Outline

Math 337 －Elementary Differential Equations
 Lecture Notes－Second Order Linear Equations

> Joseph M. Mahaffy,〈mahaffy@math.sdsu.edu〉

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Spring 2022
5050
，

0
Introduction
－Second Order Differential Equation
－Dynamical system formulation
－Classic Examples
（2）Theory for $2^{\text {nd }}$ Order DEs
－Existence and Uniqueness
－Linear Operators and Superposition
－Wronskian and Fundamental Set of Solutions
（3）Linear Constant Coefficient DEs
－Homogeneous Equations
－Method of Undetermined Coefficients
－Forced Vibrations

Introduction

Introduction

－Introduction to second order differential equations
－Linear Theory and Fundamental sets of solutions
－Homogeneous linear second order differential equations
－Nonhomogeneous linear second order differential equations
－Method of undetermined coefficients
－Variation of parameters
－Reduction of order

Theory for 2 Introduction Order DEs	Second Order Differential Equation Dynamical system formulation Classic Examples
Second Ont Coefficient DEs	

Second Order Differential Equation with an independent variable y ，dependent variable t ，and prescribed function，f ：

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

－Often arises in physical problems，e．g．，Newton＇s Law where force depends on acceleration
－Solution is a twice continuously differentiable function
－Initial value problem requires two initial conditions

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad y^{\prime}\left(t_{0}\right)=y_{1}
$$

－Can develop Existence and Uniqueness conditions

Linear Second Order Differential Equation：

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

－Equation is homogeneous if $g(t)=0$ for all t
－Otherwise，nonhomogeneous
－Equation is constant coefficient equation if written

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t),
$$

where $a \neq 0, b$ ，and c are constants

Introduction
Classic Examples

Classic Examples

Spring Problem with mass m position $y(t), k$ spring constant，
γ viscous damping，and external force $F(t)$
－Unforced，undamped oscillator，$m y^{\prime \prime}+k y=0$
－Unforced，damped oscillator，$m y^{\prime \prime}+\gamma y^{\prime}+k y=0$
－Forced，undamped oscillator，$m y^{\prime \prime}+k y=F(t)$
－Forced，damped oscillator，$m y^{\prime \prime}+\gamma y^{\prime}+k y=F(t)$
－Pendulum Problem－mass m ，drag c ，length $L, \gamma=\frac{c}{m L}$ $\omega^{2}=\frac{g}{L}$ ，angle $\theta(t)$
－Nonlinear，$\theta^{\prime \prime}+\gamma \theta^{\prime}+\omega^{2} \sin (\theta)=0$
－Linearized，$\theta^{\prime \prime}+\gamma \theta^{\prime}+\omega^{2} \theta=0$
－RLC Circuit
－Let R be the resistance（ohms），C be capacitance（farads）， L be inductance（henries），$e(t)$ be impressed voltage
－Kirchhoff＇s Law for $q(t)$ ，charge on the capacitor

$$
L q^{\prime \prime}+R q^{\prime}+\frac{q}{C}=e(t),
$$

Dynamical system formulation Suppose

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

and introduce variables $x_{1}=y$ and $x_{2}=y^{\prime}$
Obtain dynamical system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=f\left(t, x_{1}, x_{2}\right)
\end{aligned}
$$

The state variables are y and y^{\prime} ，which have solutions producing trajectories or orbits in the phase plane

For movement of a particle，one can think of the DE governing the dynamics produces by Newton＇s Law of motion and the phase plane orbits show the position and velocity of the particle

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（6／32）

Theory for $2^{n d}$ Order DEs	Existence and Uniqueness Linear Operators and Superposition Linear Constant Coefficient DEs
Wronskian and Fundamental Set of Solutions	

Theorem（Existence and Uniqueness）

Let $p(t), q(t)$ ，and $g(t)$ be continuous on an open interval I ，let $t_{0} \in I$ ， and let y_{0} and y_{1} be given numbers．Then there exists a unique solution $y=\phi(t)$ of the $2^{\text {nd }}$ order differential equation：

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t),
$$

that satisfies the initial conditions

$$
y\left(t_{0}\right)=y_{0} \quad \text { and } \quad y^{\prime}\left(t_{0}\right)=y_{1} .
$$

This unique solution exists throughout the interval I．

Theorem（Linear Differential Operator）
Let L satisfy $L[y]=y^{\prime \prime}+p y^{\prime}+q y$ ，where p and q are continuous functions on an interval I．If y_{1} and y_{2} are twice continuously differentiable functions on I and c_{1} and c_{2} are constants，then

$$
L\left[c_{1} y_{1}+c_{2} y_{2}\right]=c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right] .
$$

Proof uses linearity of differentiation．

Theorem（Principle of Superposition）

Let $L[y]=y^{\prime \prime}+p y^{\prime}+q y$ ，where p and q are continuous functions on an interval I ．If y_{1} and y_{2} are two solutions of $L[y]=0$
（homogeneous equation），then the linear combination

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

is also a solution for any constants c_{1} and c_{2} ．
Wronskian：Consider the linear homogeneous $2^{\text {nd }}$ order DE

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

with $p(t)$ and $q(t)$ continuous on an interval I
Let y_{1} and y_{2} be solutions satisfying $L\left[y_{i}\right]=0$ for $i=1,2$ and define the Wronskian by

$$
W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) .
$$

If $W\left[y_{1}, y_{2}\right](t) \neq 0$ on I ，then the general solution of $L[y]=0$ satisfies

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

Theory for 2 Lntroduction Order DEs	Homogeneous Equations Method of Undetermined Coefficients Forced Vibrations
Homogeneous Equations Coefficient DEs	

Homogeneous Equation：The general $2^{\text {nd }}$ order constant coefficient homogeneous differential equation is written：

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

This can be written as a system of $1^{\text {st }}$ order differential equations

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}=\left(\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right) \mathbf{x}
$$

where

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{y}{y^{\prime}}
$$

This has a the general solution

$$
\mathbf{x}=c_{1}\binom{y_{1}}{y_{1}^{\prime}}+c_{2}\binom{y_{2}}{y_{2}^{\prime}}
$$

Characteristic Equation：Obtain characteristic equation by solving

$$
\operatorname{det}|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
-\lambda & 1 \\
-c / a & -b / a-\lambda
\end{array}\right|=\frac{1}{a}\left(a \lambda^{2}+b \lambda+c\right)=0
$$

Find eigenvectors by solving

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\left(\begin{array}{cc}
-\lambda & 1 \\
-c / a & -b / a-\lambda
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

If λ is an eigenvalue，then it follows the corresponding eigenvector is

$$
\mathbf{v}=\binom{1}{\lambda}
$$

Then a solution is given by

$$
\mathbf{x}=e^{\lambda t} \mathbf{v}=\binom{e^{\lambda t}}{\lambda e^{\lambda t}}=\binom{y(t)}{y^{\prime}(t)}
$$

Homogeneous Equations
Theory for 2 ${ }^{\text {nd }}$ Orderder DEs
Homogeneous Equation
Linear Constant Coefficient DEs Forced Vibrations
Homogeneous Equations－Example
Consider the IVP

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, \quad y(0)=2, \quad y^{\prime}(0)=3
$$

The characteristic equation is $\quad \lambda^{2}+5 \lambda+6=(\lambda+3)(\lambda+2)=0$, so $\lambda=-3$ and $\lambda=-2$

The general solution is $y(t)=c_{1} e^{-3 t}+c_{2} e^{-2 t}$
From the initial conditions

$$
y(0)=c_{1}+c_{2}=2 \quad \text { and } \quad y(0)=-3 c_{1}-2 c_{2}=3
$$

When solved simultaneously，gives $c_{1}=-7$ and $c_{2}=9$ ，so

$$
y(t)=9 e^{-2 t}-7 e^{-3 t}
$$

This problem is the same as solving

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y_{p}(t)
$$

Theorem

Let λ_{1} and λ_{2} be the roots of the characteristic equation

$$
a \lambda^{2}+b \lambda+c=0
$$

Then the general solution of the homogeneous $\boldsymbol{D E}$ ，

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

satisfies

$$
\begin{array}{ll}
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} & \text { if } \lambda_{1} \neq \lambda_{2} \text { are real, } \\
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} t e^{\lambda_{1} t} & \text { if } \lambda_{1}=\lambda_{2}
\end{array}
$$

$y(t)=c_{1} e^{\mu t} \cos (\nu t)+c_{2} e^{\mu t} \sin (\nu t) \quad$ if $\lambda_{1,2}=\mu \pm i \nu$ are complex．

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（14／32）
ogeneous Equations：Consider the DE

$$
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

Theorem

Let y_{1} and y_{2} form a fundamental set of solutions to the homogeneous equation，$L[y]=0$ ．Also，assume that Y_{p} is a particular solution to $L\left[Y_{p}\right]=g(t)$ ．Then the general solution to $L[Y]=g(t)$ is given by：

$$
\dot{\mathbf{x}}=\left(\begin{array}{rr}
0 & 1 \\
-6 & -5
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{2}{3}
$$

Nonhomogeneous Equations

Method of Undetermined Coefficients
Method of Undetermined Coefficients－Example 1：Consider the DE

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}
$$

The characteristic equation is $\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4)=0$ ，so the homogeneous solution is

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{4 t}
$$

Neither solution matches the forcing function，so try

$$
y_{p}(t)=A e^{2 t}
$$

It follows that

$$
4 A e^{2 t}-6 A e^{2 t}-4 A e^{2 t}=-6 A e^{2 t}=3 e^{2 t} \quad \text { or } \quad A=-\frac{1}{2}
$$

The solution combines these to obtain

$$
y(t)=c_{1} e^{-t}+c_{2} e^{4 t}-\frac{1}{2} e^{2 t}
$$

Method of Undetermined Coefficients Forced Vibrations
Linear Constant Coefficient DEs
Method of Undetermined Coefficients
Method of Undetermined Coefficients－Example 2：Consider

$$
y^{\prime \prime}-3 y^{\prime}-4 y=5 \sin (t)
$$

From before，the homogeneous solution is $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{4 t}$
Neither solution matches the forcing function，so try

$$
\begin{aligned}
& y_{p}(t)=A \sin (t)+B \cos (t) \quad \text { so } \\
& y_{p}^{\prime}(t)=A \cos (t)-B \sin (t) \quad \text { and } \quad y_{p}^{\prime \prime}(t)=-A \sin (t)-B \cos (t)
\end{aligned}
$$

It follows that

$$
(-A+3 B-4 A) \sin (t)+(-B-3 A-4 B) \cos (t)=5 \sin (t)
$$

or $3 A+5 B=0$ and $3 B-5 A=5$ or $A=-\frac{25}{34}$ and $B=\frac{15}{34}$
The solution combines these to obtain

$$
y(t)=c_{1} e^{-t}+c_{2} e^{4 t}+\frac{15}{34} \cos (t)-\frac{25}{34} \sin (t)
$$

Method of Undetermined Coefficients

Superposition Principle：Suppose that $g(t)=g_{1}(t)+g_{2}(t)$ ．Also， assume that $y_{1 p}(t)$ and $y_{2 p}(t)$ are particular solutions of

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g_{1}(t) \\
a y^{\prime \prime}+b y^{\prime}+c y & =g_{2}(t),
\end{aligned}
$$

respectively．
Then $y_{1 p}(t)+y_{2 p}(t)$ is a solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

From our previous examples，the solution of

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}+5 \sin (t)+2 t^{2}-7
$$

satisfies

$$
y(t)=c_{1} e^{-t}+c_{2} e^{4 t}-\frac{1}{2} e^{2 t}+\frac{15}{34} \cos (t)-\frac{25}{34} \sin (t)-\frac{t^{2}}{2}+\frac{3 t}{4}+\frac{15}{16}
$$

Method of Undetermined Coefficients

Method of Undetermined Coefficients：Consider the problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

－First solve the homogeneous equation，which must have constant coefficients
－The nonhomogeneous function，$g(t)$ ，must be in the class of functions with polynomials，exponentials，sines，cosines，and products of these functions
－$g(t)=g_{1}(t)+\ldots+g_{n}(t)$ is a sum the type of functions listed above
－Find particular solutions，$y_{i p}(t)$ ，for each $g_{i}(t)$
－General solution combines the homogeneous solution with all the particular solutions
－The arbitrary constants with the homogeneous solution are found to satisfy initial conditions for unique solution

SOSO

Method of Undetermined Coefficients
Method of Undetermined Coefficients－Example 4：Consider

$$
y^{\prime \prime}-3 y^{\prime}-4 y=5 e^{-t}
$$

From before，the homogeneous solution is $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{4 t}$
Since the forcing function matches one of the solutions in $y_{c}(t)$ ，we attempt a particular solution of the form

$$
y_{p}(t)=A t e^{-t},
$$

SO

$$
y_{p}^{\prime}(t)=A(1-t) e^{-t} \quad \text { and } \quad y_{p}^{\prime \prime}(t)=A(t-2) e^{-t}
$$

It follows that

$$
(A(t-2)-3 A(1-t)-4 A t) e^{-t}=-5 A e^{-t}=5 e^{-t},
$$

Thus，$A=-1$
The solution combines these to obtain

$$
y(t)=c_{1} e^{-t}+c_{2} e^{4 t}-t e^{-t}
$$

$\begin{aligned} & \text { Theory for } \begin{aligned} \text { Introduction } \\ \text { Thd }\end{aligned} \begin{array}{l}\text { Homogeneous Equations } \\ \text { Mer DEs }\end{array} \\ & \text { Method of Undetermined Coefficients } \\ & \text { Forced Vibrations }\end{aligned}$
Method of Undetermined Coefficients

Summary Table for Method of Undetermined Coefficients The table below shows how to choose a particular solution

Particular solution for $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$

$g(t)$	$y_{p}(t)$
$\left.P_{n}(t)=a_{n} t^{n}+\ldots+a_{1} t+a_{0} t^{n}+\ldots+A_{1} t+A_{0}\right)$	
$P_{n}(t) e^{\alpha t}$	$t^{s}\left(A_{n} t^{n}+\ldots+A_{1} t+A_{0}\right) e^{\alpha t}$
$P_{n}(t) e^{\alpha t} \begin{cases}\sin (\beta t) \\ \cos (\beta t)\end{cases}$	$t^{s}\left[\left(A_{n} t^{n}+\ldots+A_{1} t+A_{0}\right) e^{\alpha t} \cos (\beta t)\right.$
	$\left.+\left(B_{n} t^{n}+\ldots+B_{1} t+B_{0}\right) e^{\alpha t} \sin (\beta t)\right]$

Note：The s is the smallest integer $(s=0,1,2)$ that ensures no term in $y_{p}(t)$ is a solution of the homogeneous equation

Forced Vibrations：The damped spring－mass system with an external force satisfies the equation：

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y=F(t)
$$

Example 1
－Assume a 2 kg mass and that a 4 N force is required to maintain the spring stretched 0.2 m
－Suppose that there is a damping coefficient of $\gamma=4 \mathrm{~kg} / \mathrm{sec}$
－Assume that an external force，$F(t)=0.5 \sin (4 t)$ is applied to this spring－mass system
－The mass begins at rest，so $y(0)=y^{\prime}(0)=0$
－Set up and solve this system

Example 1

Solution：Apply the Method of Undetermined Coefficients to

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0.25 \sin (4 t)
$$

The Homogeneous Solution：

The characteristic equation is $\lambda^{2}+2 \lambda+10=0$ ，which has solution $\lambda=-1 \pm 3 i$ ，so the homogeneous solution is

$$
y_{c}(t)=c_{1} e^{-t} \cos (3 t)+c_{2} e^{-t} \sin (3 t)
$$

The Particular Solution：

Guess a solution of the form：

$$
y_{p}(t)=A \cos (4 t)+B \sin (4 t)
$$

Example 1：The first condition allows computation of the spring constant，k

Since a 4 N force is required to maintain the spring stretched 0.2 m ，

$$
k(0.2)=4 \quad \text { or } \quad k=20
$$

It follows that the damped spring－mass system described in this problem satisfies：

$$
2 y^{\prime \prime}+4 y^{\prime}+20 y=0.5 \sin (4 t)
$$

or equivalently

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0.25 \sin (4 t), \quad \text { with } \quad y(0)=y^{\prime}(0)=0
$$

Theory for $2^{\text {Ind }}$ Order DEs
 Linear Constant Coefficient DEs
 Homogeneous Equations Forced Vibrations
 Example 1

Solution：Want $y_{p}^{\prime \prime}+2 y_{p}^{\prime}+10 y_{p}=0.25 \sin (4 t)$ ，so with $y_{p}(t)=A \cos (4 t)+B \sin (4 t)$

$$
\begin{aligned}
-16 A \cos (4 t)-16 B \sin (4 t)+2 & (-4 A \sin (4 t)+4 B \cos (4 t)) \\
+ & 10(A \cos (4 t)+B \sin (4 t))=0.25 \sin (4 t)
\end{aligned}
$$

Equating the coefficients of the sine and cosine terms gives：

$$
\begin{aligned}
& -6 A+8 B=0 \\
& -8 A-6 B=0.25
\end{aligned}
$$

which gives $A=-\frac{1}{50}$ and $B=-\frac{3}{200}$
The solution is

$$
y(t)=e^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)-\frac{1}{50} \cos (4 t)-\frac{3}{200} \sin (4 t)
$$

Frequency Response：Rewrite the damped spring－mass system：

$$
y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=f(t)
$$

with $\omega_{0}^{2}=k / m$ and $\delta=\gamma /(2 m)$
Example 2：Let $f(t)=K \cos (\omega t)$ and find a particular solution to this equation

Take

$$
y_{p}(t)=A \cos (\omega t)+B \sin (\omega t)
$$

Upon differentiation and collecting cosine terms，we have

$$
-A \omega^{2}+2 B \delta \omega+A \omega_{0}^{2}=K
$$

The sine terms satisfy

$$
-B \omega^{2}-2 A \delta \omega+B \omega_{0}^{2}=0
$$

Method of Undetermined Coefficients Forced Vibrations

Linear Constant Coefficient DEs －Lle

Frequency Response：Coefficient from our Undetermined Coefficient method give the linear system

$$
\begin{aligned}
\left(\omega_{0}^{2}-\omega^{2}\right) A+2 \delta \omega B & =K \\
-2 \delta \omega A+\left(\omega_{0}^{2}-\omega^{2}\right) B & =0
\end{aligned}
$$

This has the solution

$$
A=\frac{K\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}\right)} \quad \text { and } \quad B=\frac{2 K \delta \omega}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}\right)}
$$

It follows that the particular solution is

$$
y_{p}(t)=\frac{K\left[\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+2 \delta \omega \sin (\omega t)\right]}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}\right)}
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
（30／32）

| Tntroduction
 Theory for 2 |
| :---: | :---: |
| Linear Constant Coefficient DEs |$~$| Homogeneous Equations |
| :--- |
| Method of Undetermined Coefficients |
| Forced Vibrations |

Frequency Response：The model

$$
y^{\prime \prime}+2 \delta y^{\prime}+\omega_{0}^{2} y=K \cos (\omega t),
$$

has exponentially decaying solutions from the homogeneous solution．

Thus，the solution approaches the particular solution

$$
y_{p}(t)=\frac{K\left[\left(\omega_{0}^{2}-\omega^{2}\right) \cos (\omega t)+2 \delta \omega \sin (\omega t)\right]}{\left(\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \delta^{2} \omega^{2}\right)}
$$

This particular solution has a maximum response when $\omega=\omega_{0}$ Thus，tuning the forcing function to the natural frequency，ω_{0} yields the maximum response

