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Falling Cat 1

Falling Cat

Cats evolved to be stealthy animals with quick reflexes and an
extremely good jumping ability

The cat family has the best mammalian predators on this planet

Smaller cats are adapted to hunting in trees

Cats evolved a very flexible spine, which aids in their ability to
spring for prey, absorb shock from their lightning fast strikes,
and rapidly rotate their bodies in mid air

With their very sensitive inner ear for balance, which is
combined with quick reflexes and a flexible spine, a cat that falls
is capable of righting itself very rapidly, insuring that it lands on
the ground feet first
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Falling Cat - Scientific Studies

This property of falling feet first has been admired by
humans for many years

There was a study in the Annals of Improbable Research
(1998) on the number of times a particular cat ended up on
its feet when dropped from several different heights

There was a scientific study of cats falling out of New York
apartments, where paradoxically the cats falling from the
highest apartments actually fared better than ones falling
from an intermediate height

[1] Jared M. Diamond (1988), Why cats have nine lives, Nature 332,

pp 586-7
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Left is the dynamics of a cat falling from an
inverted position and ending on its feet

The full dynamics involve complex partial
differential equations

A cat can react sufficiently fast that this
inversion process happens in about 0.3
seconds

With this information, determine the
minimum height from which a cat can be
dropped to insure that it lands on its feet
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Model for the Falling Cat: Newton’s law of motion

Mass times acceleration is equal to the sum of all the
forces acting on the object

Equation for Falling Cat

ma = −mg or a = −g

m is the mass of the cat
a is the acceleration
−mg is the force of gravity (assuming up is positive)
Ignore other forces (air resistance)

g is a constant (g = 979 cm/sec2 at a latitude like San Diego
when you add centripetal acceleration to the standard value
given for g, which is 980.7 cm/sec2 )
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Height, Velocity, and Acceleration

Let h(t) be the height (or position) of the cat at any time t

Velocity and Acceleration satisfy:

dh

dt
= v(t) and

d2h

dt2
=
dv

dt
= a

The initial conditions for falling off a limb:

h(0) = h0 > 0 and v(0) = 0
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Differential Equation: Velocity

The velocity of the falling cat satisfies the first order linear
differential equation

v ′(t) = −g with v(0) = 0

Integrate for the solution

v(t) = −
∫
g dt = −gt+ c

The initial condition gives v(0) = c = 0, so

v(t) = −gt
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Differential Equation: Height Since dh
dt = v(t)

The height of the falling cat satisfies the first order linear
differential equation

h ′(t) = −gt with h(0) = h0

Integrate for the solution

h(t) = −
∫
gt dt = −g t

2

2
+ c

The initial condition gives h(0) = c = h0, so

h(t) = h0 − g
t2

2
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Solution - Height of Cat:

The height of the cat any time t satisfies

h(t) = −gt
2

2
+ h0

With g = 979 cm/sec2, the height in cm is

h(t) = h0 − 489.5 t2

At t = 0.3 sec

h(0.3) = h0 − 489.5(0.3)2 = h0 − 44.055 cm > 0

Thus, the cat must be higher than 44.1 cm for it to have
sufficient time to right itself before hitting the ground (This is
about 1.5 feet)
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Differential Equation with Only Time Varying Function

Definition (Differential Equation with Time Varying Function)

The simplest first order (linear) differential equation has only a time
varying nonhomogeneous function, f(t),

dy

dt
= f(t). (1)

Theorem (Solution)

Consider the differential equation with only a time varying
nonhomogeneous function, (1). Provided f(t) is integrable, the
solution satisfies:

y(t) =

∫
f(t) dt.
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Differential Equation Example

DE Example: Initial Value Problem

dy

dt
= 2 t− sin(t), y(0) = 3

Solution:

y(t) =

∫
(2 t− sin(t)) dt = t2 + cos(t) + C

y(0) = 1 + C = 3, so C = 2

y(t) = t2 + cos(t) + 2
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General Linear Differential Equation

Definition (General Linear Differential Equation)

A differential equation that can be written in the form

dy

dt
+ p(t)y = g(t) (2)

is said to be a first order linear differential equation with
dependent variable, y, and independent variable, t.
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Integrating Factor

Definition (Integrating Factor)

Consider an undetermined function µ(t) with

d

dt
[µ(t)y] = µ(t)

dy

dt
+
dµ(t)

dt
y.

The function µ(t) is an integrating factor for (2) if it satisfies the
differential equation

dµ(t)

dt
= p(t)µ(t).
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Solving a Linear DE 1

Consider the Linear Differential Equation

dy

dt
− 2y = 4− t.

Multiply the equation by the undetermined function, µ(t), so

µ(t)
dy

dt
− 2µ(t)y = µ(t)(4− t).

If µ(t) is an integrating factor, then

dµ(t)

dt
= −2µ(t) or µ(t) = e−2t
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Solving a Linear DE 2

With the integrating factor, our example can be write

e−2t
dy

dt
− 2e−2ty =

d

dt

[
e−2ty

]
= (4− t)e−2t.

The quantity d
dt

[
e−2ty

]
is a total derivative, so we integrate both

sides giving:

e−2ty(t) =

∫
(4− t)e−2tdt+ C =

1

4
(2t− 7)e−2t + C,

so

y(t) =
1

4
(2t− 7) + Ce2t.
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General Integrating Factor

The differential equation for the integrating factor is

dµ(t)

dt
= p(t)µ(t) or

1

µ(t)

dµ(t)

dt
= p(t).

Note that d(ln(µ(t)))
dt = 1

µ(t)
dµ(t)
dt . It follows that

ln(µ(t)) =

∫
p(t)dt.

The general integrating factor satisfies

µ(t) = e
∫
p(t)dt.
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1st Order Linear DE Solution

Thus, the 1st Order Linear DE Solution

dy

dt
+ p(t)y = g(t) with µ(t) = e

∫
p(t)dt

is integrated to produce

µ(t)y(t) =

∫
µ(t)g(t) dt+ C.

Theorem (Solution of 1st Order Linear DE)

With the 1st Order Linear DE given above and assuming integrability
of p(t) and g(t), then the solution is given by

y(t) = e−
∫
p(t)dt

[∫
e
∫
p(t)dtg(t) dt+ C

]
.
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Linear DE –Example 1

Consider the Linear DE Solution

t
dy

dt
− y = 3t2 sin(t).

1. Put this equation into standard form, so divide by t and obtain

dy

dt
−
(

1

t

)
y = 3t sin(t). (3)

2. Observe p(t) = − 1
t , so find integrating factor

µ(t) = e
∫
(−1/t)dt = e− ln(t) =

1

t
.

3. Multiply (3) by µ(t) giving(
1

t

)
dy

dt
−
(

1

t2

)
y =

d

dt

(y
t

)
= 3 sin(t).
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Linear DE –Example 1

The previous slide showed the transformation of

t
dy

dt
− y = 3t2 sin(t)

with the integrating factor µ(t) = 1
t to

d

dt

(y
t

)
= 3 sin(t).

4. Integrate this equation(
1

t

)
y(t) = 3

∫
sin(t)dt+ C = −3 cos(t) + C,

which gives the solution

y(t) = −3t cos(t) + Ct.
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Pollution in a Lake 1

Pollution in a Lake: Introduction

An urgent problem in modern society is how to reduce pollution
in our water sources

These are complex issues, requiring a multidisciplinary approach,
and are often politically intractable because of the key role that
water plays in human society and the many competing interests

Here we examine a very simplistic model for pollution of a lake

The model illustrates some basic elements from which more
complicated models can be built and analyzed
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Pollution in a Lake 2

Pollution in a Lake: Problem set up

Consider the scenario of a new pollutant appearing upstream
from a clean lake with volume V

Assume that the inflowing river has a concentration of the new
pollutant, p(t)

Assume that the river flows into the lake at a rate, f(t)

Assume that the lake is well-mixed and maintains a constant
volume by having a river exiting the lake with the same flow
rate, f(t), of the inflowing river
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Pollution in a Lake 3

Diagram for Lake Problem: Model with a linear first order DE for
the concentration of the pollutant in the lake, c(t)

f : flow rate

f

p: pollutant

V: Volume

c t( ): concentration of
pollutant in the lake
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Pollution in a Lake 4

Differential Equation for Pollution in a Lake

Set up a differential equation for the mass balance of the
pollutant

The change in amount of pollutant =
Amount entering - Amount leaving

The amount entering is the concentration of the pollutant, p(t),
in the river times the flow rate of the river, f(t)

The amount leaving has the same flow rate, f(t)

Since the lake is assumed to be well-mixed, the concentration in
the outflowing river will be equal to the concentration of the
pollutant in the lake, c(t)

The product f(t)c(t) gives the amount of pollutant leaving the
lake per unit time
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Differential Equations for Amount and Concentration of
Pollutant

The change in amount of pollutant satisfies the model

da(t)

dt
= f(t)p(t)− f(t)c(t)

Since the lake maintains a constant volume V , then
c(t) = a(t)/V , which also implies that c ′(t ) = a ′(t)/V

Dividing the above differential equation by the volume V ,

dc(t)

dt
=
f(t)

V
(p(t)− c(t))

This is a Linear First Order DE

If the lake is initially clean, then c(0) = 0
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Solution of the DE: Rewrite the DE for the concentration of
pollutant as

dc(t)

dt
+
f(t)

V
c(t) =

f(t)p(t)

V
with c(0) = 0

This DE has the integrating factor

µ(t) = e
∫
(f(t)/V )dt

With the integrating factor, the DE becomes

d

dt
(µ(t)c(t)) =

µ(t)f(t)p(t)

V
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Solution of the DE (cont):

The DE is integrated to produce

µ(t)c(t) =

∫
(µ(t)f(t)p(t)/V ) dt+ C

With the initial condition, c(0) = 0, we have

c(t) = µ−1(t)

∫ t

0

(µ(s)f(s)p(s)/V ) ds

or

c(t) = e−
∫
(f(t)/V )dt

∫ t

0

(
e
∫
(f(s)/V )dsf(s)p(s)/V

)
ds
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Basic Example: Pollution in a Lake 1

Basic Example: Pollution in a Lake Part 1

Suppose that you begin with a 100,000 m3 clean lake

Assume the river entering (and flowing out) has a constant flow,
f = 100 m3/day

Assume the concentration of some pesticide in the river is
constant at p = 5 ppm (parts per million)

Form the differential equation describing the concentration of
pollutant in the lake at any time t and solve it

Find out how long it takes for this lake to have a concentration
of 2 ppm
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Basic Example: Pollution in a Lake 2

Solution: This example follows the model derived above with
V = 105, f = 100, and p = 5, so the differential equation for the
concentration of pollutant is

dc(t)

dt
= − f

V
(c(t)− p) = −0.001(c(t)− 5) with c(0) = 0

This can be solved like we did by substitution for Newton’s Law of
Cooling. Alternately, we use an integrating factor

dc(t)

dt
+ 0.001c = 0.005 with µ(t) = e

∫
0.001dt = e0.001t

so

d

dt

(
e0.001tc(t)

)
= 0.005e0.001t or e0.001tc(t) = 5e0.001t + C
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Basic Example: Pollution in a Lake 3

Solution: From the integration before and multiplying by µ−1(t),

c(t) = 5 + Ce−0.001t with c(0) = 0

Thus, the solution is
c(t) = 5− 5e−0.001t.

Solving

c(t) = 2 = 5− 5e−0.001t gives e0.001t =
5

3

It follows that the concentration reaches 2 ppm when
t = 1000 ln

(
5
3

)
≈ 510.8 days.
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Example 2: Pollution in a Lake 1

Example 2: Pollution in a Lake Varying flow, f(t), and pollutant
entering p(t)

Again start with a constant volume, V = 100, 000 m3 clean lake

Assume the river entering (and flowing out) has a seasonal flow,
f(t) = 100 + 60 sin(0.0172t) m3/day

If there is a point source pollutant dumped at t = 0 upstream,
then a reasonable model for its concentration in the river is
p(t) = 8e−0.002t ppm (parts per million)

Form the differential equation describing the concentration of
pollutant in the lake at any time t and solve it

Graph the solution and approximate how long it takes for this
lake to have a concentration of 2 ppm
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Example 2: Pollution in a Lake 2

Solution: This model follows the original derivation above with
V = 105, f(t) = 100 + 60 sin(0.0172t), and p(t) = 8e−0.002t, so the DE
for the concentration of pollutant is

dc(t)

dt
= −f(t)

V
(c(t)− p(t)) with c(0) = 0

= −(0.001 + 0.0006 sin(0.0172t))
(
c(t)− 8e−0.002t

)
This requires use of an integrating factor

µ(t) = e
∫
(0.001+0.0006 sin(0.0172t))dt = e0.001t−0.0349 cos(0.0172t)

so

d

dt

(
e0.001t−0.0349 cos(0.0172t)c(t)

)
= (0.008+0.0048 sin(0.0172t))e−0.001t−0.0349 cos(0.0172t)
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Example 2: Pollution in a Lake 3

Solution: From before,

d

dt

(
e
0.001t−0.0349 cos(0.0172t)

c(t)
)

= (0.008+0.0048 sin(0.0172t))e
−0.001t−0.0349 cos(0.0172t)

The integrating gives

e
0.001t−0.0349 cos(0.0172t)

c(t) =

∫
(0.008 + 0.0048 sin (0.0172 t)) e

−0.001 t−0.0349 cos(0.0172 t)
dt.

This last integral cannot be solved, even with Maple.

Numerical methods are needed to solve and graph this problem, and
our preferred method is MatLab
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Example 2: Pollution in a Lake 4

MatLab Solution: The pollution problem is integrated numerically

(ode23). MatLab finds that the pollution exceeds 2 ppm after

t = 447.4 days. Below shows a graph. (Programs are provided on Lecture

page.)
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Pollution in a Lake: Complications

Pollution in a Lake: Complications The above examples for
pollution in a lake fail to account for many significant complications

There are considerations of irregular variations of pollutant
entering, stratification in the lake, and uptake and reentering of
the pollutant through interaction with the organisms living in
the lake

The river will have varying flow rates, and the leeching of the
pollutant into river is highly dependent on rainfall, ground water
movement, and rate of pollutant introduction

Obviously, there are many other complications that would
increase the difficulty of analyzing this model
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Mercury in Fish 1

Introduction - Fishing and Mercury in the Great Lakes
Region

Mercury, a heavy metal, is a dangerous neurotoxin that is very
difficult to remove from the body

It concentrates in the tissues of fish, particularly large predatory
fish such as Northern Pike, Lake Trout, Bass, and Walleye

The primary sources of mercury in the Great Lakes region

Runoff of different minerals that are mined
Incinerators that burn waste, especially batteries
Most batteries no longer contain mercury

Bacteria converts mercury into the highly soluable methyl
mercury

Enters fish by simply passing over their gills
Larger fish consume small fish and concentrate mercury
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Mercury in Fish 2

Introduction - Mercury and Health

Higher levels of Hg in fish may cause children problems in their
developing neural system, resulting learning disorders

Michigan Department of Health warns that young children and
pregnant women should limit their consumption of fish,
especially the larger predatory fishes
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Mercury in Fish 3

How Hg gets into fish

Lyndsay Marie Doetzel, An investigation of the factors affecting mercury accumulation in lake

trout, Salvelinus namaycush, in Northern Canada, University of Saskatchewan, Saskatoon, 2007
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Mercury in Fish 4

Introduction - Mercury Buildup in Fish

So why do fish build up the dangerous levels of Hg in their
tissues?

Hg is not easily removed from the system, so when ingested
it tends to remain in the body

Heavy metals are eliminated with chelating agents

Mathematically, this build up is seen as the integral of the
ingested Hg over the lifetime of the fish

Thus, older and larger fish should have more Hg than the
younger fish
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Modeling Mercury in Fish

Modeling Mercury in Fish - Outline for the Model

Classic model for growth of a fish (length) is the von
Bertalanffy equation

dL

dt
= b(L∗ − L) with L(0) = 0

Develop an allometric model relating weight to length, i.e.,

W = αLk

Standard dimensional analysis gives an integer appropriate
integer k

Assumptions are made for accumulation of mercury (Hg) in the
fish and a DE for the amount of Hg in the fish is formulated

All models are fit to data with MatLab
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von Bertalanffy Equation

von Bertalanffy Equation: Growth of the length of fish satisfies

dL

dt
= b(L∗ − L) with L(0) = 0

Rewrite DE and obtain integrating factor

dL

dt
+ bL = bL∗ or µ(t) = e

∫
b dt = ebt

Thus,
d

dt

(
ebtL

)
= bL∗e

bt

Integration yields

ebtL(t) = L∗e
bt + C or L(t) = L∗ + Ce−bt

With L(0) = 0, the solution is

L(t) = L∗
(
1− e−bt

)
Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉

Lecture Notes – Linear Differential Equations
— (42/64)

Introduction
Falling Cat

1st Order Linear DEs
Examples

Pollution in a Lake
Example 2
Mercury in Fish
Modeling Mercury in Fish

Lake Trout Data for Length vs Age

Lake Trout Data for Length vs Age (Lake Superior, 1997)

age length age length age length age length
(yr) (cm) (yr) (cm) (yr) (cm) (yr) (cm)

6 56.6 8 58.9 9 58.9 13 75.4

7 57.7 8 60.2 9 78.5 14 83.8

7 56.6 8 71.4 10 75.2 15 87.4

7 51.8 9 54.9 11 80.3 18 76.5

8 55.4 9 85.6 13 78.5

Find the nonlinear least squares fit to the von Bertalanffy equation

L(t) = L∗
(
1− e−bt

)
for some parameters L∗ and b

Kory Groetsch, Total Mercury and Copper Concentrations in Lake Trout and Whitefish Fillets,

Activity: 19-23, From Lake Superior, Environmental Section, Biological Services Division, 1998
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Parameters and Model

There are two parameters L∗ and b to fit in the von Bertalanffy equation

L(t;L∗, b) = L∗
(

1 − e−bt
)

The graph below shows the model with two different parameter sets red

and blue along with the errors, ei, between the data and the blue model
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Sum of Square Errors

The model L(t;L∗, b) = L∗
(
1− e−bt

)
is a function of t,

depending nonlinearly on the parameters L∗ and b

Assume there are N data points (ti, Li), i = 1..N

Define the error between the measured length, Li, at time ti and
the model evaluated at ti as

ei = Li − L∗
(
1− e−bti

)
The Sum of Squares Error function satisfies

J(L∗, b) =

N∑
i=1

(Li − L(t;L∗, b))
2

=

N∑
i=1

e2i
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Nonlinear Least Squares

The Sum of Square Errors function, J(L∗, b) is at a minimum
when

∂J(L∗, b)

∂L∗
= 0 and

∂J(L∗, b)

∂b
= 0

This generally requires solving two nonlinear equations

The equations could have multiple local minima
Often difficult or impossible to solve analytically - Not the
case for Linear Models
Handled by MatLab with special function fminsearch
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Least Squares Error with MatLab

Define a MatLab function for the sum of square errors between the
data and the model L(t;L∗, b) = L∗

(
1− e−bt

)
1 f unc t i on J = sumsq vonBert (p , tdata , lda ta )
2 % Function computing sum of square e r r o r s f o r von

B e r t a l a n f f y model
3 model = p (1) ∗(1 − exp(−p (2) ∗ tdata ) ) ;
4 e r r o r = model − l da ta ;
5 J = e r r o r ∗ e r ror ’ ;
6 end

If the data are stored in tdfish and ldfish, then apply the MatLab
function fminsearch with function sumsq vonBert

1 [ p1 , J , f l a g ] = fminsearch ( @sumsq vonBert , [ 1 0 0 , 0 . 1 ] , [ ] , t d f i s h
, l d f i s h )

The result are the best fitting parameters

L∗ = 92.401 and b = 0.14553
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Graph of Length of Lake Trout

Graph for Length of Lake Trout: Shows data and best fitting von
Bertalanffy model
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Lake Trout Data for Weight vs Length

Lake Trout Data for Weight vs Length (Lake Superior, 1997)

length Weight length Weight length Weight length Weight
(cm) (g) (cm) (g) (cm) (g) (cm) (g)

29.0 200 57.7 1520 69.6 2800 78.5 3500

51.8 1600 58.9 1600 71.4 3050 80.3 4500

54.9 1450 58.9 1800 75.2 3920 83.8 5000

55.4 1300 60.2 2200 75.4 3980 85.6 4350

56.6 1350 62.5 1800 76.5 3980 86.6 4500

56.6 1660 68.1 3400 78.5 3629 87.4 4650

57.4 1550

Find the best fitting allometric model

W (L) = kLa

for some parameters k and a
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Allometric Models 1

Allometric Models: Relationship between Length and Weight of
Lake Trout using a Power Law Relationship – W (L) = kL a

Examine 3 versions of the Allometric or Power Law model

Best fit through the logarithms of the data
Nonlinear least squares best fit
Dimensional analysis modeling

This is algebraic and not a differential equation

Dimensional considerations important in differential equations

Show a variety of MatLab programming methods
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Allometric Models 2

Logarithm of Allometric Model: – W (L) = kL a

ln(W ) = a ln(L) + ln(k)

Let y = ln(W ) be the dependent variable and x = ln(L) be the
independent variable

With b = ln(k) this logarithmic form is a linear relation,

y = ax+ b

Easy formulas for finding a and b for data y vs x

Take logarithms of the length and weight data, ln(L) and ln(W )

Use MatLab to find linear least squares fit to these
logarithmic data
Obtain Allometric model exponent, a, and coefficient,
k = eb
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Allometric Models 4

Define a MatLab function for the sum of square errors between the
logarithm of the length (ltdfish) and weight (wtdfish) data and the
logarithmic model ln(W ) = a ln(L) + ln(k)

1 f unc t i on [ k , a ] = power f i t ( ldata , wdata )
2 % Power law f i t f o r model W = k∗Lˆa
3 % Uses l i n e a r l e a s t squares f i t to logar i thms o f data
4 Y = log ( wdata ) ; % Logarithm of W−data
5 X = log ( ldata ) ; % Logarithm of L−data
6 p = p o l y f i t (X,Y, 1 ) ; % Linear f i t to X and Y with p = [

s lope , i n t e r c e p t ]
7 a = p (1) ; % Value o f exponent
8 k = exp (p (2 ) ) ; % Value o f l e ad ing c o e f f i c i e n t
9 end

Apply this MatLab function to obtain k = 0.015049 and a = 2.8591,
giving a best allometric model

W (L) = 0.015049L 2.8591
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Allometric Models 5

Nonlinear Least Squares Fit: – W (L) = kL a

This uses the nonlinear best fit to the length and weight data
using a MatLab program almost identical to the one used for
the time and length data for the von Bertalanffy model

Create a sum of square errors function and use MatLab’s
fminsearch function

Produces best fitting model with smallest sum of square error
J2 = 2.8683× 106 given by

W (L) = 0.068695L 2.5052
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Allometric Models 6

Dimensional Analysis for W (L) = kL a

Two previous models indicate a ≈ 3

Similarity argument

Lake Trout look similar at most ages
Increasing length scales the width and height similarly or
V ∝ L 3

Since weight is proportional to volume, W ∝ L 3

Create MatLab program to find best k to the model

W (L) = kL 3

Program finds best fitting model as

W (L) = 0.00799791L 3
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Graph of Allometric Models

Graph of Allometric Models: Shows data and 3 Allometric
Models, which are all very close to each other (similar least sum of
square errors)
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Mercury Accumulation in Lake Trout 1

Mercury Accumulation in Lake Trout

Mercury (Hg) accumulates in fish from feeding and water passing
over the gills

Since fish are cold-blooded, their energy expenditure (balanced
by food and O2 intake) should be roughly proportional to the
weight of the fish

Mostly, Hg stays in the body once it enters

The rate of Hg entering the body of a fish should be proportional
to the weight of the fish

Resulting differential equation:

dH

dt
= κW (t)
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Mercury Accumulation in Lake Trout 2

Mercury Accumulation Model: We select the cubic weight
model as the simplest of similar models

dH

dt
= κW∗

(
1− e−bt

)3
This is a time-varying only DE

Solve by integration or

H(t) = κW∗

∫ (
1− e−bt

)3
dt with H(0) = 0

Integrate by expanding cubic expression

H(t) = κW∗

∫ (
1− 3e−bt + 3e−2bt − e−3bt

)
dt
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Mercury Accumulation in Lake Trout 4

Integrating the DE:

H(t) = κW∗

∫ (
1− 3e−bt + 3e−2bt − e−3bt

)
dt

Gives

H(t) = κW∗

(
t+

3e−bt

b
− 3e−2bt

2b
+
e−3bt

3b

)
+ C

The initial condition H(0) = 0 gives

C = κW∗

(
−3

b
+

3

2b
− 1

3b

)
= −11κW∗

6b

The solution for Hg accumulation is

H(t) =
κW∗
6b

(
6bt+ 18e−bt − 9e−2bt + 2e−3bt − 11

)
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Mercury Accumulation in Lake Trout 5

Lake Trout Data for Hg concentration vs Age (Lake
Superior, 1997)

age Hg age Hg age Hg age Hg
(yr) (ppm) (yr) (ppm) (yr) (ppm) (yr) (ppm)

6 0.17 8 0.2 9 0.15 13 0.53

7 0.17 8 0.14 9 0.4 14 0.39

7 0.18 8 0.2 10 0.34 15 0.33

7 0.1 9 0.13 11 0.39 18 0.52

8 0.19 9 0.46 13 0.39

The solution of the DE, H(t), gives the total amount of Hg in Lake
Trout

Find the concentration of Hg in Lake Trout, which satisfies

c(t) =
H(t)

W (t)
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Mercury Accumulation in Lake Trout 6

Concentration of Hg in Lake Trout requires Weight vs Age

For integration we assume a weight model of the form

W (t) = W∗
(
1− e−bt

)3
The 2 parameters W∗ and b are fit to time and weight data on
Lake Trout

We can use the parameters from the von Bertalanffy fit
with b = 0.14553 giving W∗ = 6295.4
We can fit both parameters to the time weight data, giving
b = 0.16960 giving W∗ = 5677.67

The von Bertalanffy model fits existing length data best

Fitting both matches weight/time data best

Similar graphs and least square errors
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Modeling Mercury in Fish 7

Weight vs Age of Lake Trout: Two models presented above are
graphed
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Mercury Accumulation in Lake Trout 8

Concentration of Hg in Lake Trout: c(t) = H(t)
W (t)

The solution for Hg accumulation is

H(t) =
κW∗
6b

(
6bt+ 18e−bt − 9e−2bt + 2e−3bt − 11

)
The weight model satisfies

W (t) = W∗
(
1− e−bt

)3
MatLab is used to fit the c(t) of Hg vs time data (See MatLab
Programming file)

The 2 parameters sets W∗, b, and κ are fit to Hg vs time data

From the von Bertalanffy fit, b = 0.14553, W∗ = 6295.4, and
κ = 0.071406
From the time/weight data fit, b = 0.16960, W∗ = 5677.67,
and κ = 0.066953
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Modeling Mercury in Fish 9

Concentration of Mercury in Lake Trout The concentration of

Hg is measured in ppm (of mercury) c(t) = H(t)
w(t)
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Mercury Accumulation in Lake Trout 10

Discussion of Model for Mercury in Lake Trout:

Observe data and model show accelerating accumulation of Hg

Data are more scattered for Hg concentration, showing
variability in environment

It is clear why the Michigan Department of Health advises
against eating larger fish

Model weaknesses

Kleiber’s Law suggests food intake ∝W 3/4, which
decreases accumulation
Larger (older) Lake Trout eat larger prey containing higher
concentrations of Hg, which increases accumulation
Spatial variation of Hg concentration occurs in Lake
Superior (PDE?)
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