1. Length vs Age, 2. Weight vs Length, 3. Weight vs Age, 4. Hg Concentration
vs Age of Lake Trout from Lake Superior. The modeling includes 2 differential equations and an
allometric model (dimensional analysis).

Relation Between Length and Age

The first model uses the von Bertalanffy equation, which upon solving the differential equa-
tion yields the model:

L(t;L∗, b) = L∗
(
1 − e−bt

)
.

This is an equation giving the length of a fish, L, based on its age, t. It has two parameters that need
to be fit to the data, L∗ and b. The reader is referred to the lecture notes: Linear Differential
Equations for details on deriving the model, tables of the data, and a discussion of nonlinear least
squares fitting of data. The data can be accessed through the MatLab file, fishdat.mat. The
data on the length and age of Lake Trout, Salvelinus namaycush, in Lake Superior are copied from
Kory Groetsch1 and stored in MatLab variables tdfish for age and ldfish for length (vectors with 19

1Kory Groetsch, Total Mercury and Copper Concentrations in Lake Trout and Whitefish Fillets, Activity: 19-23,
From Lake Superior, Environmental Section, Biological Services Division, 1998

http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/linear.pdf
http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/linear.pdf
http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/matlab/fishdat.mat

elements).
If we define these data points (ti, Li), i = 1..19, then the error between the measured length,

Li, at time ti and the model evaluated at ti is

ei = Li − L∗
(
1 − e−bti

)
, i = 1..19.

The Sum of Square Errors function satisfies

J(L∗, b) =
19∑
i=1

(Li − L(t;L∗, b))
2 =

19∑
i=1

e2i ,

and has some scalar value for each pair of the parameter values, (L∗, b), which we select as a vector
in MatLab p = [(L∗, b]. With p we define a MatLab function for this sum of square errors function

between the data and the model L(t;L∗, b) = L∗
(
1 − e−bt

)
= p(1)

(
1 − e−p(2)t

)
.

1 f unc t i on J = sumsq vonBert (p , tdata , lda ta)
2 % Function computing sum of square e r r o r s f o r von B e r t a l a n f f y model
3 model = p (1) ∗(1 − exp(−p (2) ∗ tdata)) ;
4 e r r o r = model − l da ta ;
5 J = e r r o r ∗ e r ror ’ ;
6 end

This function takes advantage of the vector capabilities of MatLab. The data are stored as
vectors. Any of the internal functions, such as exp, with a vector argument produces a vector, and
scalars are added and subtracted componentwise, i.e.,

a− exp([x1, x2, ..., xn]) = [a− ex1 , a− ex2 , ..., a− exn] .

In this function, error = [e1, e2, ..., en] is a row vector, so error ′, the transpose, is a column vector.
The product error ∗ error ′ is

[e1, e2, ..., en]

e1
e2
...
en

 = e21 + e22 + ...+ e2n,

which is the sum of square errors.
As noted above the age and length data are stored in tdfish and ldfish, respectively. The optimal

solution is the nonlinear least squares fit to these data, which is the minimum possible value of
the sum of square errors function over all possible L∗ and b. MatLab has a powerful function,
which is capable of numerically finding the minimum of a function, fminsearch. You can learn about
numerical algorithms for finding minima in Math 541 and details about this particular function
with the MatLab help fminsearch command. For our problem, we need a reasonable initial guess,
p0 = [L∗0, b0] = [100, 0.1]. (A poor initial guess may prevent the algorithm from converging or
require multiple iterations.) In addition, since our sum of square errors function requires input of
the data, these must be supplied to the fminsearch in the OPTIONS part of this function (separated
by []). Below we show how to execute the MatLab function fminsearch with a user defined function
sumsq vonBert, including an initial guess and the data sets.

1 [p1 , J , f l a g] = fminsearch (@sumsq vonBert , [1 0 0 , 0 . 1] , [] , t d f i s h , l d f i s h)

MatLab returns the best fitting parameter values in the vector p1 (which could be used in another
iteration if one is uncertain of convergence), the least sum of square errors, J , and a variable
flag, which is 1 if MatLab thinks fminsearch has converged and 0 if it failed to converge. For our

particular problem, MatLab returns the results p1 = [92.401, 0.14553], J = 1, 107.3, and flag = 1,
so the best fitting parameters are

L∗ = 92.401 and b = 0.14553

and our best model for the length of Lake Trout as it ages is

L(t) = 92.401
(
1 − e−0.14553t

)
.

A MatLab script file is developed to graph this best fitting model and the data. This best fitting
model is shown with the data in the graph below. The script, vonBert plot.m, is available from the
Lecture notes (including initial clear and final text and output controls, which are omitted here for
clarity).

1

2 c l e a r % Clear prev ious d e f i n i t i o n s
3 f i g u r e (1) % Assign f i g u r e number
4 c l f % Clear prev ious f i g u r e s
5 hold o f f % Star t with f r e s h graph
6

7 myt i t l e = ’ Length o f Lake Trout ’ ; % T i t l e
8 xlab = ’Age (Years) ’ ; % X−l a b e l
9 ylab = ’ Length (cm) ’ ; % Y−l a b e l

10

11 load (’ f i s h d a t ’) ; % Provide ve c to r s o f Lake Trout data
12

13 t t = l i n s p a c e (0 ,20 ,500) ; % t domain o f func t i on
14 Lt = 92.404∗(1− exp (−0.14553∗ t t)) ; % Function f o r von B e r t a l a n f f y
15

16 p lo t (tt , Lt , ’b− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot model
17 hold on % Plot s Mult ip l e graphs
18 p lo t (t d f i s h , l d f i s h , ’ bo ’ , ’ LineWidth ’ , 1 . 5) ; % Plot data with c i r c l e s
19

20 g r id % Adds G r i d l i n e s
21

22 xlim ([0 2 0]) ; % Def ines l i m i t s o f graph
23 ylim ([0 10 0]) ;
24

25 f o n t l a b s = ’ Times New Roman ’ ; % Font type used in l a b e l s
26 x l a b e l (xlab , ’ FontSize ’ ,14 , ’FontName ’ , f on t l abs , ’ i n t e r p r e t e r ’ , ’ l a t e x ’) ;
27 % x−Label s i z e and font
28 y l a b e l (ylab , ’ FontSize ’ ,14 , ’FontName ’ , f on t l abs , ’ i n t e r p r e t e r ’ , ’ l a t e x ’) ;
29 % y−Label s i z e and font
30 t i t l e (myt i t l e , ’ FontSize ’ ,16 , ’FontName ’ , ’ Times New Roman ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’) ;
31 % T i t l e s i z e / font
32 s e t (gca , ’ FontSize ’ , 12) ; % Axis t i c k font s i z e
33

34 pr in t −depsc vonBert . eps % Create f i g u r e as EPS f i l e
35 %p r i n t −djpeg vonBert . jpg % Create f i g u r e as JPEG f i l e

The graph of the von Bertalanffy model with the relevant data is below.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Age (Years)

L
en

g
th

(c
m
)

Length of Lake Trout

Relation Between Weight and Length

The next step in the modeling for this problem is to find a functional relationship between the
weight and the length of the Lake Trout. This is known as Allometric modeling or a Power Law
relationship. Specifically, we examine a relationship of the form

W = kL a.

If we take the logarithms (natural) of both sides, then this model can be written

ln(W) = a ln(L) + ln(k),

which is a linear relation between the ln(W) and the ln(L). There are standard formula to find
the Linear Least Squares best fit to linear data. MatLab uses a subroutine polyfit to find the
best slope and intercept for a line passing through a data set. (Note: MatLab uses the natural
logarithm in its calculations, so uses the command log(x) to mean ln(x).)

The analysis above shows that the linear least squares fit of a line to the logarithms of the
data provides the allometric model. This suggests that MatLab’s polyfit routine can be used to fit
these types of models. The following MatLab function allows the easy input of data to produce the
parameters for our allometric model:

1 f unc t i on [k , a] = power f i t (ldata , wdata)
2 % Power law (Al lomet r i c) f i t f o r model W = k∗Lˆa
3 % Uses l i n e a r l e a s t squares f i t to logar i thms o f data
4 Y = log (wdata) ; % Logarithm of W−data
5 X = log (ldata) ; % Logarithm of L−data
6 p = p o l y f i t (X,Y, 1) ; % Linear f i t to X and Y with p = [s lope , i n t e r c e p t]
7 a = p (1) ; % Value o f exponent
8 k = exp (p (2)) ; % Value o f l e ad ing c o e f f i c i e n t
9 end

Our data file discussed above has the vector data variables ltdfish for length and wtdfish for
weight (vectors with 25 elements) of Lake Trout data from the Kory Groetsch data. If we execute
our powerfit function with the following MatLab command:

1 [k , r] = power f i t (l t d f i s h , wtd f i sh)

MatLab outputs the variables k = 0.015049 and a = 2.8591. It follows that using this method
of finding the linear best fit to the logarithms of the data yields a best allometric model of the
form:

W = 0.015049L 2.8591.

From a modeling perspective, this problem can be examined in two other ways. Similar to the
section before, a nonlinear least squares best fit can be used to obtain the unbiased best fit of the
model (with respect to the parameters k and a). Alternately, a dimensional analysis supported by
the allometric fit above would suggest that the weight of a fish varies like the cube of the length,
i.e., self-similarity of fishes would suggest that as the length increases, then the height and width
would similarly increase giving a cubic relation between length and weight. This would fix the
parameter a = 3 and only allow changes in k. Below are two functions for finding the sum of
square errors for these two models. The function for the 2-parameter problem is

1 f unc t i on J = sumsq nonl in (p , ldata , wdata)
2 % Function computing sum of square e r r o r s f o r a l l o m e t r i c model
3 model = p (1) ∗ l da ta . ˆ p (2) ;
4 e r r o r = model − wdata ;
5 J = e r r o r ∗ e r ror ’ ;
6 end
7

8 % Obtain the l e a s t sum of square e r r o r s
9 % [p1 , J , f l a g] = fminsearch (@sumsq allom , [k , a] , [] , l t d f i s h , wtd f i sh) ;

The MatLab function for the cubic model with only 1-parameter is

1 f unc t i on J = sumsq cubic (p , ldata , wdata)
2 % Function computing sum of square e r r o r s f o r cub ic a l l o m e t r i c model
3 model = p∗ l da ta . ˆ 3 ;
4 e r r o r = model − wdata ;
5 J = e r r o r ∗ e r ror ’ ;
6 end
7

8 % Obtain the l e a s t sum of square e r r o r s
9 % [p1 , J , f l a g] = fminsearch (@sumsq cubic , k , [] , l t d f i s h , wtd f i sh) ;

MatLab Vector Operations: The previous two functions use MatLab’s ability to perform
componentwise operations on vectors. These allometric models have La, so when L = [L1, L2, ..., Ln]
is a vector, MatLab provides an easy way to form the vector La = [La1, L

a
2, ..., L

a
n]. This is done

using the period combined with the caret, so typing L.^a yields [La1, L
a
2, ..., L

a
n]. Similarly, if a =

[a1, a2, ..., an] and b = [b1, b2, ..., bn], then the componentwise product formed by a.*b yields the
vector [a1b1, a2b2, ..., anbn]. Similarly, the componentwise quotient formed by a./b yields the vector
[a1/b1, a2/b2, ..., an/bn].

We take advantage of a MatLab script program to execute all of the parameter searches for
all three models, find the best fitting parameters (and least sum of square errors), and create a
plot of the models along with the data. Below is the script file (allo plot.m) with comments inside
describing what is being executed.

1 myt i t l e = ’ Al l omet r i c Models f o r Lake Trout ’ ; % T i t l e
2 xlab = ’ Length (cm) ’ ; % X−l a b e l
3 ylab = ’ Weight (g) ’ ; % Y−l a b e l
4

5 load (’ f i s h d a t ’) ; % Loads s to r ed data f i l e
6

7 [k , a] = power f i t (l t d f i s h , wtd f i sh) ; % Finds best l i n e a r model to l og o f data
8 al lom = k∗ l t d f i s h . ˆ a ; % Def ines a l l o m e t r i c model at data
9 e r r = allom−wtdf i sh ; % Finds e r r o r between model and data

10 J1 = e r r ∗ err ’ ; % Finds sum of square e r r o r s
11 [p1 , J2 , f l a g] = fminsearch (@sumsq nonlin , [k , a] , [] , l t d f i s h , wtd f i sh) ;
12 % Find non l in ea r l e a s t squares f i t to a l l o m e t r i c model to data
13 [p2 , J3 , f l a g] = fminsearch (@sumsq cubic , k , [] , l t d f i s h , wtd f i sh) ;
14 % Find non l in ea r l e a s t squares f i t to cubic model to data
15 l t = l i n s p a c e (0 ,100 ,500) ; % length domain
16 W1t = k∗ l t . ˆ a ; % Al lomet r i c model − over domain
17 W2t = p1 (1) ∗ l t . ˆ p1 (2) ; % Nonl inear bes t f i t − over domain
18 W3t = p2∗ l t . ˆ 3 ; % Cubic model − over domain
19

20 p lo t (l t ,W1t, ’b− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot a l l o m e t r i c model
21 hold on % Plot s Mult ip l e graphs
22 p lo t (l t ,W2t, ’ k− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot non l in ea r f i t model
23 p lo t (l t ,W3t, ’ r− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot cubic f i t model
24 p lo t (l t d f i s h , wtdf i sh , ’ ro ’ , ’ LineWidth ’ , 1 . 5) ; % Plot data
25 g r id % Adds G r i d l i n e s
26 l egend ({ ’ A l l omet r i c ’ , ’ Nonl inear Fi t ’ , ’ Cubic Fi t ’ , ’ Data ’ } , ’ l o c a t i o n ’ , ’ Northwest ’ , ’

FontSize ’ ,10 , ’FontName ’ , ’ Times New Roman ’) ; % Create legend
27 xlim ([0 10 0]) ; % Def ines l i m i t s o f graph
28 ylim ([0 5500]) ;

After executing this script we obtain the three best fitting models with their least sum of square
errors, Ji. The parameter values and Ji are found stored in the MatLab Workspace. The best
allometric model is

W = 0.015049L 2.8591, with J1 = 3.5147 × 106.

The best nonlinear least square fitting allometric model is

W = 0.068695L 2.5052, with J2 = 2.8683 × 106.

The best allometric model, where the exponent is assumed to be a = 3, is

W = 0.0079791L 3, with J3 = 3.9113 × 106.

Clearly, the second model is the best fitting model from a unbiased perspective having the least
square errors. However, the last model is not that far away and makes more sense from a physical
argument.

The script also produced the graph below, which shows that all of the three models are fairly
similar. This gives visual evidence that using the third model in the next section is reasonable.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Length (cm)

W
ei
g
h
t
(g
)

Allometric Models for Lake Trout

Allometric
Nonlinear Fit
Cubic Fit
Data

Accumulation of Mercury with Age

The model for accumulation of Mercury as the fish ages is discussed in the lecture notes: Linear
Differential Equations. It begins with a best fitting model for the weight vs age data. Below are
two ways to create the best fitting cubic model with the weight vs age data. The first technique uses
the cubic model described above with the von Bertalanffy model. A one parameter search is applied
to the cube of the von Bertalanffy model, so find the best α1 forW (t) = α1

(
92.401

(
1 − e−0.14553t

))3
.

When this approach is taken with fminsearch, the result is α1 = 0.0079798, so the weight of a fish
satisfies the following composite function:

W (t) = 6295.4
(
1 − e−0.14553t

)3
,

where t is the age of the fish, giving a sum of square errors of J = 1.3168 × 107. A second method
is to parallel the fitting of the length vs age for the von Bertalanffy equation with two parameters,

W (t) = α2

(
1 − e−β2

)3
. With a nonlinear least squares fit of this model to the weight vs age data

(almost identical to sumsq vonBert M-script, so omitted), the composite function for weight of a
fish satisfies:

W (t) = 5677.67
(
1 − e−0.16960t

)3
,

with a sum of square errors of J = 1.2049 × 107. These two composite functions are graphed to
show this fit of the weight of the fish as it ages. (The graphing script is similar to the one for
the von Bertalanffy model, so is omitted here.) The graphs are very similar, and there is not a
significant difference in the sum of square errors. The calculations will use the model generalized
model derived from the von Bertalanffy equation

W (t) = W∗
(
1 − e−bt

)3
,

with W∗ = 6295.4 or 5677.67 and b = 0.14553 or 0.16960, corresponding to the von Bertalanffy or
nonlinear least squares fits, respectively.

http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/linear.pdf
http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/linear.pdf

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

Age (Years)

W
ei
g
h
t
(g
)

Weight of Lake Trout

Cubic von Bertalanffy
Nonlinear Fit
Data

The lecture notes discuss how mercury (Hg) accumulates in the body from feeding and water
passing over the gills. Since fish are cold blooded animals, their energy expenditure (balanced by
food and O2 intake) should be roughly proportional to the weight of the fish. (Alternate models
might consider Kleiber’s law or more mercury laden food sources with aging.) The lecture notes
point out that Hg doesn’t tend to leave the body after entering. This suggests the rate of Hg
entering the body of a fish should be proportional to the weight of the fish, giving the differential
equation:

dH

dt
= κW (t) = κW∗

(
1 − e−bt

)3
,

where H(t) is the amount of Hg in the fish. This differential equation is readily solved with details
in the lecture notes. The resulting equation for the amount of Hg in the fish is:

H(t) =
κW∗
6b

(
6bt+ 18e−bt − 9e−2bt + 2e−3bt − 11

)
.

The concentration in the fish satisfies

c(t) =
H(t)

W (t)
.

With the values of W∗ and b determined by our weight model, this becomes a one parameter,
κ, search to fitting the data on the concentration of mercury in fish as they age. Below are the
MatLab programs used to fit the data for the concentration of mercury in fish as they age. The
first program computes the sum of square errors.

1 f unc t i on J = sumsq Hg (p , tdata , hgdata ,w)
2 % Function computing sum of square e r r o r s f o r von B e r t a l a n f f y model
3 % p i s kappa , tdata and hgdata are f i s h data , w = [W∗ , b]
4 model = (p∗w(1) /(6∗w(2))) ∗(6∗w(2) ∗ tdata + 18∗ exp(−w(2) ∗ tdata) − . . .
5 9∗ exp(−2∗w(2) ∗ tdata) + 2∗ exp(−3∗w(2) ∗ tdata)−11) ; % H(t)
6 wt = w(1) ∗(1 − exp(−w(2) ∗ tdata)) . ˆ 3 ; % W(t)

http://www-rohan.sdsu.edu/~jmahaffy/courses/f14/math124/beamer_lectures/allometric-04.pdf

7 ct = model . / wt ; % c (t)
8 e r r o r = ct − hgdata ;
9 J = e r r o r ∗ e r ror ’ ;

10 end

This program is used in the MatLab script with fminsearch to find the best fitting models and
graph the models and the data.

1 myt i t l e = ’ Mercury in Lake Trout ’ ; % T i t l e
2 xlab = ’Age (Years) ’ ; % X−l a b e l
3 ylab = ’Hg (ppm) ’ ; % Y−l a b e l
4

5 load (’ f i s h d a t ’) ; % Provide ve c to r s o f Lake Trout data
6

7 t t = l i n s p a c e (0 ,20 ,500) ; % t domain o f func t i on
8

9 w1 = [6 2 9 5 . 4 , 0 . 1 4 5 5 3] ;
10 [p1 , J1 , f l a g]= fminsearch (@sumsq Hg , 0 . 1 , [] , t d f i s h , hgdf i sh , w1) ;
11 model1 = (p1∗w1(1) /(6∗w1(2))) ∗(6∗w1(2) ∗ t t + 18∗ exp(−w1(2) ∗ t t) − . . .
12 9∗ exp(−2∗w1(2) ∗ t t) + 2∗ exp(−3∗w1(2) ∗ t t)−11) ;
13 wt1 = w1(1) ∗(1 − exp(−w1(2) ∗ t t)) . ˆ 3 ;
14 ct1 = model1 . / wt1 ;
15 w2 = [5 6 7 7 . 6 7 , 0 . 1 6 9 6 0] ;
16 [p2 , J2 , f l a g]= fminsearch (@sumsq Hg , 0 . 1 , [] , t d f i s h , hgdf i sh , w2) ;
17 model2 = (p2∗w2(1) /(6∗w2(2))) ∗(6∗w2(2) ∗ t t + 18∗ exp(−w2(2) ∗ t t) − . . .
18 9∗ exp(−2∗w2(2) ∗ t t) + 2∗ exp(−3∗w2(2) ∗ t t)−11) ;
19 wt2 = w2(1) ∗(1 − exp(−w2(2) ∗ t t)) . ˆ 3 ;
20 ct2 = model2 . / wt2 ;
21

22 p lo t (tt , ct1 , ’b− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot model cubic von B e r t a l a n f f y
23 hold on % Plot s Mult ip l e graphs
24 p lo t (tt , ct2 , ’ r− ’ , ’ LineWidth ’ , 1 . 5) ; % Plot model non l i n ea r f i t
25 p lo t (t d f i s h , hgdf i sh , ’ ro ’ , ’ LineWidth ’ , 1 . 5) ; % Plot data with red c i r c l e s
26

27 g r id % Adds G r i d l i n e s
28 l egend ({ ’ Cubic von B e r t a l a n f f y ’ , ’ Nonl inear Fi t ’ , ’ Data ’ } , ’ l o c a t i o n ’ , ’ Northwest ’ , ’

FontSize ’ ,10 , ’FontName ’ , ’ Times New Roman ’) ; % Create legend
29 xlim ([0 2 0]) ; % Def ines l i m i t s o f graph
30 ylim ([0 0 . 7]) ;

This MatLab script finds that using the weight model with the cubic best fitting von Bertalanffy
model gives κ = 0.071406 with a least sum of square errors to the data of J = 0.17113, while the
weight model with the cubic nonlinear fit model gives κ = 0.066953 with a least sum of square
errors to the data of J = 0.17427. The graph is shown below with the data, and it is clear that
choice of model is almost indistinguishable between these two models compared to the data.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Age (Years)

H
g
(p
p
m
)

Mercury in Lake Trout

Cubic von Bertalanffy
Nonlinear Fit
Data

