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Solution of Linear Growth and Decay Models

Previously showed that for Malthusian growth or Radioactive
decay the linear differential equation:

dy

dt
= a y with y(0) = y0,

has the solution:
y(t) = y0e

at.

More generally, we have the following solution:

Method (General Solution to Linear Growth and Decay Models)

Consider
dy

dt
= a y with y(t0) = y0.

The solution is
y(t) = y0e

a(t−t0).
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Example: Linear Decay Model

Example: Linear Decay Model: Consider

dy

dt
= −0.3 y with y(4) = 12

The solution is
y(t) = 12 e−0.3(t−4)

This solution shows a substance decaying at a rate k = 0.3 starting
with 12 units of substance y.

However, the solution is shifted (horizontally) by 4 units of time.
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Mathematical Modeling
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Newton’s Law of Cooling 1

Newton’s Law of Cooling:

After a murder (or death by other causes), the forensic
scientist takes the temperature of the body

Later the temperature of the body is taken again to find
the rate at which the body is cooling

Two (or more) data points are used to extrapolate back to
when the murder occurred

This property is known as Newton’s Law of Cooling
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature

If T (t) is the temperature of the body, then it satisfies the
differential equation

dT

dt
= −k(T (t)− Te) with T (0) = T0

The parameter k is dependent on the specific properties of
the particular object (body in this case)

Te is the environmental temperature

T0 is the initial temperature of the object
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Murder Example 1

Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C

Assume that the room in which the murder victim lay was
a constant 22◦C

Suppose that an hour later the temperature of the body is
28◦C

Normal temperature of a human body when it is alive is
37◦C

Use this information to determine the approximate time
that the murder occurred
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t)− 22) with T (0) = 30

Make a change of variables z(t) = T (t)− 22
Then z ′(t) = T ′(t), so the differential equation above
becomes

dz

dt
= −kz(t), with z(0) = T (0)− 22 = 8

This is the radioactive decay problem that we solved
The solution is

z(t) = 8 e−kt
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Murder Example 3

Solution (cont): From the solution z(t) = 8 e−kt, we have

z(t) = T (t)− 22, so T (t) = z(t) + 22

T (t) = 22 + 8 e−kt

One hour later the body temperature is 28◦C

T (1) = 28 = 22 + 8 e−k

Solving
6 = 8 e−k or ek = 4

3

Thus, k = ln
(

4
3

)
= 0.2877
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Murder Example 4

Solution (cont): It only remains to find out when the murder
occurred

At the time of death, td, the body temperature is 37◦C

T (td) = 37 = 22 + 8 e−ktd

Thus,

8 e−ktd = 37− 22 = 15 or e−ktd = 15
8 = 1.875

This gives −ktd = ln(1.875) or

td = − ln(1.875)

k
= −2.19

The murder occurred about 2 hours 11 minutes before the body
was found, which places the time of death around 6:19 am
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Murder Example 5

Graph of Body Temperature over time

−8 −6 −4 −2 0 2 4 6 8 10 12
20

22

24

26

28

30

32

34

36

38

40

T
im

e
o
f
d
ea
th
,
t
d

Room Temperature

t

T
(t
)

Body Temperature

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Direction Fields and Phase Portraits - 1D
— (12/50)



Mathematical Modeling
Introduction to MatLab

Qualitative Behavior of Differential Equations
More Examples

Maple - Direction Fields

Solution of Linear Growth and Decay Models
Mathematical Modeling
Newton’s Law of Cooling
Murder Investigation
Linear Differential Equation

Solution of General Linear Model 1

Solution of General Linear Model: Consider the Linear Model

dy

dt
= a y + b with y(t0) = y0

Rewrite equation as
dy

dt
= a

(
y +

b

a

)
Make the substitution z(t) = y(t) + b

a , so dz
dt = dy

dt and z(t0) = y0 + b
a

It follows that

dz

dt
= a z with z(t0) = y0 + b

a
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Solution of General Linear Model 2

The linear growth model given by

dz

dt
= a z with z(t0) = y0 + b

a ,

has been solved by our previous method.

The solution is:

z(t) =

(
y0 +

b

a

)
ea(t−t0) = y(t) +

b

a
.

It follows that the solution, y(t) is

y(t) =

(
y0 +

b

a

)
ea(t−t0) − b

a
.
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Solution of General Linear Model 3

The linear differential equation satisfies:

dy

dt
= a y + b = a

(
y +

b

a

)
Method (Solution of General Linear Differential Equation)

Consider the linear differential equation

dy

dt
= a

(
y +

b

a

)
with y(t0) = y0.

With the substitution z(t) = y(t) + b
a , we obtain the solution:

y(t) =

(
y0 +

b

a

)
ea(t−t0) − b

a
.

This method produces a vertical shift of the solution.
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Example of Linear Model 1

Example of Linear Model Consider the Linear Model

dy

dt
= 5− 0.2 y with y(3) = 7

Rewrite equation as
dy

dt
= −0.2(y − 25)

Make the substitution z(t) = y(t)− 25, so dz
dt = dy

dt and z(3) = −18

dz

dt
= −0.2 z with z(3) = −18
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Example of Linear Model 2

Example of Linear Model The substituted model is

dz

dt
= −0.2 z with z(3) = −18

Thus,
z(t) = −18 e−0.2(t−3) = y(t)− 25

The solution is
y(t) = 25− 18 e−0.2(t−3)
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Example of Linear Model 3

The linear differential equation was transformed into the IVP:

dy

dt
= −0.2(y − 25), with y(3) = 7

The graph is given by
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Introduction to MatLab

How do we make the previous graph?

MatLab is a powerful software for mathematics, engineering, and the
sciences

MatLab stands for Matrix Laboratory

Designed for easy managing of vectors, matrices, and graphics

Valuable subroutines and packages for specialty applications

It is a necessary tool for anyone in Applied Mathematics

Introduction to MatLab
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Autonomous Differential Equation

The general first order differential equation satisfies

dy

dt
= f(t, y).

A very important set of DEs that we study are called
Autonomous Differential Equations

Definition (Autonomous Differential Equation)

A first order autonomous differential equation has the form

dy

dt
= f(y).

The function, f , depends only on the dependent variable.
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Qualitative Behavior of Differential Equations

The first step of any qualitative analysis is finding equilibrium
solutions

Definition (Equilibrium Solutions)

Consider autonomous DE

dy

dt
= f(y).

If y(t) = c is a constant solution or equilibrium solution to this
DE, then dy

dt = 0. Therefore the constant c is a solution of the
algebraic equation

f(y) = 0.

Equilibrium solutions are also referred to as fixed points,
stationary points, or critical points.
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Classification of Equilibria

There are a variety of local behaviors near an equilibrium, ye

1 An asymptotically stable equilibrium, often referred to as an
attractor or sink has any nearby solution approach ye as t→∞

2 An unstable equilibrium, often referred to as a repeller or
source has any nearby solution leave a region about ye as t→∞

3 A neutrally stable equilibrium has any solution stay nearby
the equilibrium, but not approach the equilibrium ye as t→∞

4 A semi-stable equilibrium (in 1D) has solutions on one side of
ye approach ye as t→∞, while solutions on the other side of ye
diverge away from ye
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Taylor’s Theorem

Let ye be an equilibrium solution of the DE

dy

dt
= f(y),

so f(ye) = 0.

Theorem (Taylor Series)

If for a range about ye, the function, f , has infinitely many
derivatives at ye, then f(y) satisfies the Taylor Series

f(y) = f(ye) + f ′(ye)(y − ye) +
f ′′(ye)

2!
(y − ye)2 + ...

Since f(ye) = 0, then the dominate term near ye is the linear term
f ′(ye)(y − ye).
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Linearization

The next step is finding the local behavior near each of the
equilibrium solutions of the DE

dy

dt
= f(y).

Theorem (Linearization about an Equilibrium Point)

Let ye be an equilibrium point of the DE above and assume that f has
a continuous derivative near ye.

If f ′(ye) < 0, then ye is an asymptotically stable equilibrium.

If f ′(ye) > 0, then ye is an unstable equilibrium.

If f ′(ye) = 0, then more information is needed to classify ye.
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Example: Logistic Growth Model 1

Example: Logistic Growth Model
Consider the logistic growth equation:

dP

dt
= f(P ) = 0.05P

(
1− P

2000

)

Equilibria satisfy f(Pe) = 0, so

Pe = 0, the extinction equilibrium
Pe = 2000, the carrying capacity

It is easy to compute f ′(P ) = 0.05− 0.1P
2000

Since f ′(0) = 0.05 > 0, Pe = 0 is an unstable equilibrium or
repeller

Since f ′(2000) = −0.05 < 0, Pe = 2000 is a stable equilibrium
or attractor
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Example: Logistic Growth Model 2

Geometric Local Analysis: Equilibria are Pe = 0 and Pe = 2000

The graph of f(P ) gives more information

To the left of Pe = 0, f(P ) < 0

Since dP
dt = f(P ) < 0, P (t) is decreasing

Note that this region is outside the region of biological
significance

For 0 < P < 2000, f(P ) > 0

Since dP
dt = f(P ) > 0, P (t) is increasing

Population monotonically growing in this area

For P > 2000, f(P ) < 0

Since dP
dt = f(P ) < 0, P (t) is decreasing

Population monotonically decreasing in this region
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Phase Portrait

Use the above information to draw a Phase Portrait of the
behavior of this differential equation along the P -axis

The behavior of the differential equation is denoted by arrows
along the P -axis

When f(P ) < 0, P (t) is decreasing and we draw an arrow
to the left
When f(P ) > 0, P (t) is increasing and we draw an arrow
to the right

Equilibria

A solid dot represents an equilibrium that solutions
approach or stable equilibrium
An open dot represents an equilibrium that solutions go
away from or unstable equilibrium
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Example: Logistic Growth Model 4

Phase Portrait: Consists of P -axis, arrows, and equilibria.
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Example: Logistic Growth Model 5

Diagram of Solutions for Logistic Growth Model

Logistic Growth Model
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Example: Logistic Growth Model 7

Summary of Qualitative Analysis

Graph shows solutions either moving away from the equilibrium
at Pe = 0 or moving toward Pe = 2000

Solutions are increasing most rapidly where f(P ) is at a
maximum

Phase portrait shows direction of flow of the solutions without
solving the differential equation

Solutions cannot cross in the tP -plane

Phase Portrait analysis

Behavior of a scalar DE found by just graphing function
Equilibria are zeros of function
Direction of flow/arrows from sign of function
Stability of equilibria from whether arrows point toward or
away from the equilibria

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Direction Fields and Phase Portraits - 1D
— (30/50)



Mathematical Modeling
Introduction to MatLab

Qualitative Behavior of Differential Equations
More Examples

Maple - Direction Fields

Example: Logistic Growth
Example: Sine Function

Example: Sine Function 1

Example: Sine Function
Consider the differential equation:

dx

dt
= 2 sin(πx)

Find all equilibria

Determine the stability of the equilibria

Sketch the phase portrait

Show typical solutions
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Example: Sine Function 2

For the sine function below:

dx

dt
= 2 sin(πx)

The equilibria satisfy

2 sin(πxe) = 0

Thus, xe = n, where n is any integer

The sine function passes from negative to positive through
xe = 0, so solutions move away from this equilibrium

The sine function passes from positive to negative through
xe = 1, so solutions move toward this equilibrium
From the function behavior near equilibria

All equilibria with xe = 2n (even integer) are unstable
All equilibria with xe = 2n+ 1 (odd integer) are stable
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Phase Portrait: Since 2 sin(πx) alternates sign between
integers, the phase portrait follows below:
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Diagram of Solutions for Sine Model
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Left Snail Model: Introduction

The shell of a snail exhibits chirality, left-handed (sinistral) or
right-handed (dextral) coil relative to the central axis

The Indian conch shell, Turbinella pyrum, is primarily a
right-handed gastropod [1]

The left-handed shells are “exceedingly rare”

The Indians view the rare shells as very holy

The Hindu god “Vishnu, in the form of his most celebrated
avatar, Krishna, blows this sacred conch shell to call the
army of Arjuna into battle”

So why does nature favor snails with one particular handedness?

Gould notes that the vast majority of snails grow the dextral
form.

[1] S. J. Gould, “Left Snails and Right Minds,” Natural History, April 1995, 10-18, and in the

compilation Dinosaur in a Haystack ( 1996)
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Left Snail Model 1

Clifford Henry Taubes [2] gives a simple mathematical
model to predict the bias of either the dextral or sinistral
forms for a given species

Assume that the probability of a dextral snail breeding with
a sinistral snail is proportional to the product of the
number of dextral snails times sinistral snails
Assume that two sinistral snails always produce a sinistral
snail and two dextral snails produce a dextral snail
Assume that a dextral-sinistral pair produce dextral and
sinistral offspring with equal probability

By the first assumption, a dextral snail is twice as likely to
choose a dextral snail than a sinistral snail

Could use real experimental verification of the assumptions

[2] C. H. Taubes, Modeling Differential Equations in Biology, Prentice Hall, 2001.
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Taubes Snail Model

Let p(t) be the probability that a snail is dextral

A model that qualitatively exhibits the behavior described
on previous slide:

dp

dt
= αp(1− p)

(
p− 1

2

)
, 0 ≤ p ≤ 1,

where α is some positive constant

What is the behavior of this differential equation?

What does its solutions predict about the chirality of
populations of snails?
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Taubes Snail Model

This differential equation is not easy to solve exactly

Qualitative analysis techniques for this differential
equation are relatively easily to show why snails are likely
to be in either the dextral or sinistral forms

The snail model:

dp

dt
= f(p) = αp(1− p)

(
p− 1

2

)
, 0 ≤ p ≤ 1,

Equilibria are pe = 0, 12 , 1
f(p) < 0 for 0 < p < 1

2 , so solutions decrease
f(p) > 0 for 1

2 < p < 1, so solutions increase
The equilibrium at pe = 1

2 is unstable
The equilibria at pe = 0 and 1 are stable
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Phase Portrait:
dp

dt
= αp(1− p)

(
p− 1

2

)
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Phase Portrait for Snail Model (α = 1.5)
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Diagram of Solutions for Snail Model

Snail Model
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Snail Model - Summary

Figures show the solutions tend toward one of the stable
equilibria, pe = 0 or 1

When the solution tends toward pe = 0, then the
probability of a dextral snail being found drops to zero, so
the population of snails all have the sinistral form

When the solution tends toward pe = 1, then the
population of snails virtually all have the dextral form

This is what is observed in nature suggesting that this
model exhibits the behavior of the evolution of snails

This does not mean that the model is a good model!

It simply means that the model exhibits the basic behavior
observed experimentally from the biological experiments
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Thick-Billed Parrot: Rhynchopsitta pachyrhycha
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Thick-Billed Parrot: Rhynchopsitta pachyrhycha

A gregarious montane bird that feeds largely on conifer
seeds, using its large beak to break open pine cones for the
seeds

These birds used to fly in huge flocks in the mountainous
regions of Mexico and Southwestern U. S.

Largely because of habitat loss, these birds have lost much
of their original range and have dropped to only about
1500 breeding pairs in a few large colonies in the mountains
of Mexico

The pressures to log their habitat puts this population at
extreme risk for extinction
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Thick-Billed Parrot: Rhynchopsitta pachyrhycha

The populations of these birds appear to exhibit a property
known in ecology as the Allee effect

These parrots congregate in large social groups for almost
all of their activities

The large group allows the birds many more eyes to watch
out for predators

When the population drops below a certain number, then
these birds become easy targets for predators, primarily
hawks, which adversely affects their ability to sustain a
breeding colony
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Allee Effect:

Suppose that a population study on thick-billed parrots in
a particular region finds that the population, N(t), of the
parrots satisfies the differential equation:

dN

dt
= N

(
r − a(N − b)2

)
,

where r = 0.04, a = 10−8, and b = 2200

Find the equilibria for this differential equation

Determine the stability of the equilibria

Draw a phase portrait for the behavior of this model

Describe what happens to various starting populations of
the parrots as predicted by this model
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Equilibria:

Set the right side of the differential equation equal to zero:

Ne

(
r − a(Ne − b)2

)
= 0

One solution is the trivial or extinction equilibrium,
Ne = 0
When

(
r − a(Ne − b)2

)
= 0, then

(Ne − b)2 =
r

a
or Ne = b±

√
r

a

Three distinct equilibria unless r = 0 or b =
√
r/a

With the parameters r = 0.04, a = 10−8, and b = 2200, the
equilibria are

Ne = 0 Ne = 200 4200
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Phase Portrait: Graph of right hand side of differential
equation showing equilibria and their stability
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Solutions: For

dN

dt
= N

(
r − a(N − b)2

)
Allee Effect

0

1000

2000

3000

4000

5000

N(t)

0 20 40 60 80 100
t

Allee Effect (zoom near origin)

–200

–100

0

100

200

300

N(t)

0 200 400 600 800
t

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Direction Fields and Phase Portraits - 1D
— (48/50)



Mathematical Modeling
Introduction to MatLab

Qualitative Behavior of Differential Equations
More Examples

Maple - Direction Fields

Left Snail Model
Allee Effect

Allee Effect 8

Interpretation: Model of Allee Effect

From the phase portrait, the equilibria at 4200 and 0 are stable

The threshold equilibrium at 200 is unstable

If the population is above 200, it approaches the carrying
capacity of this region with the stable population of 4200
If the population falls below 200, the model predicts
extinction, Ne = 0

This agrees with the description for these social birds, which
require a critical number of birds to avoid predation

Below this critical number, the predation increases above
reproduction, and the population of parrots goes to extinction

If the parrot population is larger than 4200, then their numbers
will be reduced by starvation (and predation) to the carrying
capacity, Ne = 4200
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with(DEtools):

de := diff(P (t), t) = 0.05 · P (t) ·
(
1− 1

2000P (t)
)
;

DEplot(de, P (t), t = 0..100, P = 0..2500,
[[P (0) = 0], [P (0) = 100], [P (0) = 2000], [P (0) = 2500]], color =
blue, linecolor = t);
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