San Diego State University San Diego, CA 92182-7720

http://www-rohan.sdsu.edu/~jmahaffy

 $F(r) = r(r-1) + \alpha r + \beta = 0.$

Cauchy-Euler Equation Review	Cauchy-Euler Equation Review
Variation of Parameters	Variation of Parameters
	Outline
Math 337 - Elementary Differential Equations Lecture Notes – Second Order Linear Equations Part 2 - Nonhomogeneous	 Cauchy-Euler Equation Distinct Roots Equal Roots
	• Complex Roots
Joseph M. Mahaffy,	
$\langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$	2 Review
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center	 Variation of Parameters Motivating Example

- Technique of Variation of Parameters
- Main Theorem for Nonhomogeneous DE

Spring 2022	SDSU	5DSU
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (1/27)	Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = -(2/27)$	
Cauchy-Euler Equation ReviewDistinct Roots Equal RootsVariation of ParametersComplex Roots	Cauchy-Euler Equation Distinct Roots Review Equal Roots Variation of Parameters Complex Roots	
Cauchy-Euler Equation	1 Cauchy-Euler Equation	2
Cauchy-Euler Equation (Also, Euler Equation): Consider the differential equation: $L[y] = t^2 y'' + \alpha t y' + \beta y = 0,$	Cauchy-Euler Equation: The quadratic equation	
where α and β are constants.	$F(r) = r(r-1) + \alpha r + \beta = 0$	
Assume $t > 0$ and attempt a solution of the form	has roots	
$y(t)=t^r.$	$r_1, r_2 = \frac{-(\alpha - 1) \pm \sqrt{(\alpha - 1)^2 - 4\beta}}{2}.$	
Note that t^r may not be defined for $t < 0$.	This is very similar to our constant coefficient homogeneous DE.	
The result is $L[t^r] = t^2(r(r-1)t^{r-2}) + \alpha t(rt^{r-1}) + \beta t^r$	Real, Distinct Roots: If $F(r) = 0$ has real roots, r_1 and r_2 , with $r_1 \neq r_2$, then the general solution of	
$= t^r [r(r-1) + \alpha r + \beta] = 0.$	$L[u] = t^2 u'' + \alpha u' + \beta u = 0$	

$$L[y] = t^2 y'' + \alpha y' + \beta y = 0,$$

is

 $y(t) = c_1 t^{r_1} + c_2 t^{r_2},$ t > 0.

5050

 $\mathbf{Joseph} \ \mathbf{M.} \ \mathbf{Mahaffy}, \ \langle \mathtt{mahaffy} \mathtt{@math.sdsu.edu}
angle$ -(3/27)

Thus, obtain quadratic equation

5050

Cauchy-Euler Equation

Example: Consider the equation

$$2t^2y'' + 3ty' - y = 0.$$

By substituting $y(t) = t^r$, we have

$$t^{r}[2r(r-1) + 3r - 1] = t^{r}(2r^{2} + r - 1) = t^{r}(2r - 1)(r + 1) = 0.$$

This has the real roots $r_1 = -1$ and $r_2 = \frac{1}{2}$, giving the **general** solution

$$y(t) = c_1 t^{-1} + c_2 \sqrt{t}, \qquad t > 0.$$

Cauchy-Euler Equation

Equal Roots: If $F(r) = (r - r_1)^2 = 0$ has r_1 as a double root, there is one solution, $y_1(t) = t^{r_1}$.

Need a second linearly independent solution.

Note that not only $F(r_1) = 0$, but $F'(r_1) = 0$, so consider

$$\frac{\partial}{\partial r} L[t^r] = \frac{\partial}{\partial r} [t^r F(r)] = \frac{\partial}{\partial r} [t^r (r-r_1)^2]$$
$$= (r-r_1)^2 t^r \ln(t) + 2(r-r_1)t^r.$$

Also,

$$\frac{\partial}{\partial r} L[t^r] = L\left[\frac{\partial}{\partial r}(t^r)\right] = L[t^r \ln(t)].$$

Evaluating these at $r = r_1$ gives

 $L[t^{r_1}\ln(t)] = 0.$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (5/27) Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (6/27) Cauchy-Euler Equation Review Variation of Parameters Distinct Roots Complex Roots Complex Roots 25 Cauchy-Euler Equation Cauchy-Euler Equation of Parameters 5 Cauchy-Euler Equation for Parameters 6

SDSU

3

Equal Roots: For $F(r) = (r - r_1)^2 = 0$, where r_1 is a double root, then the differential equation

$$L[y] = t^2 y'' + \alpha y' + \beta y = 0,$$

was shown to satisfy

$$L[t^{r_1}] = 0$$
 and $L[t^{r_1}\ln(t)] = 0.$

It follows that the **general solution** is

$$y(t) = (c_1 + c_2 \ln(t))t^{r_1}.$$

Example: Consider the equation

$$t^2y'' + 5ty' + 4y = 0.$$

By substituting $y(t) = t^r$, we have

$$t^{r}[r(r-1) + 5r + 4] = t^{r}(r^{2} + 4r + 4) = t^{r}(r+2)^{2} = 0.$$

This only has the real root $r_1 = -2$, which gives general solution

$$y(t) = (c_1 + c_2 \ln(t))t^{-2}, \qquad t > 0.$$

SDSU

SDSU

Cauchy-Euler Equation
ReviewDistinct Roots
Equal RootsVariation of ParametersComplex Roots

Cauchy-Euler Equation

Complex Roots: Assume F(r) = 0 has $r = \mu \pm i\nu$ as complex roots, the solutions are still $y(t) = t^r$.

However,

$$t^{r} = e^{(\mu + i\nu)\ln(t)} = t^{\mu} [\cos(\nu \ln(t)) + i\sin(\nu \ln(t))].$$

As before, we obtain the two linearly independent solutions by taking the real and imaginary parts, so the **general solution** is

$$y(t) = t^{\mu} [c_1 \cos(\nu \ln(t)) + c_2 \sin(\nu \ln(t))].$$

Cauchy-Euler Equation

Example: Consider the equation

 $t^2y'' + ty' + y = 0.$

By substituting $y(t) = t^r$, we have

$$t^{r}[r(r-1) + r + 1] = t^{r}(r^{2} + 1) = 0.$$

This has the complex roots $r = \pm i$ ($\mu = 0$ and $\nu = 1$), which gives the general solution

$$y(t) = c_1 \cos(\ln(t)) + c_2 \sin(\ln(t)), \quad t > 0.$$

7

Review - Method of undetermined coefficients

- Applicable for constant coefficient nonhomogeneous linear second order differential equations
- The nonhomogeneity is limited to sums and products of:
 - Polynomials
 - Exponentials
 - Sines and Cosines
- Solutions reduce to solving linear equations in the unknown coefficients

Variation of Parameters - This method provides a more general method to solve nonhomogeneous problems

- Technique again begins with a **fundamental set of solutions** to the **homogeneous problem**
- Fundamental set allows creation of the Wronskian
- Obtain integral formulation from the fundamental solution with the nonhomogeneous function
- General solution is again formulated from a **particular** solution added to the homogeneous solution

SDSU

Cauchy-Euler Equation Review Variation of Parameters Motivating Example Technique of Variation of Parameters Main Theorem for Nonhomogeneous DE

Motivating Example

Motivating Example: Consider the nonhomogeneous problem

$$y'' + 4y = 3\csc(t),$$

which is inappropriate for the **Method of Undetermined Coefficients**

The **homogeneous solution** is

$$y_c(t) = c_1 \cos(2t) + c_2 \sin(2t)$$

Generalize this solution to the form

$$y(t) = u_1(t)\cos(2t) + u_2(t)\sin(2t),$$

where the functions u_1 and u_2 are to be determined

Differentiate

$$y'(t) = -2u_1(t)\sin(2t) + 2u_2(t)\cos(2t) + u'_1(t)\cos(2t) + u'_2(t)\sin(2t)$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (13/27)

Cauchy-Euler Equation Review Variation of Parameters

 ation
 Motivating Example

 aview
 Technique of Variation of Parameters

 eters
 Main Theorem for Nonhomogeneous DE

Motivating Example

Motivating Example: The differential equation is

$$y'' + 4y = 3\csc(t),$$

so substituting the general solution gives

$$-4u_1(t)\cos(2t) - 4u_2(t)\sin(2t) - 2u'_1(t)\sin(2t) +2u'_2(t)\cos(2t) + 4(u_1(t)\cos(2t) + u_2(t)\sin(2t)) = 3\csc(t),$$

which simplifies to

$$-2u'_{1}(t)\sin(2t) + 2u'_{2}(t)\cos(2t) = 3\csc(t)$$

This equation is combined with our earlier simplifying condition

$$u_1'(t)\cos(2t) + u_2'(t)\sin(2t) = 0$$

Motivating Example

Motivating Example: The general solution has the form

$$y(t) = u_1(t)\cos(2t) + u_2(t)\sin(2t)$$

Since there is one general solution, there must be a condition relating u_1 and u_2

The computations are simplified by taking the relationship

$$u_1'(t)\cos(2t) + u_2'(t)\sin(2t) = 0$$

This simplifies the derivative of the general solution to

$$y'(t) = -2u_1(t)\sin(2t) + 2u_2(t)\cos(2t)$$

Differentiating again yields:

$$y''(t) = -4u_1(t)\cos(2t) - 4u_2(t)\sin(2t) - 2u_1'(t)\sin(2t) + 2u_2'(t)\cos(2t) - 2u_1'(t)\sin(2t) + 2u_2'(t)\cos(2t) - 2u_1'(t)\sin(2t) - 2u_1'(t)\sin(2t) - 2u_1'(t)\sin(2t) - 2u_2'(t)\cos(2t) - 2u_1'(t)\sin(2t) - 2u_1'(t)\sin(2t) - 2u_2'(t)\cos(2t) - 2u_2$$

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle - (14/27)$

 Cauchy-Euler Equation Review
 Motivating Example Technique of Variation of Parameters

 Variation of Parameters
 Main Theorem for Nonhomogeneous DE

Motivating Example

Motivating Example: The previous equations give two linear algebraic equations in u'_1 and u'_2

$$u'_{1}(t)\cos(2t) + u'_{2}(t)\sin(2t) = 0$$

-2u'_{1}(t)\sin(2t) + 2u'_{2}(t)\cos(2t) = 3\csc(t)

The first equation gives

$$u_{2}'(t) = -u_{1}'(t)\cot(2t)$$

It follows that (with trig identities)

$$u_1'(t) = -\frac{3}{2}\csc(t)\sin(2t) = -3\cos(t)$$

and (with trig identities)

$$u'_{2}(t) = 3\cos(t)\cot(2t) = \frac{3}{2}\csc(t) - 3\sin(t)$$

(16/27)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

3

2

5

SDSU

2

575

Motivating Example: We solve the equations for u'_1 and u'_2

$$u_1'(t) = -3\cos(t),$$

 \mathbf{SO}

$$u_1(t) = -3\sin(t) + c_1$$

Simlarly,

 $u_{2}'(t) = \frac{3}{2}\csc(t) - 3\sin(t),$

 \mathbf{SO}

$$u_2(t) = \frac{3}{2} \ln |\csc(t) - \cot(t)| + 3\cos(t) + c_2$$

It follows that the general solution is

$$y(t) = u_1(t)\cos(2t) + u_2(t)\sin(2t)$$

= $-3\sin(t)\cos(2t) + \frac{3}{2}\sin(2t)\ln|\csc(t) - \cot(t)| + 3\cos(t)\sin(2t)$
 $+c_1\cos(2t) + c_2\sin(2t),$

which shows the **homogeneous** and **particular** solutions

Cauchy-Euler Equation Review Variation of Parameters

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (17/27)

Motivating Example Technique of Variation of Parameters Main Theorem for Nonhomogeneous DE

Variation of Parameters

Variation of Parameters: As before, there must be a condition relating u_1 and u_2 , so take

$$u_1'(t)y_1(t) + u_2'(t)y_2(t) = 0$$

This simplifies the derivative of the general solution to

$$y'(t) = u_1(t)y'_1(t) + u_2(t)y'_2(t)$$

Differentiating again yields:

$$y''(t) = u_1(t)y''_1(t) + u_2(t)y''_2(t) + u'_1(t)y'_1(t) + u'_2(t)y'_2(t)$$

Motivating Example Technique of Variation of Parameters Main Theorem for Nonhomogeneous DE

Variation of Parameters

Technique of Variation of Parameters: Consider the nonhomogeneous problem

$$y'' + p(t)y' + q(t)y = g(t),$$

where p, q, and g are given continuous functions

Assume we know the **homogeneous solution**:

 $y_c(t) = c_1 y_1(t) + c_2 y_2(t)$

Try a **general solution** of the form

$$y(t) = u_1(t)y_1(t) + u_2(t)y_2(t),$$

where the functions u_1 and u_2 are to be determined Differentiating yields

$$y'(t) = u_1(t)y'_1(t) + u_2(t)y'_2(t) + u'_1(t)y_1(t) + u'_2(t)y_2(t)$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(18/27)

Cauchy-Euler Equation Review Technique of Variation of Parameters Variation of Parameters Main Theorem for Nonhomogeneous DE 3

Variation of Parameters

Variation of Parameters: We now have expressions for the general solution, $y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$, and its derivatives, y'(t) and y''(t), which we substitute into the nonhomogeneous problem:

$$y'' + p(t)y' + q(t)y = g(t),$$

This can be written in the form:

$$u_{1}(t) [y_{1}''(t) + p(t)y_{1}'(t) + q(t)y_{1}(t)] + u_{2}(t) [y_{2}''(t) + p(t)y_{2}'(t) + q(t)y_{2}(t)] + u_{1}'(t)y_{1}'(t) + u_{2}'(t)y_{2}'(t) = g(t)$$

The quantities in the square brackets are **zero**, since y_1 and y_2 are solutions of the **homogeneous equation**, leaving

$$u_1'(t)y_1'(t) + u_2'(t)y_2'(t) = g(t)$$

Cauchy-Euler Equation Review Variation of Parameters Motivating Example **Technique of Variation of Parameters** Main Theorem for Nonhomogeneous DE

4

5

505

Variation of Parameters

Variation of Parameters: This gives two linear algebraic equations in u'_1 and u'_2

$$u_1'(t)y_1(t) + u_2'(t)y_2(t) = 0 u_1'(t)y_1'(t) + u_2'(t)y_2'(t) = g(t)$$

Recall Cramer's Rule for solving a system of two linear equations in two unknowns, which above are the functions $u'_1(t)$ and $u'_2(t)$.

$$u_{1}'(t) = \frac{\det \begin{vmatrix} 0 & y_{2}(t) \\ g(t) & y_{2}'(t) \end{vmatrix}}{\det \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y_{1}'(t) & y_{2}'(t) \end{vmatrix}} \quad \text{and} \quad u_{2}'(t) = \frac{\det \begin{vmatrix} y_{1}(t) & 0 \\ y_{2}'(t) & g(t) \end{vmatrix}}{\det \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y_{1}'(t) & y_{2}'(t) \end{vmatrix}}$$

From before we recognize the denominator as the **Wronskian**:

$$W[y_1, y_2](t) = \det \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} = y_1(t)y_2'(t) - y_2(t)y_1'(t)$$

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle - (21/27)$

Cauchy-Euler Equation Review Variation of Parameters Motivating Example **Technique of Variation of Parameters** Main Theorem for Nonhomogeneous DE

Variation of Parameters

Variation of Parameters: The equations for u'_1 and u'_2 are integrated yielding

$$u_1(t) = -\int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} dt + c_1$$

and

$$u_2(t) = \int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} dt + c_2$$

If these integrals can be evaluated, then the **general solution** can be written

$$y(t) = u_1(t)y_1(t) + u_2(t)y_2(t),$$

Otherwise, the solution is given in its integral form

Motivating Example **Technique of Variation of Parameters** Main Theorem for Nonhomogeneous DE

Variation of Parameters

Variation of Parameters: It follows that

$$u_{1}'(t) = \frac{\det \begin{vmatrix} 0 & y_{2}(t) \\ g(t) & y_{2}'(t) \end{vmatrix}}{W[y_{1}, y_{2}](t)} \quad \text{and} \quad u_{2}'(t) = \frac{\det \begin{vmatrix} y_{1}(t) & 0 \\ y_{2}'(t) & g(t) \end{vmatrix}}{W[y_{1}, y_{2}](t)}$$

Solving this, we obtain:

$$u'_{1}(t) = -\frac{y_{2}(t)g(t)}{W[y_{1}, y_{2}](t)}$$
 and $u'_{2}(t) = \frac{y_{1}(t)g(t)}{W[y_{1}, y_{2}](t)},$

which can be integrated.

SDSU

5

-(22/27)

Variation of Parameters Theorem

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Consider the nonhomogeneous equation

$$y'' + p(t)y' + q(t)y = g(t),$$

Theorem

If the functions p, q, and g are continuous on an open interval I, and if y_1 and y_2 form a **fundamental set of solutions** of the homogeneous equation. Then a **particular solution** of the nonhomogeneous problem is

$$y_p(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W[y_1, y_2](s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W[y_1, y_2](s)} ds,$$

where $t_0 \in I$. The general solution is

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t).$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (23/27)

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (24/27)$

Variation of Parameters Example

Example: Solve the differential equation

$$t^2y'' - 2y = 3t^2 - 1, \qquad t > 0$$

As always, first solve the homogeneous equation:

$$t^2y'' - 2y = 0,$$

which is a **Cauchy-Euler Equation**

Attempt solution $y(t) = t^r$, giving

$$t^{r}[r(r-1)-2] = t^{r}(r^{2}-r-2) = t^{r}(t-2)(t+1) = 0$$

This gives the **homogeneous** solution

$$y_c(t) = c_1 y_1(t) + c_2 y_2(t) = c_1 t^{-1} + c_2 t^2$$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(25/27)

Motivating Example **Cauchy-Euler Equation** Review Variation of Parameters Main Theorem for Nonhomogeneous DE 3

Variation of Parameters Example

Example: From the theorem above, a **particular solution** satisfies

$$y_p(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W[y_1, y_2](s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W[y_1, y_2](s)} ds,$$

$$= -t^{-1} \int^t \frac{s^2(3-s^{-2})}{3} ds + t^2 \int^t \frac{s^{-1}(3-s^{-2})}{3} ds$$

$$= -t^{-1} \left(\frac{t^3}{3} - \frac{t}{3}\right) + t^2 \left(\ln(t) + \frac{1}{6}t^{-2}\right)$$

$$= -\frac{t^2}{3} + \frac{1}{3} + t^2 \ln(t) + \frac{1}{6}$$

Since the first term is part of the homogeneous solution, we write the general solution as

$$y(t) = c_1 t^{-1} + c_2 t^2 + \frac{1}{2} + t^2 \ln(t), \qquad t > 0$$

Motivating Example Technique of Variation of Parameters Main Theorem for Nonhomogeneous DE

Variation of Parameters Example

Example: The differential equation

$$t^2y'' - 2y = 3t^2 - 1, \qquad t > 0$$

has **homogeneous** solutions $y_1(t) = t^{-1}$ and $y_2(t) = t^2$

Compute the **Wronskian**

SDSU

SDS

$$W[t^{-1}, t^2](t) = \det \begin{vmatrix} t^{-1} & t^2 \\ -t^{-2} & 2t \end{vmatrix} = 3$$

To use the Variation of Parameters, we rewrite the DE

$$y^{\,\prime\prime}-\frac{2}{t^2}y=3-\frac{1}{t^2}=g(t),\qquad t>0,$$

SDSU

2

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(26/27)