Math 337 －Elementary Differential Equations

Lecture Notes－Second Order Linear Equations
 Part 2 －Nonhomogeneous

> Joseph M. Mahaffy,〈mahaffy@math.sdsu.edu〉
> Department of Mathematics and Statistics
> Dynamical Systems Group
> Computational Sciences Research Center
> San Diego State University
> San Diego, CA 92182-7720
> http://www-rohan.sdsu.edu/~jmahaffy

$$
\text { Spring } 2022
$$

Outline

(1) Cauchy-Euler Equation

- Distinct Roots
- Equal Roots
- Complex Roots
(2) Review
(3) Variation of Parameters
- Motivating Example
- Technique of Variation of Parameters
- Main Theorem for Nonhomogeneous DE

Cauchy-Euler Equation

Cauchy-Euler Equation (Also, Euler Equation): Consider the differential equation:

$$
L[y]=t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0,
$$

where α and β are constants.
Assume $t>0$ and attempt a solution of the form

$$
y(t)=t^{r} .
$$

Note that t^{r} may not be defined for $t<0$.
The result is

$$
\begin{aligned}
L\left[t^{r}\right] & =t^{2}\left(r(r-1) t^{r-2}\right)+\alpha t\left(r t^{r-1}\right)+\beta t^{r} \\
& =t^{r}[r(r-1)+\alpha r+\beta]=0 .
\end{aligned}
$$

Thus, obtain quadratic equation

$$
F(r)=r(r-1)+\alpha r+\beta=0 .
$$

Cauchy-Euler Equation

Cauchy-Euler Equation: The quadratic equation

$$
F(r)=r(r-1)+\alpha r+\beta=0
$$

has roots

$$
r_{1}, r_{2}=\frac{-(\alpha-1) \pm \sqrt{(\alpha-1)^{2}-4 \beta}}{2}
$$

This is very similar to our constant coefficient homogeneous DE.
Real, Distinct Roots: If $F(r)=0$ has real roots, r_{1} and r_{2}, with $r_{1} \neq r_{2}$, then the general solution of

$$
L[y]=t^{2} y^{\prime \prime}+\alpha y^{\prime}+\beta y=0,
$$

is

$$
y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}, \quad t>0
$$

Cauchy-Euler Equation

Example: Consider the equation

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0
$$

By substituting $y(t)=t^{r}$, we have

$$
t^{r}[2 r(r-1)+3 r-1]=t^{r}\left(2 r^{2}+r-1\right)=t^{r}(2 r-1)(r+1)=0 .
$$

This has the real roots $r_{1}=-1$ and $r_{2}=\frac{1}{2}$, giving the general solution

$$
y(t)=c_{1} t^{-1}+c_{2} \sqrt{t}, \quad t>0 .
$$

Cauchy-Euler Equation

Equal Roots: If $F(r)=\left(r-r_{1}\right)^{2}=0$ has r_{1} as a double root, there is one solution, $y_{1}(t)=t^{r_{1}}$.

Need a second linearly independent solution.
Note that not only $F\left(r_{1}\right)=0$, but $F^{\prime}\left(r_{1}\right)=0$, so consider

$$
\begin{aligned}
\frac{\partial}{\partial r} L\left[t^{r}\right] & =\frac{\partial}{\partial r}\left[t^{r} F(r)\right]=\frac{\partial}{\partial r}\left[t^{r}\left(r-r_{1}\right)^{2}\right] \\
& =\left(r-r_{1}\right)^{2} t^{r} \ln (t)+2\left(r-r_{1}\right) t^{r}
\end{aligned}
$$

Also,

$$
\frac{\partial}{\partial r} L\left[t^{r}\right]=L\left[\frac{\partial}{\partial r}\left(t^{r}\right)\right]=L\left[t^{r} \ln (t)\right]
$$

Evaluating these at $r=r_{1}$ gives

$$
L\left[t^{r_{1}} \ln (t)\right]=0
$$

Cauchy-Euler Equation

Equal Roots: For $F(r)=\left(r-r_{1}\right)^{2}=0$, where r_{1} is a double root, then the differential equation

$$
L[y]=t^{2} y^{\prime \prime}+\alpha y^{\prime}+\beta y=0,
$$

was shown to satisfy

$$
L\left[t^{r_{1}}\right]=0 \quad \text { and } \quad L\left[t^{r_{1}} \ln (t)\right]=0 .
$$

It follows that the general solution is

$$
y(t)=\left(c_{1}+c_{2} \ln (t)\right) t^{r_{1}} .
$$

Cauchy-Euler Equation

Example: Consider the equation

$$
t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0
$$

By substituting $y(t)=t^{r}$, we have

$$
t^{r}[r(r-1)+5 r+4]=t^{r}\left(r^{2}+4 r+4\right)=t^{r}(r+2)^{2}=0 .
$$

This only has the real root $r_{1}=-2$, which gives general solution

$$
y(t)=\left(c_{1}+c_{2} \ln (t)\right) t^{-2}, \quad t>0
$$

Cauchy-Euler Equation

Complex Roots: Assume $F(r)=0$ has $r=\mu \pm i \nu$ as complex roots, the solutions are still $y(t)=t^{r}$.

However,

$$
t^{r}=e^{(\mu+i \nu) \ln (t)}=t^{\mu}[\cos (\nu \ln (t))+i \sin (\nu \ln (t))] .
$$

As before, we obtain the two linearly independent solutions by taking the real and imaginary parts, so the general solution is

$$
y(t)=t^{\mu}\left[c_{1} \cos (\nu \ln (t))+c_{2} \sin (\nu \ln (t))\right]
$$

Cauchy-Euler Equation

Example: Consider the equation

$$
t^{2} y^{\prime \prime}+t y^{\prime}+y=0
$$

By substituting $y(t)=t^{r}$, we have

$$
t^{r}[r(r-1)+r+1]=t^{r}\left(r^{2}+1\right)=0
$$

This has the complex roots $r= \pm i(\mu=0$ and $\nu=1)$, which gives the general solution

$$
y(t)=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t)), \quad t>0 .
$$

Variation of Parameters

Review

Review - Method of undetermined coefficients

- Applicable for constant coefficient nonhomogeneous linear second order differential equations
- The nonhomogeneity is limited to sums and products of:
- Polynomials
- Exponentials
- Sines and Cosines
- Solutions reduce to solving linear equations in the unknown coefficients

Variation of Parameters

Variation of Parameters - This method provides a more general method to solve nonhomogeneous problems

- Technique again begins with a fundamental set of solutions to the homogeneous problem
- Fundamental set allows creation of the Wronskian
- Obtain integral formulation from the fundamental solution with the nonhomogeneous function
- General solution is again formulated from a particular solution added to the homogeneous solution

Motivating Example

Motivating Example: Consider the nonhomogeneous problem

$$
y^{\prime \prime}+4 y=3 \csc (t)
$$

which is inappropriate for the Method of Undetermined Coefficients

The homogeneous solution is

$$
y_{c}(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Generalize this solution to the form

$$
y(t)=u_{1}(t) \cos (2 t)+u_{2}(t) \sin (2 t),
$$

where the functions u_{1} and u_{2} are to be determined
Differentiate
$y^{\prime}(t)=-2 u_{1}(t) \sin (2 t)+2 u_{2}(t) \cos (2 t)+u_{1}^{\prime}(t) \cos (2 t)+u_{2}^{\prime}(t) \sin (2 t)$

Motivating Example

Motivating Example: The general solution has the form

$$
y(t)=u_{1}(t) \cos (2 t)+u_{2}(t) \sin (2 t)
$$

Since there is one general solution, there must be a condition relating u_{1} and u_{2}

The computations are simplified by taking the relationship

$$
u_{1}^{\prime}(t) \cos (2 t)+u_{2}^{\prime}(t) \sin (2 t)=0
$$

This simplifies the derivative of the general solution to

$$
y^{\prime}(t)=-2 u_{1}(t) \sin (2 t)+2 u_{2}(t) \cos (2 t)
$$

Differentiating again yields:
$y^{\prime \prime}(t)=-4 u_{1}(t) \cos (2 t)-4 u_{2}(t) \sin (2 t)-2 u_{1}^{\prime}(t) \sin (2 t)+2 u_{2}^{\prime}(t) \cos (2 t)$ SDSO

Motivating Example

Motivating Example: The differential equation is

$$
y^{\prime \prime}+4 y=3 \csc (t)
$$

so substituting the general solution gives

$$
\begin{aligned}
& -4 u_{1}(t) \cos (2 t)-4 u_{2}(t) \sin (2 t)-2 u_{1}^{\prime}(t) \sin (2 t) \\
& +2 u_{2}^{\prime}(t) \cos (2 t)+4\left(u_{1}(t) \cos (2 t)+u_{2}(t) \sin (2 t)\right)=3 \csc (t),
\end{aligned}
$$

which simplifies to

$$
-2 u_{1}^{\prime}(t) \sin (2 t)+2 u_{2}^{\prime}(t) \cos (2 t)=3 \csc (t)
$$

This equation is combined with our earlier simplifying condition

$$
u_{1}^{\prime}(t) \cos (2 t)+u_{2}^{\prime}(t) \sin (2 t)=0
$$

Motivating Example

Motivating Example: The previous equations give two linear algebraic equations in u_{1}^{\prime} and u_{2}^{\prime}

$$
\begin{aligned}
u_{1}^{\prime}(t) \cos (2 t)+u_{2}^{\prime}(t) \sin (2 t) & =0 \\
-2 u_{1}^{\prime}(t) \sin (2 t)+2 u_{2}^{\prime}(t) \cos (2 t) & =3 \csc (t)
\end{aligned}
$$

The first equation gives

$$
u_{2}^{\prime}(t)=-u_{1}^{\prime}(t) \cot (2 t)
$$

It follows that (with trig identities)

$$
u_{1}^{\prime}(t)=-\frac{3}{2} \csc (t) \sin (2 t)=-3 \cos (t)
$$

and (with trig identities)

$$
u_{2}^{\prime}(t)=3 \cos (t) \cot (2 t)=\frac{3}{2} \csc (t)-3 \sin (t)
$$

Motivating Example

Motivating Example: We solve the equations for u_{1}^{\prime} and u_{2}^{\prime}

$$
u_{1}^{\prime}(t)=-3 \cos (t),
$$

SO

$$
u_{1}(t)=-3 \sin (t)+c_{1}
$$

Simlarly,

$$
u_{2}^{\prime}(t)=\frac{3}{2} \csc (t)-3 \sin (t),
$$

so

$$
u_{2}(t)=\frac{3}{2} \ln |\csc (t)-\cot (t)|+3 \cos (t)+c_{2}
$$

It follows that the general solution is

$$
\begin{aligned}
y(t)= & u_{1}(t) \cos (2 t)+u_{2}(t) \sin (2 t) \\
= & -3 \sin (t) \cos (2 t)+\frac{3}{2} \sin (2 t) \ln |\csc (t)-\cot (t)|+3 \cos (t) \sin (2 t) \\
& +c_{1} \cos (2 t)+c_{2} \sin (2 t),
\end{aligned}
$$

which shows the homogeneous and particular solutions

Variation of Parameters

Technique of Variation of Parameters: Consider the nonhomogeneous problem

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where p, q, and g are given continuous functions
Assume we know the homogeneous solution:

$$
y_{c}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

Try a general solution of the form

$$
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t),
$$

where the functions u_{1} and u_{2} are to be determined
Differentiating yields

$$
y^{\prime}(t)=u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t)+u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)
$$

Variation of Parameters

Variation of Parameters: As before, there must be a condition relating u_{1} and u_{2}, so take

$$
u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)=0
$$

This simplifies the derivative of the general solution to

$$
y^{\prime}(t)=u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t)
$$

Differentiating again yields:

$$
y^{\prime \prime}(t)=u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t)+u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)
$$

Variation of Parameters: We now have expressions for the general solution, $y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, and its derivatives, $y^{\prime}(t)$ and $y^{\prime \prime}(t)$, which we substitute into the nonhomogeneous problem:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

This can be written in the form:

$$
\left.\left.\begin{array}{rl}
u_{1}(t)\left[y_{1}^{\prime \prime}(t)+p(t) y_{1}^{\prime}(t)+\right. & \left.q(t) y_{1}(t)\right] \\
+ & u_{2}(t)\left[y_{2}^{\prime \prime}(t)\right.
\end{array}\right)+p(t) y_{2}^{\prime}(t)+q(t) y_{2}(t)\right] \quad \text { }+u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=g(t) \text {. }
$$

The quantities in the square brackets are zero, since y_{1} and y_{2} are solutions of the homogeneous equation, leaving

$$
u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=g(t)
$$

Variation of Parameters

Variation of Parameters: This gives two linear algebraic equations in u_{1}^{\prime} and u_{2}^{\prime}

$$
\begin{aligned}
u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t) & =0 \\
u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t) & =g(t)
\end{aligned}
$$

Recall Cramer's Rule for solving a system of two linear equations in two unknowns, which above are the functions $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$.
$u_{1}^{\prime}(t)=\frac{\operatorname{det}\left|\begin{array}{cc}0 & y_{2}(t) \\ g(t) & y_{2}^{\prime}(t)\end{array}\right|}{\operatorname{det}\left|\begin{array}{cc}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|} \quad$ and $\quad u_{2}^{\prime}(t)=\frac{\operatorname{det}\left|\begin{array}{cc}y_{1}(t) & 0 \\ y_{2}^{\prime}(t) & g(t)\end{array}\right|}{\operatorname{det}\left|\begin{array}{cc}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right|}$
From before we recognize the denominator as the Wronskian:

$$
W\left[y_{1}, y_{2}\right](t)=\operatorname{det}\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

Variation of Parameters

Variation of Parameters: It follows that

$$
u_{1}^{\prime}(t)=\frac{\operatorname{det}\left|\begin{array}{cc}
0 & y_{2}(t) \\
g(t) & y_{2}^{\prime}(t)
\end{array}\right|}{W\left[y_{1}, y_{2}\right](t)} \quad \text { and } \quad u_{2}^{\prime}(t)=\frac{\operatorname{det}\left|\begin{array}{cc}
y_{1}(t) & 0 \\
y_{2}^{\prime}(t) & g(t)
\end{array}\right|}{W\left[y_{1}, y_{2}\right](t)}
$$

Solving this, we obtain:

$$
u_{1}^{\prime}(t)=-\frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} \quad \text { and } \quad u_{2}^{\prime}(t)=\frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)}
$$

which can be integrated.

Variation of Parameters

Variation of Parameters: The equations for u_{1}^{\prime} and u_{2}^{\prime} are integrated yielding

$$
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{1}
$$

and

$$
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{2}
$$

If these integrals can be evaluated, then the general solution can be written

$$
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

Otherwise, the solution is given in its integral form

Variation of Parameters Theorem

Consider the nonhomogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t),
$$

Theorem

If the functions p, q, and g are continuous on an open interval I, and if y_{1} and y_{2} form a fundamental set of solutions of the homogeneous equation. Then a particular solution of the nonhomogeneous problem is

$$
y_{p}(t)=-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W\left[y_{1}, y_{2}\right](s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W\left[y_{1}, y_{2}\right](s)} d s
$$

where $t_{0} \in I$. The general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t) .
$$

Variation of Parameters Example

Example: Solve the differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1, \quad t>0
$$

As always, first solve the homogeneous equation:

$$
t^{2} y^{\prime \prime}-2 y=0
$$

which is a Cauchy-Euler Equation
Attempt solution $y(t)=t^{r}$, giving

$$
t^{r}[r(r-1)-2]=t^{r}\left(r^{2}-r-2\right)=t^{r}(t-2)(t+1)=0
$$

This gives the homogeneous solution

$$
y_{c}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)=c_{1} t^{-1}+c_{2} t^{2}
$$

Variation of Parameters Example

Example: The differential equation

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1, \quad t>0
$$

has homogeneous solutions $y_{1}(t)=t^{-1}$ and $y_{2}(t)=t^{2}$
Compute the Wronskian

$$
W\left[t^{-1}, t^{2}\right](t)=\operatorname{det}\left|\begin{array}{cc}
t^{-1} & t^{2} \\
-t^{-2} & 2 t
\end{array}\right|=3
$$

To use the Variation of Parameters, we rewrite the DE

$$
y^{\prime \prime}-\frac{2}{t^{2}} y=3-\frac{1}{t^{2}}=g(t), \quad t>0
$$

Variation of Parameters Example

Example: From the theorem above, a particular solution satisfies

$$
\begin{aligned}
y_{p}(t) & =-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W\left[y_{1}, y_{2}\right](s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W\left[y_{1}, y_{2}\right](s)} d s \\
& =-t^{-1} \int^{t} \frac{s^{2}\left(3-s^{-2}\right)}{3} d s+t^{2} \int^{t} \frac{s^{-1}\left(3-s^{-2}\right)}{3} d s \\
& =-t^{-1}\left(\frac{t^{3}}{3}-\frac{t}{3}\right)+t^{2}\left(\ln (t)+\frac{1}{6} t^{-2}\right) \\
& =-\frac{t^{2}}{3}+\frac{1}{3}+t^{2} \ln (t)+\frac{1}{6}
\end{aligned}
$$

Since the first term is part of the homogeneous solution, we write the general solution as

$$
y(t)=c_{1} t^{-1}+c_{2} t^{2}+\frac{1}{2}+t^{2} \ln (t), \quad t>0
$$

