Math 337 －Elementary Differential Equations
 Lecture Notes－Exact and Bernoulli Differential Equations

Joseph M．Mahaffy，
〈jmahaffy＠sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

Spring 2022

Outline

(1) Introduction
(2) Exact Differential Equations

- Gravity
- Potential Function
- Exact Differential Equation
(3) Bernoulli's Differential Equation
- Logistic Growth Equation
- Alternate Solution
- Bernoulli's Equation

Introduction

Introduction

- Exact Differential Equations
- Potential Functions
- Gravity
- Bernoulli's Differential Equation
- Applications
- Logistic Growth

Exact Differential Equations

Exact Differential Equations - Potential functions

- In physics, conservative forces lead to potential functions, where no work is performed on a closed path
- Alternately, the work is independent of the path
- Potential functions arise as solutions of Laplace's equation in PDEs
- Potential function are analytic functions in Complex Variables
- Naturally arise from implicit differentiation

Gravity

Gravity

- The force of gravity between two objects mass m_{1} and m_{2} satisfy

$$
F(x, y)=G m_{1} m_{2}\left(\frac{x \mathbf{i}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y \mathbf{j}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)
$$

- The potential energy satisfies

$$
U(x, y)=-\frac{G m_{1} m_{2}}{\left(x^{2}+y^{2}\right)^{1 / 2}}
$$

- Perform Implicit differentiation on $U(x, y)$, where we let y depend on x (path $y(x)$ depends on x):

$$
\frac{d U(x, y)}{d x}=G m_{1} m_{2}\left(\frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\left(\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right) \frac{d y}{d x}\right)
$$

- A conservative function satisfies $\frac{d U}{d x}=0$

Gravity

Differential Equation for Gravity

- The differential equation for gravity is

$$
G m_{1} m_{2}\left(\frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\left(\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right) \frac{d y}{d x}\right)=0
$$

- By the way this problem was set up, the solution is the implicit potential function

$$
U(x, y(x))=-\frac{G m_{1} m_{2}}{\left(x^{2}+y^{2}(x)\right)^{1 / 2}}=C
$$

Gravity

Potential Function

- Consider a potential function, $\phi(x, y)$
- By implicit differentiation

$$
\frac{d \phi(x, y)}{d x}=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}
$$

- If the potential function satisfies $\phi(x, y)=C$ (level potential field), then

$$
\frac{d \phi(x, y)}{d x}=0
$$

- This gives rise to an Exact differential equation

Gravity

Definition

Suppose there is a function $\phi(x, y)$ with

$$
\frac{\partial \phi}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial \phi}{\partial y}=N(x, y) .
$$

The first-order differential equation given by

$$
M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

is an exact differential equation with the implicit solution satisfying:

$$
\phi(x, y)=C .
$$

Example

Example: Consider the differential equation:

$$
(2 x+y \cos (x y))+(4 y+x \cos (x y)) \frac{d y}{d x}=0
$$

This equation is clearly nonlinear and not separable.
We hope that it might be exact!
If it is exact, then there must be a potential function, $\phi(x, y)$ satisfying:

$$
\frac{\partial \phi}{\partial x}=2 x+y \cos (x y) \quad \text { and } \quad \frac{\partial \phi}{\partial y}=4 y+x \cos (x y)
$$

Example

Example (cont): Begin with

$$
\frac{\partial \phi}{\partial x}=M(x, y)=2 x+y \cos (x y)
$$

Integrate this with respect to x, so

$$
\phi(x, y)=\int(2 x+y \cos (x y)) d x=x^{2}+\sin (x y)+h(y)
$$

where $h(y)$ is some function depending only on y
Similarly, we want

$$
\frac{\partial \phi}{\partial y}=N(x, y)=4 y+x \cos (x y)
$$

Integrate this with respect to y, so

$$
\phi(x, y)=\int(4 y+x \cos (x y)) d y=2 y^{2}+\sin (x y)+k(x)
$$

where $k(x)$ is some function depending only on x

Example

Example (cont): The potential function, $\phi(x, y)$ satisfies
$\phi(x, y)=x^{2}+\sin (x y)+h(y) \quad$ and $\quad \phi(x, y)=2 y^{2}+\sin (x y)+k(x)$
for some $h(y)$ and $k(x)$
Combining these results yields the solution

$$
\phi(x, y)=x^{2}+2 y^{2}+\sin (x y)=C .
$$

Implicit differentiation yields:

$$
\frac{d \phi}{d x}=(2 x+y \cos (x y))+(4 y+x \cos (x y)) \frac{d y}{d x}=0
$$

the original differential equation.

Potential Function
Exact Differential Equation

Potential Example

Graph of the Potential Function

Potential Example

Contour of the Potential Function

Exact Differential Equation

Theorem

Let the functions M, N, M_{y}, and N_{x} (subscripts denote partial derivatives) be continuous in a rectangular region
$R: \alpha<x<\beta, \gamma<y<\delta$. Then the $D E$

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is an exact differential equation in R if and only if

$$
M_{y}(x, y)=N_{x}(x, y)
$$

at each point in R. Furthermore, there exists a potential function $\phi(x, y)$ solving this differential equation with

$$
\phi_{x}(x, y)=M(x, y) \quad \phi_{y}(x, y)=N(x, y)
$$

Example

Consider the differential equation

$$
2 t \cos (y)+2+\left(2 y-t^{2} \sin (y)\right) y^{\prime}=0
$$

Since

$$
\frac{\partial M(t, y)}{\partial y}=-2 t \sin (y)=\frac{\partial N(t, y)}{\partial t}
$$

this DE is exact
Integrating

$$
\begin{aligned}
\int(2 t \cos (y)+2) d t & =t^{2} \cos (y)+2 t+h(y) \quad \text { and } \\
\int\left(2 y-t^{2} \sin (y)\right) d y & =y^{2}+t^{2} \cos (y)+k(t)
\end{aligned}
$$

It follows that the potential function is

$$
\phi(t, y)=y^{2}+2 t+t^{2} \cos (y)=C
$$

Logistic Growth Equation

Logistic Growth Equation is one of the most important population models

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right), \quad P(0)=P_{0}
$$

This a $1^{\text {st }}$ order nonlinear differential equation
It is separable, so can be written:

$$
\int \frac{d P}{P\left(\frac{P}{M}-1\right)}=-\int r d t=-r t+C
$$

Left integral requires partial fractions composition

$$
\frac{1}{P\left(\frac{P}{M}-1\right)}=\frac{A}{P}+\frac{B}{\left(\frac{P}{M}-1\right)}
$$

Logistic Growth Equation

Fundamental Theorem of Algebra gives $A=-1$ and $B=1 / M$, so integrals become

$$
\int \frac{(1 / M)}{\left(\frac{P}{M}-1\right)} d P-\int \frac{d P}{P}=-r t+C
$$

With a substitution, we have

$$
\ln \left(\frac{P(t)}{M}-1\right)-\ln (P(t))=\ln \left(\frac{P(t)-M}{M P(t)}\right)=-r t+C
$$

Exponentiating (with $K=e^{C}$)

$$
\frac{P(t)-M}{M P(t)}=K e^{-r t} \quad \text { or } \quad P(t)=\frac{M}{1-K M e^{-r t}}
$$

Logistic Growth Equation

Logistic Growth Equation with initial condition is

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right), \quad P(0)=P_{0}
$$

With the initial condition and some algebra, the solution is

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-r t}}
$$

This solution took lots of work!

Bernoulli - Logistic Growth Equation

Alternate Solution - Logistic Growth Equation

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right), \quad P(0)=P_{0}
$$

This is rewritten

$$
\frac{d P}{d t}-r P=-\frac{r}{M} P^{2}
$$

Consider a substitution $u=P^{1-2}=P^{-1}$, so $\frac{d u}{d t}=-P^{-2} \frac{d P}{d t}$
Multiply the logistic equation by $-P^{-2}$, so

$$
-P^{-2} \frac{d P}{d t}+r P^{-1}=\frac{r}{M}
$$

or

$$
\frac{d u}{d t}+r u=\frac{r}{M}
$$

Bernoulli - Logistic Growth Equation

Alternate Solution (cont): With the substitution $u(t)=\frac{1}{P(t)}$, the new DE is

$$
\frac{d u}{d t}+r u=\frac{r}{M},
$$

which is a Linear Differential Equation
With our linear techniques, the integrating factor is $\mu(t)=e^{r t}$, so

$$
\frac{d}{d t}\left(e^{r t} u(t)\right)=\frac{r}{M} e^{r t}
$$

so

$$
e^{r t} u(t)=\frac{e^{r t}}{M}+C \quad \text { or } \quad u(t)=\frac{1}{M}+C e^{-r t}
$$

or

$$
\frac{1}{P(t)}=\frac{1}{M}+C e^{-r t}
$$

Bernoulli - Logistic Growth Equation

Alternate Solution (cont): Inverting this gives

$$
P(t)=\frac{M}{1+M C e^{-r t}}
$$

The initial condition $P(0)=P_{0}$, so $P_{0}=\frac{M}{1+M C}$ or

$$
C=\frac{M-P_{0}}{P_{0} M}
$$

It follows that

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) e^{-r t}}
$$

This solution is MUCH easier!

Bernoulli's Equation

Definition

A differential equation of the form

$$
\frac{d y}{d t}+q(t) y=r(t) y^{n}
$$

where n is any real number, is called a Bernoulli's equation

Define $u=y^{1-n}$, so

$$
\frac{d u}{d t}=(1-n) y^{-n} \frac{d y}{d t}
$$

Bernoulli's Equation

The substitution $u=y^{1-n}$ suggests multiply by $(1-n) y^{-n}$, changing Bernoulli's Equation to

$$
(1-n) y^{-n} \frac{d y}{d t}+(1-n) q(t) y^{1-n}=(1-n) r(t)
$$

which results in the new equation

$$
\frac{d u}{d t}+(1-n) q(t) u=(1-n) r(t)
$$

This is a $1^{\text {st }}$ order linear differential equation, which is easy to solve

Example: Bernoulli's Equation

Example: Consider the Bernoulli's equation:

$$
3 t \frac{d y}{d t}+9 y=2 t y^{5 / 3}
$$

Solution: Rewrite the equation

$$
\frac{d y}{d t}+\frac{3}{t} y=\frac{2}{3} y^{5 / 3}
$$

and use the substitution $u=y^{1-5 / 3}=y^{-2 / 3}$ with $\frac{d u}{d t}=-\frac{2}{3} y^{-5 / 3} \frac{d y}{d t}$
Multiply equation above by $-\frac{2}{3} y^{-5 / 3}$ and obtain

$$
\frac{d u}{d t}-\frac{2}{t} u=-\frac{4}{9}
$$

which is a linear differential equation

Example: Bernoulli's Equation

Example (cont): The linear differential equation in $u(t)$ is

$$
\frac{d u}{d t}-\frac{2}{t} u=-\frac{4}{9}
$$

which has an integrating factor

$$
\mu(t)=e^{-2 \int \frac{d t}{t}}=e^{-2 \ln (t)}=\frac{1}{t^{2}}
$$

This gives

$$
\frac{d}{d t}\left(\frac{u}{t^{2}}\right)=-\frac{4}{9 t^{2}},
$$

which integrating gives

$$
\frac{u}{t^{2}}=\frac{4}{9 t}+C \quad \text { or } \quad u(t)=\frac{4 t}{9}+C t^{2}
$$

Example: Bernoulli's Equation

Example (cont): However, $u(t)=y^{-2 / 3}(t)$, so if

$$
u(t)=\frac{4 t}{9}+C t^{2}, \quad \text { then } \quad y^{-2 / 3}(t)=\frac{4 t}{9}+C t^{2}
$$

The explicit solution is

$$
y(t)=\left(\frac{9}{4 t+9 C t^{2}}\right)^{\frac{3}{2}}
$$

