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Introduction

Introduction - Solving 2nd order differential equations

P (t)y ′′ +Q(t)y ′ +R(t)y = g(t)

Constant coefficient - P (t), Q(t), and R(t) are constant

Homogeneous - Solutions y(t) = ceλt

Create 2D system of 1st order differential equations
Nonhomogeneous - Method of Undetermined
Coefficients
Laplace transforms

Nonconstant coefficient - P (t), Q(t), and R(t)

Cauchy-Euler equations
Nonhomogeneous - Variation of Parameters
Now learn Power Series methods
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Example 1

Example: Consider the 2nd order differential equation

y ′′ − y = 0,

which is easily solved by earlier methods

Instead of trying a solution y(t) = ceλt, try

y(t) =
∞∑
n=0

ant
n

It readily follows that

y ′(t) =

∞∑
n=1

nant
n−1 and y ′′(t) =

∞∑
n=2

n(n− 1)ant
n−2

Note that the lower index of the sums increases, as the derivative on a
constant is zero
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Example: With y ′′ − y = 0, substitute the Power Series solution

y(t) =

∞∑
n=0

ant
n,

which gives
∞∑
n=2

n(n− 1)ant
n−2 −

∞∑
n=0

ant
n = 0

Important observations:

Index of the sums differs where it starts
Powers of t are different
The homogeneous term has the power series

0 =

∞∑
n=0

bnt
n, where bn = 0 for all n
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Example: Let k = n− 2, then we can rewrite the sum for y ′′(t) as

∞∑
n=2

n(n− 1)ant
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2t
k

However, the indices of a sum are dummy variables, so exchange k
back to n

The differential equation can be written:

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n −

∞∑
n=0

ant
n = 0,

which when combined gives

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − an] tn = 0
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Example: Since

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − an] tn = 0,

it follows that
(n+ 2)(n+ 1)an+2 − an = 0

The first two coefficients, a0 and a1 are arbitrary, then all other
coefficients are specified by the recursive relation:

an+2 =
an

(n+ 2)(n+ 1)

Thus, with a0 arbitrary

a2 =
a0
2!
, a4 =

a2
4 · 3

=
a0
4!
, ..., a2n =

a0
(2n)!
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Example: Similarly, with a1 arbitrary

a3 =
a1

3 · 2
, a5 =

a3
5 · 4

=
a1
5!
, ..., a2n+1 =

a1
(2n+ 1)!

It follows that we have two linearly independent solutions

y1(t) =

∞∑
n=0

t2n

(2n)!
and y2(t) =

∞∑
n=0

t2n+1

(2n+ 1)!
,

with the general solution

y(t) = a0y1(t) + a1y2(t)

Note: y1(t) = cosh(t) and y2(t) = sinh(t)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Power Series Ordinary Point
— (8/24)



Introduction
Series Solutions of Differential Equations

Example
Review Power Series

Review Power Series

Review Power Series: Consider the power series:

∞∑
n=0

an(x− x0)n

The series converges at x if

lim
k→∞

k∑
n=0

an(x− x0)n

exists for x. It clearly converges at x0, but may or may not for
other values of x

The series converges absolutely if the following converges:

∞∑
n=0

|an(x− x0)n|
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Ratio Test

Ratio Test: For the power series:

∞∑
n=0

an(x− x0)n

The ratio test provides a means of showing absolute
convergence. If an 6= 0, x fixed, and

lim
n→∞

∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x− x0|L,

then the power series converges absolutely at x, if
|x− x0|L < 1.
If |x− x0|L > 1, then the series diverges.
The test is inconclusive with |x− x0|L = 1.

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Power Series Ordinary Point
— (10/24)



Introduction
Series Solutions of Differential Equations

Example
Review Power Series

Example

Example: For the power series:

∞∑
n=1

(−1)n+1n(x− 2)n

The ratio test gives:

lim
n→∞

∣∣∣∣ (−1)n+2(n+ 1)(x− 2)n+1

(−1)n+1n(x− 2)n

∣∣∣∣ = |x− 2| lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ = |x− 2|.

This converges absolutely for |x− 2| < 1.
It diverges for |x− 2|L ≥ 1.
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Radius of Convergence

Radius of Convergence: For the power series:

∞∑
n=0

an(x− x0)n,

typically, there is a positive number ρ, called the radius of
convergence, such that the series converges absolutely for
|x− x0| < ρ and diverges for |x− x0| > ρ

Generally, we are not concerned about convergence at the endpoints
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Properties of Series 1

Consider the series

∞∑
n=0

an(x− x0)n = f(x) and
∞∑

n=0

bn(x− x0)n = g(x)

converging for |x− x0| < ρ with ρ > 0

Two series can be added or subtracted for |x− x0| < ρ

f(x) + g(x) =
∞∑

n=0

(an + bn)(x− x0)n

Products can be done formally for |x− x0| < ρ:

f(x)g(x) =

[ ∞∑
n=0

an(x− x0)n

][ ∞∑
n=0

bn(x− x0)n

]
=
∞∑

n=0

cn(x− x0)n,

where cn = a0bn + a1bn−1 + ...+ anb0

Quotients are more complex, but can be handled similarly
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Properties of Series 2

Suppose f(x) satisfies the series below converging for |x− x0| < ρ with ρ > 0

f(x) =
∞∑

n=0

an(x− x0)n

The function f is continuous and has derivatives of all orders:

f ′(x) =
∞∑

n=1

nan(x− x0)n−1,

f ′′(x) =

∞∑
n=2

n(n− 1)an(x− x0)n−2,

converging for |x− x0| < ρ
The value of an is

an =
f (n)(x0)

n!
,

the coefficients for the Taylor series for f . f(x) is called analytic.
If

∞∑
n=0

an(x− x0)n =

∞∑
n=0

bn(x− x0)n,

then an = bn for all n. If f(x) = 0, then an = 0 for all n
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Series Solution near an Ordinary Point

Series Solution near an Ordinary Point, x0

P (x)y ′′ +Q(x)y ′ +R(x)y = 0,

where P , Q, and R are polynomials

Assume y = φ(x) is a solution with a Taylor series

y = φ(x) =

∞∑
n=0

an(x− x0)n

with convergence for |x− x0| < ρ

Initial conditions: It is easy to see that

y(x0) = a0 and y ′(x0) = a1
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Series Solution near an Ordinary Point

Theorem

If x0 is an ordinary point of the differential equation:

P (x)y ′′ +Q(x)y ′ +R(x)y = 0,

that is, if p = Q/P and q = R/P are analytic at x0, then the general
solution of the DE is

y(x) =

∞∑
n=0

an(x− x0)n = a0y1 + a1y2,

where a0 and a1 are arbitrary, and y1 and y2 are two power series
solutions that are analytic at x0. The solutions y1 and y2 form a
fundamental set. Further, the radius of convergence for each of
the series solutions y1 and y2 is at least as large as the minimum of
the radii of convergence of the series for p and q.
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Airy’s Equation 1

Airy’s Equation arises in optics, quantum mechanics,
electromagnetics, and radiative transfer:

y ′′ − xy = 0

Assume a power series solution of the form

y(x) =

∞∑
n=0

anx
n

From before,

y ′′(x) =

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n,

which is substituted into the Airy’s equation

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n = x

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+1
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Airy’s Equation 2

Airy’s Equation: The series can be written

2 · 1a2 +

∞∑
n=1

(n+ 2)(n+ 1)an+2x
n =

∞∑
n=1

an−1x
n,

so a2 = 0

The recurrence relation satisfies

(n+ 2)(n+ 1)an+2 = an−1 or an+2 =
an−1

(n+ 2)(n+ 1)
,

so a2 = a5 = a8 = ... = a3n+2 = 0 with n = 0, 1, ...

For the sequence, a0, a3, a6, ... with n = 1, 4, ...

a3 =
a0

2 · 3
, a6 =

a3
5 · 6

=
a0

2 · 3 · 5 · 6
, a9 =

a6
8 · 9

=
a0

2 · 3 · 5 · 6 · 8 · 9
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Airy’s Equation 3

Airy’s Equation: The general formula is

a3n =
a0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
, n ≥ 4

For the sequence, a1, a4, a7, ... with n = 2, 5, ...

a4 =
a1

3 · 4
, a7 =

a4
6 · 7

=
a1

3 · 4 · 6 · 7
, a10 =

a7
9 · 10

=
a1

3 · 4 · 6 · 7 · 9 · 10

The general formula is

a3n+1 =
a1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
, n ≥ 4

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Power Series Ordinary Point
— (19/24)



Introduction
Series Solutions of Differential Equations

Airy’s Equation
Chebyshev’s Equation

Airy’s Equation 4

Airy’s Equation: The general solution is

y(x) = a0

[
1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+ · · ·+

x3n

2 · 3 · 5 · 6 · · · (3n− 1)(3n)
+ · · ·

]
+a1

[
x+

x4

3 · 4
+

x7

3 · 4 · 6 · 7
+ · · ·+

x3n+1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1)
+ · · ·

]

−10 −8 −6 −4 −2 0 2
−0.5

0

0.5

1

1.5

Ai(x)

Bi(x)

x

Airy’s Equation
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Chebyshev’s Equation 1

Chebyshev’s Equation is given by

(1− x2)y ′′ − xy ′ + α2y = 0

Let α = 4 and try a solution of the form

y(x) =
∞∑

n=0

anx
n, so y ′(x) =

∞∑
n=1

nanx
n−1 and y ′′(x) =

∞∑
n=2

n(n−1)anx
n−2

These are inserted into the Chebyshev Equation to give:

(1− x2)

∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 + 16

∞∑
n=0

anx
n = 0

Note that the first two sums could start their index at n = 0 without
changing anything
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Chebyshev’s Equation: The previous expression is easily changed
by multiplying by x or x2 and shifting the index to:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

n(n− 1)anx
n −

∞∑
n=0

nanx
n + 16

∞∑
n=0

anx
n = 0

Equivalently,

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − (n(n− 1) + n− 16) an]xn = 0

or
∞∑
n=0

[
(n+ 2)(n+ 1)an+2 −

(
n2 − 16

)
an
]
xn = 0
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Chebyshev’s Equation 3

Chebyshev’s Equation: The previous expression gives the
recurrence relation:

an+2 =
n2 − 16

(n+ 2)(n+ 1)
an for n = 0, 1, ..

As before, a0 and a1 are arbitrary with y(0) = a0 and y ′(0) = a1

It follows that

a2 = −
16

2
a0 = −8a0, a4 =

4− 16

4 · 3
a2 = 8a0, a6 = 0 = a8 = ... = a2n

and

a3 = −
15

3 · 2
a1 = −

5

2
a1, a5 = −

7

5 · 4
a3 =

7

8
a1, a7 =

9

7 · 6
a5 =

3

16
a1, ...
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Chebyshev’s Equation 4

Chebyshev’s Equation with α = 4: From the recurrence
relation, we see that the even series terminates after x4, leaving a 4th

order polynomial solution.
The general solution becomes:

y(x) = a0
(
1− 8x2 + 8x4

)
+a1

(
x−

5

2
x3 +

7

8
x5 +

3

16
x7 + ...

)
y(x) = a0

(
1− 8x2 + 8x4

)
+a1

(
x+

∞∑
n=1

[(2n− 1)2 − 16][(2n− 3)2 − 16] · · · · · (32 − 16)(1− 16)

(2n+ 1)!
x2n+1

)

More generally, it is not hard to see that for any α an integer, the
Chebyshev’s Equation results in one solution being a polynomial
of order α (only odd or even terms). The other solution is an infinite
series.

The polynomial solution converges for all x, while the infinite series
solution converges for |x| < 1.
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