Math 337 －Elementary Differential Equations
 Lecture Notes－Introduction to Differential Equations

> Joseph M. Mahaffy,
> \langle jmahaffy@sdsu.edu〉

Department of Mathematics and Statistics
Dynamical Systems Group Computational Sciences Research Center

San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2022
soso

Outline

(1) The Class - Overview

- Contact Information, Office Hours
- Text \& Topics
- Grading and Expectations
(2) The Class...
- MatLab
- Formal Prerequisites
(3) Introduction
- Malthusian Growth
- Examples
- Definitions - What is a Differential Equation?
- Classification
(4) Applications of Differential Equations
- Checking Solutions and IVP
- Evaporation Example
- Nonautonomous Example
- Introduction to Maple

Contact Information

Professor Joseph Mahaffy

Office	GMCS-593
Email	jmahaffy@sdsu.edu
Web	http://jmahaffy.sdsu.edu
Phone	$(619) 594-3743$
Office Hours	MW: 11:30-12:45 at GMCS 593 and by Appointment

Basic Information: Text/Topics

Text: The text is optional and old editions are fine.

Brannan and Boyce: Differential Equations:
An Introduction to Modern Methods and Applications.

Wiley 2015.

Lecture Notes available at Bookstore

The Class - Overview

Basic Information: Text/Topics

(1) Introductory Definitions
(2) Qualitative Methods and Direction Fields
(3) Linear Equations
(4) Separable Equations
(5) Exact and Bernoulli Equation
(6) Existence and Uniquess
(7) Numerical Methods
(8) 2D Linear Systems
(9) Second Order Differential Equations
(10) Laplace Transforms
(1) Power Series

Other Differential Equation Courses

Differential Equations and Dynamical Systems: Several courses extend the material from this class. Courses from the Nonlinear Dynamical Systems Group.

- Math 531: Partial Differential Equations
- Math 537: Ordinary Differential Equations
- Math 538: Discrete Dynamical Systems and Chaos
- Math 542: Introduction to Computational Ordinary Differential Equations

Basic Information: Grading

Approximate Grading

$$
\begin{array}{ll}
\hline \text { Homework, including WeBWorK } & 30 \% \\
\text { Lecture Activities/Computer Labs } & 25 \% \\
3 \text { Exams } & 27 \% \\
\text { Final } & 18 \%
\end{array}
$$

- Homework is done in WeBWorK and written problems (most inside WW problems) are submitted to Gradescope. Critical to keep up on HW after each lecture.
- Lecture Activities are written problems after lectures, which are submitted to Gradescope.
- Exams are based heavily on HW problems and examples from lectures.
- Final: Friday, May 6, 13:00-15:00

Expectations and Procedures, I

- Most class attendance is OPTIONAL - Homework and announcements will be posted on the class web page. If/when you attend class:
- You must wear a mask according to University rules.
- Please be on time and pay attention.
- Please turn off mobile phones.
- Please be courteous to other students and the instructor.
- Abide by university statutes, and all applicable local, state, and federal laws.

Expectations and Procedures, II

- Please, turn in assignments on time. (The instructor reserves the right not to accept late assignments, and there is a maximum of 2 extensions of WeBWorK during the semester.)
- The instructor will make special arrangements for students with documented learning disabilities and will try to make accommodations for other unforeseen circumstances, e.g. illness, personal/family crises, etc. in a way that is fair to all students enrolled in the class. Please contact the instructor $\boldsymbol{E A R L Y}$ regarding special circumstances.
- Students are expected and encouraged to ask questions in class!
- Students are expected and encouraged to to make use of office hours! If you cannot make it to the scheduled office hours: contact the instructor to schedule an appointment!

Expectations and Procedures, III

- Missed midterm exams: Don't miss exams! The instructor reserves the right to schedule make-up exams, modify the type and nature of this make-up, and/or base the grade solely on other work (including the final exam).
- Missed final exam: Don't miss the final! Contact the instructor ASAP or a grade of incomplete or F will be assigned.
- Academic honesty: Submit your own work. Any cheating will be reported to University authorities and a ZERO will be given for that HW assignment or Exam.

MatLab

- Students can obtain MatLab from EDORAS Academic Computing.
- Google SDSU MatLab or access https://edoras.sdsu.edu/ download/matlab.html.
- MatLab and Maple can also be accessed in the Computer Labs GMCS 421, 422, and 425.
- A discounted student version of Maple is available.

Math 337: Formal Prerequisites

Math 254 or Math 342A or AE 280

- These courses all require Calculus 151.
- Assume good knowledge of differentiation and integration.
- Understand series techniques (especially Taylor's Theorem)
- Recall Partial Fractions Decomposition.
- These courses all have sections on basic Linear Algebra.

Introduction

Introduction

- Differential equations frequently arise in modeling situations
- They describe population growth, chemical reactions, heat exchange, motion, and many other applications
- Differential equations are continuous analogs of discrete dynamical systems

Malthusian Growth

Discrete Malthusian Growth Model:

- Let the initial population, $P\left(t_{0}\right)=P_{0}$
- Define $t_{n}=t_{0}+n \Delta t$ and $P_{n}=P\left(t_{n}\right)$
- Let r be the per capita growth rate per unit time
- The Discrete Malthusian Growth Model satisfies:

$$
P_{n+1}=P_{n}+r \Delta t P_{n}=(1+r \Delta t) P_{n}
$$

- New population $=$ Old population + per capita growth rate \times length of time \times Old population

Malthusian Growth

Malthusian Growth

Discrete Malthusian Growth: $P_{n+1}=(1+r \Delta t) P_{n}$, so

$$
\begin{aligned}
P_{1} & =(1+r \Delta t) P_{0} \\
P_{2} & =(1+r \Delta t) P_{1}=(1+r \Delta t)^{2} P_{0} \\
P_{3} & =(1+r \Delta t) P_{2}=(1+r \Delta t)^{3} P_{0} \\
& \vdots \\
P_{n} & =(1+r \Delta t) P_{n-1}=(1+r \Delta t)^{n} P_{0}
\end{aligned}
$$

The solution of this discrete model is

$$
P_{n}=(1+r \Delta t)^{n} P_{0}
$$

which is an exponential growth

The Class - Overview

Malthusian Growth

Malthusian Growth

Discrete Malthusian Growth:

$$
P_{n+1}=(1+0.1 \Delta t) P_{n} \quad P_{0}=4
$$

Malthusian Growth

Malthusian Growth

Malthusian Growth: Let $P(t)$ be the population at time $t=t_{0}+n \Delta t$ and rearrange the model above

$$
\begin{aligned}
P_{n+1}-P_{n} & =r \Delta t P_{n} \\
P(t+\Delta t)-P(t) & =\Delta t \cdot r P(t) \\
\frac{P(t+\Delta t)-P(t)}{\Delta t} & =r P(t)
\end{aligned}
$$

Let Δt become very small

$$
\lim _{\Delta t \rightarrow 0} \frac{P(t+\Delta t)-P(t)}{\Delta t}=\frac{d P(t)}{d t}=r P(t)
$$

which is a Differential Equation

Malthusian Growth

Solution of Malthusian Growth Model: The Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t)
$$

- The rate of change of a population is proportional to the population
- Let c be an arbitrary constant, so try a solution of the form

$$
P(t)=c e^{k t}
$$

- Differentiating

$$
\frac{d P(t)}{d t}=c k e^{k t}
$$

which if $k=r$ is $r P(t)$, so satisfies the differential equation ${ }_{50 S O}$

Malthusian Growth

Malthusian Growth

Solution of Malthusian Growth Model The Malthusian growth model satisfies

$$
P(t)=c e^{r t}
$$

- With the initial condition, $P\left(t_{0}\right)=P_{0}$, then the unique solution is

$$
P(t)=P_{0} e^{r\left(t-t_{0}\right)}
$$

- Malthusian growth is often called exponential growth

Malthusian Growth

Example 1: Malthusian Growth

Example 1: Malthusian Growth Consider the Malthusian growth model

$$
\frac{d P(t)}{d t}=0.02 P(t) \quad \text { with } \quad P(0)=100
$$

Skip Example

- Find the solution
- Determine how long it takes for this population to double

Example 1: Malthusian Growth

Solution: The solution is given by

$$
P(t)=100 e^{0.02 t}
$$

Since $P(0)=100$, satisfying the initial condition, then by computing

$$
\frac{d P}{d t}=0.02\left(100 e^{0.02 t}\right)=0.02 P(t)
$$

we find that this solution satisfies the differential equation
The population doubles when

$$
\begin{array}{cl}
200 & =100 e^{0.02 t} \\
0.02 t=\ln (2) & \text { or } \quad t=50 \ln (2) \approx 34.66
\end{array}
$$

Example 2: E. coli Study

Example 2: E. coli Study In this class we connect the ordinary differential equations (ODEs) to real world examples.

This requires fitting our model ODE to actual data.
Consider a culture of Escherichia coli growing in rich media at $25^{\circ} \mathrm{C}$, which satisfies conditions for Malthusian growth,

$$
\frac{d P}{d t}=k P, \quad \text { with } \quad P(0)=P_{0} .
$$

Below is a table of data:

$t(\mathrm{~min})$	OD_{420}	$t(\mathrm{~min})$	OD_{420}	$t(\mathrm{~min})$	OD_{420}
0	0.195	60	0.308	120	0.473
20	0.206	80	0.364	140	0.527
40	0.241	100	0.421	160	0.618

Example 2: E. coli Study

Example 2: The most common means of fitting a model to data is minimizing the sum of square errors between the model and the data.

Basic statistics shows how to do fit data to a straight line (a common problem in multivariate Calculus).

In general this procedure is significantly more difficult and is usually done numerically.

Consider a set of $n+1$ data points: $\left(t_{0}, P_{0}\right),\left(t_{1}, P_{1}\right), \ldots,\left(t_{n}, P_{n}\right)$. Assume the Malthusian growth model depends on some parameters, p :

$$
P(t ; p)=P_{0} e^{k t}, \quad \text { with } \quad p=\left[P_{0}, k\right],
$$

which depends nonlinearly on the parameters, p.

Malthusian Growth

Example 2: E. coli Study

Example 2: Below is a figure showing a data set and $P(t ; p)$ with two different values of p, illustrating the computation of the sum of square errors.

Square Error

Example 2: E. coli Study

Least Squares Best Fit minimizes the square of the error in the distance between the P_{i} data values and the $P\left(t_{i} ; p\right)$ value of the model.

The error between the data points and the model satisfies:

$$
e_{i}=P_{i}-P\left(t_{i} ; p\right)=P_{i}-P_{0} e^{k t_{i}}, \quad i=0, \ldots, n,
$$

which depends on P_{0} and k.
The sums of square errors function depends on the parameters P_{0} and k of the population model:

$$
J\left(P_{0}, k\right)=\sum_{i=0}^{n} e_{i}^{2}=\sum_{i=0}^{n}\left(P_{i}-P_{0} e^{k t_{i}}\right)^{2}
$$

The Least Squares Best Fit Model is the minimum of the function $J\left(P_{0}, k\right)$.

Example 2: E. coli Study

Least Squares Best Fit is found by setting the partials with respect to the parameters equal to zero:

$$
\frac{\partial J\left(P_{0}, k\right)}{\partial P_{0}}=0 \quad \text { and } \quad \frac{\partial J\left(P_{0}, k\right)}{\partial k}=0
$$

These equations are highly nonlinear and difficult to solve in general.
Computer Software Packages often have numerical methods to approximate the solutions.

We examine two Computer Software Packages for finding the least squares best fit Model.

- Excel's Solver
- MatLab's fminsearch

Example 2: E. coli Study

Example 2: E. coli Study: Return to the data at the beginning of this study and the Malthusian growth model, $P(t ; p)=P_{0} e^{k t}$.

There is a hyperlinked Excel file showing how this model is fit with Excel's Solver

Below is the MatLab code for fitting the Malthusian ODE model, finding the best initial condition, P_{0}, and growth rate, k.

The sum of square error program is given by:

1 function $J=$ sumsq_ecoli(p,tdata,pdata)
2 \% Function computing sum of square errors for ...
Malthusian model
3 model $=p(1) \star \exp (p(2) * t d a t a) ;$
4 error $=$ model - pdata;
5 J = error*error';
6 end

Example 2: E. coli Study

Example 2: E. coli Study: The sum of square error program is used inside the primary plotting program (line 11):

```
clear
figure(1)
clf
hold off
mytitle = '\it Escherichia coli';
xlab = '$t$ (min)';
ylab = '$P(t)$ (OD$_{420}$)';
8 td = [0 20 40 60 80 100 120 140 160];
9 pd = [0.195 0.206 0.241 0.308 0.364 0.421 0.473 ...
    0.527 0.618];
10 tt = linspace (0,180,200);
11 [p1,J,flag] = ...
    fminsearch(@sumsq_ecoli,[0.2,0.01],[],td,pd)
12 Pt = p1(1)*exp(pl(2)*tt);
```


Example 2: E. coli Study

Example 2: E. coli Study: The primary plotting program continues with:

```
13 plot(tt,Pt,'b-','LineWidth',1.5);
14 hold on
15 plot(td,pd,'bo','LineWidth',1.5);
16 grid
17 myeqn=['$P(t)=', num2str(p1(1)), 'e^{' ...
    , num2str(p1(2)), 't}$'];
18 text(42,0.53,myeqn,'FontSize',14,'interpreter','latex');
19 legend('Model', 'Data','Location','southeast');
20 xlim([0 180]);
21 ylim([0 0.8]);
22 fontlabs = 'Times New Roman';
23 xlabel(xlab,'FontSize',14,'FontName',fontlabs, ...
    'interpreter','latex');
```


Example 2: E. coli Study

Example 2: E. coli Study: The primary plotting program finishes with:

```
24 ylabel(ylab,'FontSize',14,'FontName',fontlabs, ...
    'interpreter','latex');
25 title(mytitle,'FontSize',18,'FontName',fontlabs, ...
    'interpreter','latex');
26 set(gca,'FontSize',12);
27 print -depsc ecoli.eps
28 print -djpeg ecoli.jpg
```

Significantly, inside the above program we see the line:

$$
[p 1, J, f l a g]=\ldots
$$

fminsearch(@sumsq_ecoli, [0.2,0.01], [],td,pd)
which invokes MatLab's nonlinear solver to minimize the sum of square errors.

Example 2: E. coli Study

Example 2: E. coli Study: The result gives the best fitting model:

$$
P(t)=0.19393 e^{0.0073015 t}
$$

with a least sum of square errors, $J=0.0015809$.
The best fitting model with the data are shown in the graph below:

Malthusian Growth
Examples
Definitions - What is a Differential Equation? Classification

Example 2: E. coli Study

Example 2: E. coli Discrete Model: Fitting the solution to an ODE is a basic curve fitting exercise.

Finding the parameters for a discrete dynamical model is less straightforward.
The discrete Malthusian growth model is the rare discrete model with an explicit answer, so could be solved using a curve fitting routine.

Below we provide the MatLab program for fitting this discrete model through a least squares best fit using an iterated simulation of the model as parameters vary.

The discrete Mathusian growth model satisfies the equation:

$$
P_{n+1}=(1+r) P_{n}, \quad \text { with initial parameter } \quad P_{0},
$$

where n is the discrete time interval of 20 min .
Again we are minimizing the sum of square errors between the model and the data in the table above as the parameters, r and P_{0}, vary.

Example 2: E. coli Study

Example 2: E. coli Discrete Model: The model is simulated,

$$
P_{n+1}=(1+r) P_{n}, \quad \text { with initial parameter } \quad P_{0}
$$

for some parameters r and P_{0}, and its square error is computed with the following MatLab program:

```
1 function J = ec_disc_lst(p0,tdata,pdata)
2 % Least Squares fit to Malthusian Growth
3 N = length(tdata);
4 p = p0(1);
5 pop = [p];
6 err = [pdata(1) - p];
7 for i = 2:N % Malthusian iteration
8 p = p*(1+p0 (2));
9 pop = [pop,p];
10 err = [err, pdata(i) - p];
11 end
12 J = err*err'; % Sum of square errors
13 end
```


Example 2: E. coli Study

Example 2: E. coli Discrete Model: The main program used to compute the best fitting parameters and create a graph is similar to the previous plotting program but varies in a few lines:

```
8 td = [llllllllllll
9 pd = [0.195 0.206 0.241 0.308 0.364 0.421 0.473 \ldots.
    0.527 0.618];
10 [pl,J,flag] = ...
    fminsearch(@ec_disc_lst, [0.2,0.15], [],td,pd)
11 N = length(td);
12 p = p1 (1);
13 pop = [p];
14 for i = 2:N+1 % Malthusian iteration
15 p = p*(1+p1 (2));
16 pop = [pop,p];
17 end
```


Example 2: E. coli Study

Example 2: E. coli Discrete Model: The primary plotting program continues with:

```
18 plot([td,180],pop,'ro-','LineWidth',1.5);
19 hold on
20 plot(td,pd,'bo','LineWidth',1.5);
21 grid
22 myeqn=['$P_{n+1} = (1+',num2str(p1(2)), ...
    ')P_n,\quad P_0 =$', num2str(p1(1))];
23 text(37,0.63,myeqn,'FontSize',14,'interpreter','latex');
24 legend('Model', 'Data','Location','southeast');
```

As before, inside the above program the line:
[p1,J,flag] = ...
fminsearch(@ec_disc_lst, [0.2,0.15], [],td,pd) invokes MatLab's nonlinear solver, which minimizes the sum of square errors.

Malthusian Growth
Examples
Definitions - What is a Differential Equation? Classification

Example 2: E. coli Study

Example 2: E. coli Discrete Model: The result gives the best fitting model:

$$
P_{n+1}=1.15719 P_{n}, \quad P_{0}=0.19396,
$$

with a least sum of square errors, $J=0.0015809$.
The best fitting model with the data are shown in the graph below:

What is a Differential Equation?

What is a Differential Equation?

Definition (Differential Equation)

An equation that contains derivatives of one or more unknown functions with respect to one or more independent variables is said to be a differential equation.

- The classical example is Newton's Law of motion
- The mass of an object times its acceleration is equal to the sum of the forces acting on that object
- Acceleration is the first derivative of velocity or the second derivative of position
- In biology, a differential equation describes a growth rate, a reaction rate, or the change in some physiological state

Types of Differential Equations

- This course considers Ordinary Differential Equations, where the unknown function and its derivatives depend on a single independent variable
- Mathematical physics often needs Partial Differential Equations, where the unknown function and its derivatives depend on two or more independent variables
- Example: Heat Equation

$$
\frac{\partial u(x, t)}{\partial t}=D \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

- This course also examines some Systems of Ordinary Differential Equations, where there are several interacting unknown functions and their derivatives each depending on a single independent variable

Classification

Definition (Order)

The order of a differential equation matches the order of the highest derivative that appears in the equation.

Definition (Linear Differential Equation)

An $n^{t h}$ order ordinary differential equation $F\left(t, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ is said to be linear if it can be written in the form

$$
a_{0}(t) y^{(n)}+a_{1}(t) y^{(n-1)}+\ldots+a_{n}(t) y=g(t)
$$

The functions $a_{0}, a_{1}, \ldots a_{n}$, called the coefficients of the equation, can depend at most on the independent variable t. This equation is said to be homogeneous if the function $g(t)$ is zero for all t. Otherwise, the equation is nonhomogeneous.

Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

- Radioactive elements transition through decay into another state at a rate proportional to the amount of radioactive material present
- The differential equation is

$$
\frac{d R(t)}{d t}=-k R(t) \quad \text { with } \quad R(0)=R_{0}
$$

- This is a first order, linear, homogeneous differential equation
- Like the Malthusian growth model, this has an exponential solution

$$
R(t)=R_{0} e^{-k t}
$$

Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- The simplest spring-mass problem is

$$
m y^{\prime \prime}=-c y \quad \text { or } \quad y^{\prime \prime}+k^{2} y=0
$$

- This is a second order, linear, homogeneous differential equation
- The general solution is

$$
y(t)=c_{1} \cos (k t)+c_{2} \sin (k t)
$$

where c_{1} and c_{2} are arbitrary constants

Applications of Differential Equations

Swinging Pendulum: A pendulum is a mass attached at one point so that it swings freely under the influence of gravity

- Newton's law of motion (ignoring resistance) gives the differential equation

$$
m y^{\prime \prime}+g \sin (y)=0
$$

- The variable y is the angle of the pendulum, m is the mass of the bob of the pendulum, and g is the gravitational constant
- This is a second order, nonlinear, homogeneous differential equation
- This problem does not have an easily expressible solution

Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding
- The differential equation is

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right)
$$

- P is the population, r is the Malthusian rate of growth, and M is the carrying capacity of the population
- This is a first order, nonlinear, homogeneous differential equation
- We solve this problem later in the semester

Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

- Biological applications include a similar approximation for nerve impulses
- The van der Pol Oscillator satisfies the differential equation

$$
v^{\prime \prime}+a\left(v^{2}-1\right) v^{\prime}+v=b
$$

- v is the voltage of the system, and a and b are constants
- This is a second order, nonlinear, nonhomogeneous differential equation
- This problem does not have an easily expressible solution, but shows interesting oscillations

Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem
- System of differential equations

$$
\begin{aligned}
x^{\prime} & =a x-b x y \\
y^{\prime} & =-c y+d x y
\end{aligned}
$$

- x is the prey species, and y is the predator species
- This is a system of first order, nonlinear, homogeneous differential equations
- No explicit solution, but we'll study its behavior

Applications of Differential Equations

Forced Spring-Mass Problem with Damping: An extension of the spring-mass problem that includes viscous-damping caused by resistance to the motion and an external forcing function that is applied to the mass

- The model is given by

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t)
$$

- y is the position of the mass, m is the mass of the object, c is the damping coefficient, k is the spring constant, $F(t)$ is an externally applied force
- This is a second order, linear, nonhomogeneous differential equation
- We'll learn techniques for solving this

Damped Spring-Mass Problem

Damped Spring-Mass Problem: Assume a mass attached to a spring with resistance satisfies the second order linear differential equation

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+5 y(t)=0
$$

Skip Example
Show that one solution to this differential equation is

$$
y_{1}(t)=2 e^{-t} \sin (2 t)
$$

Damped Spring-Mass Problem

Solution: Damped spring-mass problem

- The $1^{\text {st }}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
y_{1}^{\prime}(t)=2 e^{-t}(2 \cos (2 t))-2 e^{-t} \sin (2 t)=2 e^{-t}(2 \cos (2 t)-\sin (2 t))
$$

- The $2^{n d}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
\begin{aligned}
y_{1}^{\prime \prime}(t) & =2 e^{-t}(-4 \sin (2 t)-2 \cos (2 t))-2 e^{-t}(2 \cos (2 t)-\sin (2 t)) \\
& =-2 e^{-t}(4 \cos (2 t)+3 \sin (2 t))
\end{aligned}
$$

- Substitute into the spring-mass problem

$$
\begin{aligned}
y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y= & -2 e^{-t}(4 \cos (2 t)+3 \sin (2 t)) \\
& +2\left(2 e^{-t}(2 \cos (2 t)-\sin (2 t))\right)+5\left(2 e^{-t} \sin (2 t)\right) \\
= & 0
\end{aligned}
$$

It is often easy to check that a solution satisfies a differential equation.

Damped Spring-Mass Problem

Graph of Damped Oscillator

Initial Value Problem

Definition (Initial Value Problem)

An initial value problem for an $n^{\text {th }}$ order differential equation

$$
y^{(n)}=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)
$$

on an interval I consists of this differential equation together with n initial conditions

$$
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1}
$$

prescribed at a point $t_{0} \in I$, where $y_{0}, y_{1}, \ldots, y_{n-1}$ are given constants.
Under reasonable conditions the solution of an Initial Value Problem has a unique solution.

Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- The initial amount of water is $8 \mathrm{~cm}^{3}$ with t in days
- Verify the solution is

$$
V(t)=(2-0.01 t)^{3}
$$

- Determine when the animal becomes totally desiccated according to this model
- Graph the solution

Evaporation Example

Solution: Show $V(t)=(2-0.01 t)^{3}$ satisfies

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- $V(0)=(2-0.01(0))^{3}=8$, so satisfies the initial condition
- Differentiate $V(t)$,

$$
\frac{d V}{d t}=3(2-0.01 t)^{2}(-0.01)=-0.03(2-0.01 t)^{2}
$$

- But $V^{2 / 3}(t)=(2-0.01 t)^{2}$, so

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}
$$

Evaporation Example

Solution (cont): Find the time of total desiccation

- Must solve

$$
V(t)=(2-0.01 t)^{3}=0
$$

- Thus,

$$
2-0.01 t=0 \quad \text { or } \quad t=200
$$

- It takes 200 days for complete desiccation

Evaporation Example

Graph of Desiccation

Nonautonomous Example

Nonautonomous Example: Consider the nonautonomous differential equation with initial condition (Initial Value Problem):

$$
\frac{d y}{d t}=-t y^{2}, \quad y(0)=2
$$

- Show that the solution to this differential equation, including the initial condition, is

$$
y(t)=\frac{2}{t^{2}+1}
$$

- Graph of the solution

Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

- The initial condition is

$$
y(0)=\frac{2}{0^{2}+1}=2
$$

- Differentiate $y(t)$,

$$
\frac{d y}{d t}=-2\left(t^{2}+1\right)^{-2}(2 t)=-4 t\left(t^{2}+1\right)^{-2}
$$

- However,

$$
-t y^{2}=-t\left(2\left(t^{2}+1\right)^{-1}\right)^{2}=-4 t\left(t^{2}+1\right)^{-2}
$$

- Thus, the differential equation is satisfied

Checking Solutions and IVP

Nonautonomous Example

Solution of Nonautonomous Differentiation Equation

Introduction to Maple

Introduction to Maple: A Symbolic Math Program
We enter a function $y(t)=3 e^{-t} \cos (2 t)$,
$y:=t \rightarrow 3 \cdot \exp (-t) \cdot \cos (2 \cdot t) ;$
The arrow is - and $>$ and multiplication is $*$. To plot this function $\operatorname{plot}(y(t), t=0 . .2 \cdot \mathrm{Pi})$;

Introduction to Maple

We have the function: $y(t)=3 e^{-t} \cos (2 t)$,
This can be differentiated (and stored in variable $d y$) by typing $d y:=\operatorname{diff}(y(t), t)$;

Maple gives:

$$
d y:=-3 e^{-t} \cos (2 t)-6 e^{-t} \sin (2 t)
$$

The absolute minimum and a relative maximum are found with Maple:
tmin $:=$ fsolve $(d y=0, t=1 . .2) ; \quad y($ tmin $) ;$
tmax $:=f$ solve $(d y=0, t=2.5 . .3 .5) ; \quad y(\operatorname{tmax})$;
The result was an absolute minimum at (1.33897, -0.703328).
The result was a relative maximum at (2.90977, 0.1462075).

Introduction to Maple

With $y(t)=3 e^{-t} \cos (2 t)$, we can solve

$$
\int 3 e^{-t} \cos (2 t) d t \quad \text { and } \quad \int_{0}^{5} 3 e^{-t} \cos (2 t) d t
$$

These can be integrated by typing
$\operatorname{int}(y(t), t) ; \quad \operatorname{int}(y(t), t=0 . .5) ; \quad \operatorname{evalf}(\%) ;$
For the indefinite integral, Maple gives:

$$
-\frac{3}{5} e^{-t} \cos (2 t)+\frac{6}{5} e^{-t} \sin (2 t)
$$

For the definite integral, Maple gives:

$$
\frac{3}{5}-\frac{3}{5} e^{-5} \cos (10)+\frac{6}{5} e^{-5} \sin (10)=0.59899347
$$

Show $y(t)=3 e^{-t} \cos (2 t)$ is a solution of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 .
$$

The function and derivatives are entered by
$y:=t \rightarrow 3 \cdot \exp (-t) \cdot \cos (2 \cdot t) ;$
$d y:=\operatorname{diff}(y(t), t)$;
$s d y:=\operatorname{diff}(y(t), t \$ 2)$;
If we type
$s d y+2 \cdot d y+5 \cdot y(t) ;$
Maple gives $\mathbf{0}$, which verifies this is a solution.

Introduction to Maple

Maple finds the general solution to the differential equation $d e:=\operatorname{diff}(Y(t), t \$ 2)+2 \cdot \operatorname{diff}(Y(t), t)+5 \cdot Y(t)=0 ;$ dsolve (de, $Y(t))$;

Maple produces

$$
Y(t)=C_{1} e^{-t} \sin (2 t)+C_{2} e^{-t} \cos (2 t)
$$

To solve an initial value problem, say $Y(0)=2$ and $Y^{\prime}(0)=-1$, enter dsolve $(\{d e, Y(0)=2, D(Y)(0)=-1\}, Y(t))$;
Maple produces

$$
Y(t)=\frac{1}{2} e^{-t} \sin (2 t)+2 e^{-t} \cos (2 t)
$$

which is made into a useable function by typing
$Y:=\operatorname{unapply}(r h s(\%), t)$;

