Math 337 －Elementary Differential Equations Lecture Notes－Power Series Ordinary Point

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group Computational Sciences Research Center

San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2022

Outline

(1) Introduction

- Example
- Review Power Series
(2) Series Solutions of Differential Equations
- Airy's Equation
- Chebyshev's Equation

Introduction

Introduction - Solving $2^{\text {nd }}$ order differential equations

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=g(t)
$$

- Constant coefficient - $P(t), Q(t)$, and $R(t)$ are constant
- Homogeneous - Solutions $y(t)=c e^{\lambda t}$
- Create 2D system of $1^{\text {st }}$ order differential equations
- Nonhomogeneous - Method of Undetermined Coefficients
- Laplace transforms
- Nonconstant coefficient - $P(t), Q(t)$, and $R(t)$
- Cauchy-Euler equations
- Nonhomogeneous - Variation of Parameters
- Now learn Power Series methods

Example

Example: Consider the $2^{\text {nd }}$ order differential equation

$$
y^{\prime \prime}-y=0
$$

which is easily solved by earlier methods
Instead of trying a solution $y(t)=c e^{\lambda t}$, try

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

It readily follows that

$$
y^{\prime}(t)=\sum_{n=1}^{\infty} n a_{n} t^{n-1} \quad \text { and } \quad y^{\prime \prime}(t)=\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
$$

Note that the lower index of the sums increases, as the derivative on a constant is zero

Example

Example: With $y^{\prime \prime}-y=0$, substitute the Power Series solution

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

which gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}-\sum_{n=0}^{\infty} a_{n} t^{n}=0
$$

- Important observations:
- Index of the sums differs where it starts
- Powers of t are different
- The homogeneous term has the power series

$$
0=\sum_{n=0}^{\infty} b_{n} t^{n}, \quad \text { where } \quad b_{n}=0 \quad \text { for all } n
$$

Example

Example: Let $k=n-2$, then we can rewrite the sum for $y^{\prime \prime}(t)$ as

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} t^{k}
$$

However, the indices of a sum are dummy variables, so exchange k back to n

The differential equation can be written:

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n}-\sum_{n=0}^{\infty} a_{n} t^{n}=0
$$

which when combined gives

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n}\right] t^{n}=0
$$

Example

Example: Since

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-a_{n}\right] t^{n}=0
$$

it follows that

$$
(n+2)(n+1) a_{n+2}-a_{n}=0
$$

The first two coefficients, a_{0} and a_{1} are arbitrary, then all other coefficients are specified by the recursive relation:

$$
a_{n+2}=\frac{a_{n}}{(n+2)(n+1)}
$$

Thus, with a_{0} arbitrary

$$
a_{2}=\frac{a_{0}}{2!}, \quad a_{4}=\frac{a_{2}}{4 \cdot 3}=\frac{a_{0}}{4!}, \quad \ldots, \quad a_{2 n}=\frac{a_{0}}{(2 n)!}
$$

Example

Example: Similarly, with a_{1} arbitrary

$$
a_{3}=\frac{a_{1}}{3 \cdot 2}, \quad a_{5}=\frac{a_{3}}{5 \cdot 4}=\frac{a_{1}}{5!}, \quad \ldots, \quad a_{2 n+1}=\frac{a_{1}}{(2 n+1)!}
$$

It follows that we have two linearly independent solutions

$$
y_{1}(t)=\sum_{n=0}^{\infty} \frac{t^{2 n}}{(2 n)!} \quad \text { and } \quad y_{2}(t)=\sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!}
$$

with the general solution

$$
y(t)=a_{0} y_{1}(t)+a_{1} y_{2}(t)
$$

Note: $\quad y_{1}(t)=\cosh (t) \quad$ and $\quad y_{2}(t)=\sinh (t)$

Review Power Series

Review Power Series: Consider the power series:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- The series converges at x if

$$
\lim _{k \rightarrow \infty} \sum_{n=0}^{k} a_{n}\left(x-x_{0}\right)^{n}
$$

exists for x. It clearly converges at x_{0}, but may or may not for other values of x

- The series converges absolutely if the following converges:

$$
\sum_{n=0}^{\infty}\left|a_{n}\left(x-x_{0}\right)^{n}\right|
$$

Ratio Test

Ratio Test: For the power series:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- The ratio test provides a means of showing absolute convergence. If $a_{n} \neq 0, x$ fixed, and

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right| \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\left|x-x_{0}\right| L
$$

then the power series converges absolutely at x, if $\left|x-x_{0}\right| L<1$.
If $\left|x-x_{0}\right| L>1$, then the series diverges.
The test is inconclusive with $\left|x-x_{0}\right| L=1$.

Example

Example: For the power series:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n(x-2)^{n}
$$

The ratio test gives:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(n+1)(x-2)^{n+1}}{(-1)^{n+1} n(x-2)^{n}}\right|=|x-2| \lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right|=|x-2|
$$

This converges absolutely for $|x-2|<1$.
It diverges for $|x-2| L \geq 1$.

Radius of Convergence

Radius of Convergence: For the power series:

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

typically, there is a positive number ρ, called the radius of convergence, such that the series converges absolutely for $\left|x-x_{0}\right|<\rho$ and diverges for $\left|x-x_{0}\right|>\rho$

Generally, we are not concerned about convergence at the endpoints

Properties of Series

Consider the series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=f(x) \quad \text { and } \quad \sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}=g(x)
$$

converging for $\left|x-x_{0}\right|<\rho$ with $\rho>0$

- Two series can be added or subtracted for $\left|x-x_{0}\right|<\rho$

$$
f(x)+g(x)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right)\left(x-x_{0}\right)^{n}
$$

- Products can be done formally for $\left|x-x_{0}\right|<\rho$:

$$
f(x) g(x)=\left[\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}\right]\left[\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}\right]=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

where $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}$

- Quotients are more complex, but can be handled similarly

Properties of Series

Suppose $f(x)$ satisfies the series below converging for $\left|x-x_{0}\right|<\rho$ with $\rho>0$

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

- The function f is continuous and has derivatives of all orders:

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}
\end{aligned}
$$

converging for $\left|x-x_{0}\right|<\rho$

- The value of a_{n} is

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

the coefficients for the Taylor series for $f . f(x)$ is called analytic.

- If

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

then $a_{n}=b_{n}$ for all n. If $f(x)=0$, then $a_{n}=0$ for all n

Series Solution near an Ordinary Point

Series Solution near an Ordinary Point, x_{0}

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

where P, Q, and R are polynomials
Assume $y=\phi(x)$ is a solution with a Taylor series

$$
y=\phi(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

with convergence for $\left|x-x_{0}\right|<\rho$
Initial conditions: It is easy to see that

$$
y\left(x_{0}\right)=a_{0} \quad \text { and } \quad y^{\prime}\left(x_{0}\right)=a_{1}
$$

Series Solution near an Ordinary Point

Theorem

If x_{0} is an ordinary point of the differential equation:

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

that is, if $p=Q / P$ and $q=R / P$ are analytic at x_{0}, then the general solution of the $D E$ is

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}+a_{1} y_{2}
$$

where a_{0} and a_{1} are arbitrary, and y_{1} and y_{2} are two power series solutions that are analytic at x_{0}. The solutions y_{1} and y_{2} form a fundamental set. Further, the radius of convergence for each of the series solutions y_{1} and y_{2} is at least as large as the minimum of the radii of convergence of the series for p and q.

Airy's Equation

Airy's Equation arises in optics, quantum mechanics, electromagnetics, and radiative transfer:

$$
y^{\prime \prime}-x y=0
$$

Assume a power series solution of the form

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

From before,

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n},
$$

which is substituted into the Airy's equation

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=x \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+1}
$$

Airy's Equation

Airy's Equation: The series can be written

$$
2 \cdot 1 a_{2}+\sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n}
$$

so $a_{2}=0$
The recurrence relation satisfies

$$
(n+2)(n+1) a_{n+2}=a_{n-1} \quad \text { or } \quad a_{n+2}=\frac{a_{n-1}}{(n+2)(n+1)}
$$

so $a_{2}=a_{5}=a_{8}=\ldots=a_{3 n+2}=0$ with $n=0,1, \ldots$
For the sequence, $a_{0}, a_{3}, a_{6}, \ldots$ with $n=1,4, \ldots$

$$
a_{3}=\frac{a_{0}}{2 \cdot 3}, \quad a_{6}=\frac{a_{3}}{5 \cdot 6}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6}, \quad a_{9}=\frac{a_{6}}{8 \cdot 9}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}
$$

Airy's Equation

Airy's Equation: The general formula is

$$
a_{3 n}=\frac{a_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1)(3 n)}, \quad n \geq 4
$$

For the sequence, $a_{1}, a_{4}, a_{7}, \ldots$ with $n=2,5, \ldots$
$a_{4}=\frac{a_{1}}{3 \cdot 4}, \quad a_{7}=\frac{a_{4}}{6 \cdot 7}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7}, \quad a_{10}=\frac{a_{7}}{9 \cdot 10}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}$
The general formula is

$$
a_{3 n+1}=\frac{a_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot \cdots(3 n)(3 n+1)}, \quad n \geq 4
$$

Airy's Equation

Airy's Equation: The general solution is

$$
\begin{aligned}
y(x)= & a_{0}\left[1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{2 \cdot 3 \cdot 5 \cdot 6}+\cdots+\frac{x^{3 n}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1)(3 n)}+\cdots\right] \\
& +a_{1}\left[x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{3 \cdot 4 \cdot 6 \cdot 7}+\cdots+\frac{x^{3 n+1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdots(3 n)(3 n+1)}+\cdots\right]
\end{aligned}
$$

Chebyshev's Equation

Chebyshev's Equation is given by

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0
$$

Let $\alpha=4$ and try a solution of the form
$y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad$ so $\quad y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad$ and $\quad y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}$
These are inserted into the Chebyshev Equation to give:

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+16 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Note that the first two sums could start their index at $n=0$ without changing anything

Chebyshev's Equation

Chebyshev's Equation: The previous expression is easily changed by multiplying by x or x^{2} and shifting the index to:

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}-\sum_{n=0}^{\infty} n a_{n} x^{n}+16 \sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Equivalently,

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-(n(n-1)+n-16) a_{n}\right] x^{n}=0
$$

or

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}-\left(n^{2}-16\right) a_{n}\right] x^{n}=0
$$

Chebyshev's Equation

Chebyshev's Equation: The previous expression gives the recurrence relation:

$$
a_{n+2}=\frac{n^{2}-16}{(n+2)(n+1)} a_{n} \quad \text { for } \quad n=0,1, . .
$$

As before, a_{0} and a_{1} are arbitrary with $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$
It follows that

$$
a_{2}=-\frac{16}{2} a_{0}=-8 a_{0}, \quad a_{4}=\frac{4-16}{4 \cdot 3} a_{2}=8 a_{0}, \quad a_{6}=0=a_{8}=\ldots=a_{2 n}
$$

and

$$
a_{3}=-\frac{15}{3 \cdot 2} a_{1}=-\frac{5}{2} a_{1}, \quad a_{5}=-\frac{7}{5 \cdot 4} a_{3}=\frac{7}{8} a_{1}, \quad a_{7}=\frac{9}{7 \cdot 6} a_{5}=\frac{3}{16} a_{1}, \ldots
$$

Chebyshev's Equation

Chebyshev's Equation with $\alpha=4$: From the recurrence relation, we see that the even series terminates after x^{4}, leaving a $4^{\text {th }}$ order polynomial solution.
The general solution becomes:

$$
\begin{aligned}
y(x)= & a_{0}\left(1-8 x^{2}+8 x^{4}\right) \\
& +a_{1}\left(x-\frac{5}{2} x^{3}+\frac{7}{8} x^{5}+\frac{3}{16} x^{7}+\ldots\right) \\
y(x)= & a_{0}\left(1-8 x^{2}+8 x^{4}\right) \\
& +a_{1}\left(x+\sum_{n=1}^{\infty} \frac{\left[(2 n-1)^{2}-16\right]\left[(2 n-3)^{2}-16\right] \cdots\left(3^{2}-16\right)(1-16)}{(2 n+1)!} x^{2 n+1}\right)
\end{aligned}
$$

More generally, it is not hard to see that for any α an integer, the Chebyshev's Equation results in one solution being a polynomial of order α (only odd or even terms). The other solution is an infinite series.
The polynomial solution converges for all x, while the infinite series solution converges for $|x|<1$.

