Math 337 - Elementary Differential Equations

Lecture Notes – Numerical Methods for Differential Equations

Joseph M. Mahaffy, {jmahaffy@sdsu.edu}

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Outline

- 1 Introduction
- 2 Euler's Method
 - Malthusian Growth Example
 - Euler's Method MatLab
 - Example with f(t, y)
 - Euler Error Analysis
- 3 Improved Euler's Method
 - Improved Euler's Method Algorithm
 - Example
 - Improved Euler's Method Error
 - Order of Error

Introduction

Introduction

- Most differential equations can **not** be solved exactly
- Use the definition of the derivative to create a **difference** equation
- Develop numerical methods to solve differential equations
 - Euler's Method
 - Improved Euler's Method

Initial Value Problem: Consider

$$\frac{dy}{dt} = f(t, y)$$
 with $y(t_0) = y_0$

• From the definition of the derivative

$$\frac{dy}{dt} = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}$$

• Instead of taking the limit, fix h, so

$$\frac{dy}{dt} \approx \frac{y(t+h) - y(t)}{h}$$

• Substitute into the differential equation and with algebra write

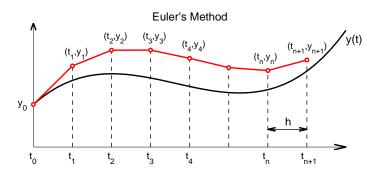
$$y(t+h) \approx y(t) + hf(t,y)$$

Euler's Method for a fixed h is

$$y(t+h) = y(t) + hf(t,y)$$

- Geometrically, Euler's method looks at the slope of the tangent line
 - \bullet The approximate solution follows the tangent line for a time step h
 - Repeat this process at each time step to obtain an approximation to the solution
- The ability of this method to track the solution accurately depends on the length of the time step, h, and the nature of the function f(t, y)
- This technique is rarely used as it has very bad convergence properties to the actual solution

Graph of Euler's Method



Euler's Method Formula: Euler's method is just a discrete dynamical system for approximating the solution of a continuous model

- Let $t_{n+1} = t_n + h$
- Define $y_n = y(t_n)$
- The initial condition gives $y(t_0) = y_0$
- Euler's Method is the discrete dynamical system

$$y_{n+1} = y_n + h f(t_n, y_n)$$

• Euler's Method only needs the initial condition to start and the right hand side of the differential equation (the **slope field**), f(t,y) to obtain the approximate solution

Malthusian Growth Example: Consider the model

$$\frac{dP}{dt} = 0.2 P \qquad \text{with} \qquad P(0) = 50$$

Find the exact solution and approximate the solution with Euler's Method for $t \in [0,1]$ with h=0.1

Solution: The exact solution is

$$P(t) = 50 e^{0.2t}$$

Solution (cont): The Formula for Euler's Method is

$$P_{n+1} = P_n + h \, 0.2 \, P_n$$

The initial condition P(0) = 50 implies that $t_0 = 0$ and $P_0 = 50$

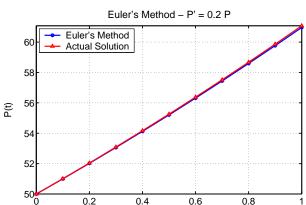
Create a table for the Euler iterates

t_n	P_n
$t_0 = 0$	$P_0 = 50$
$t_1 = t_0 + h = 0.1$	$P_1 = P_0 + 0.1(0.2P_0) = 50 + 1 = 51$
$t_2 = t_1 + h = 0.2$	$P_2 = P_1 + 0.1(0.2P_1) = 51 + 1.02 = 52.02$
$t_3 = t_2 + h = 0.3$	$P_3 = P_2 + 0.1(0.2P_2) = 52.02 + 1.0404 = 53.0604$

Solution (cont): Iterations are easily continued - Below is table of the actual solution and the Euler's method iterates

t	Euler Solution	Actual Solution
0	50	50
0.1	51	51.01
0.2	52.02	52.041
0.3	53.060	53.092
0.4	54.122	54.164
0.5	55.204	55.259
0.6	56.308	56.375
0.7	57.434	57.514
0.8	58.583	58.676
0.9	59.755	59.861
1.0	60.950	61.070

Graph of Euler's Method for Malthusian Growth Example



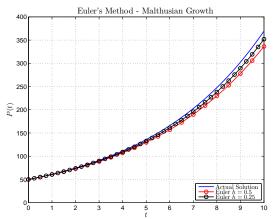
Improved Euler's Method

Introduction Euler's Method

Error Analysis and Larger Stepsize

- The table and the graph shows that Euler's method is tracking the solution fairly well over the interval of the simulation
- The error at t = 1 is only -0.2%
- However, this is a fairly short period of time and the stepsize is relatively small
- What happens when the stepsize is increased and the interval of time being considered is larger?

Graph of Euler's Method with h = 0.5 and h = 0.25



There is a -9% error in the numerical solution at t = 10 for h = 0.5, and a -4.7% error when h = 0.25

Euler's Method - Algorithm

Algorithm (Euler's Method)

Consider the initial value problem

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0.$$

Let h be a fixed stepsize and define $t_n = t_0 + nh$. Also, let $y(t_n) = y_n$. Euler's Method for approximating the solution to the IVP satisfies the difference equation

$$y_{n+1} = y_n + hf(t_n, y_n).$$

Euler's Method - MatLab

```
Define a MatLab function for Euler's method for any function (func)
   with stepsize h, t \in [t_0, t_f], and y(t_0) = y_0
    function [t,y] = \text{euler}(\text{func},h,t0,tf,y0)
    % Euler's Method - Stepsize h, time from to to tf, initial
         v is v0
3
4
    % Create time interval and initialize v
    t = [t0:h:tf];
5
    v(1) = v0;
7
    % Loop for Euler's method
8
    for i = 1: length(t)-1
9
         y(i+1) = y(i) + h*(feval(func, t(i), y(i)));
10
    end
11
12
    % Create column vectors t and y
13
    t = t';
14
    y = y';
15
16
17
    end
```

Euler's Method - Population

Our initial example was $\frac{dP}{dt} = 0.2P$ with P(0) = 50

```
1    function z = pop(t,y)
2    % Malthusian growth
3    z = 0.2*y;
4    end
```

Create graph shown above

```
tt = linspace(0,10,200);
1
     vv = 50 * exp(0.2 * tt);
                                        % Actual solution
     [t,y]=euler(@pop,0.5,0,10,50); % Implement Euler's method, 0.5
4
     [t1, y1] = euler (@pop, 0.25, 0, 10, 50); % Implement Euler's method, 0.25
     plot(tt,vy,'b-','LineWidth',1.5); % Actual solution
6
7
8
                                         % Plots Multiple graphs
     hold on
     plot(t,y,'r-o','LineWidth',1.5,'MarkerSize',7); % Euler h = 0.5
     plot(t1,y1,'k-o','LineWidth',1.5,'MarkerSize',7); % Euler h = 0.25
9
     grid
                                          % Adds Gridlines
10
     h = legend('Actual Solution', 'Euler $h = 0.5$', 'Euler $h = 0.25$',4)
     set (h, 'Interpreter', 'latex') % Allow LaTeX in legend
11
12
     axis ([0 10 0 400]); % Defines limits of graph
```


Euler's Method with f(t,y)

Euler's Method with f(t,y): Consider the model

$$\frac{dy}{dt} = y + t \quad \text{with} \quad y(0) = 3$$

Find the solution to this initial value problem

Rewrite this linear DE and find the integrating factor:

$$\frac{dy}{dt} - y = t$$
 with $\mu(t) = e^{-t}$

Solving

$$\frac{d}{dt}(e^{-t}y) = te^{-t}$$
 or $e^{-t}y(t) = \int te^{-t}dt = -(t+1)e^{-t} + C$

With the initial condition the solution is

$$y(t) = 4e^t - t - 1$$

Euler's Method with f(t, y)

Solution (cont): Euler's formula with h = 0.25 is

$$y_{n+1} = y_n + 0.25(y_n + t_n)$$

t_n	Euler solution y_n
$t_0 = 0$	$y_0 = 3$
$t_1 = 0.25$	$y_1 = y_0 + h(y_0 + t_0) = 3 + 0.25(3 + 0) = 3.75$
$t_2 = 0.5$	$y_2 = y_1 + h(y_1 + t_1) = 3.75 + 0.25(3.75 + 0.25) = 4.75$
$t_3 = 0.75$	$y_3 = y_2 + h(y_2 + t_2) = 4.75 + 0.25(4.75 + 0.5) = 6.0624$
$t_4 = 1$	$y_4 = y_3 + h(y_3 + t_3) = 6.0624 + 0.25(6.0624 + 0.75) = 7.7656$

Actual solution is y(1) = 8.8731, so the Euler solution has a -12.5% error

If h = 0.1, after 10 steps $y(1) \approx y_{10} = 8.3750$ with -5.6% error

Euler's Method with f(t, y)

Solution (cont): Euler's formula with different h is

$$y_{n+1} = y_n + h(y_n + t_n)$$

t_n	h = 0.2	h = 0.1	h = 0.05	h = 0.025	Actual
0.2	3.6	3.64	3.662	3.6736	3.6856
0.4	4.36	4.4564	4.5098	4.538	4.5673
0.6	5.312	5.4862	5.5834	5.6349	5.6885
0.8	6.4944	6.7744	6.9315	7.015	7.1022
1	7.9533	8.375	8.6132	8.7403	8.8731
2	21.7669	23.91	25.16	25.8383	26.5562
% Err	-18.0	-9.96	-5.26	-2.70	

We see the percent error at t=2 (compared to the actual solution) declining by about $\frac{1}{2}$ as h is halved

Euler Error Analysis

- Consider the solution of the IVP $y' = f(t, y), \quad y(t_0) = y_0$ denoted $\phi(t)$
 - Euler's formula, $y_{n+1} = y_n + hf(t_n, y_n)$, approximates $y_n \approx \phi(t_n)$
 - \bullet Expect the **error** to decrease as h decreases
 - How small does h have to be to reach a certain tolerance?
- Errors
 - Local truncation error, e_n , is the amount of error at each step
 - Global truncation error, E_n , is the amount of error between the algorithm and $\phi(t)$
 - Round-off error, R_n , is the error due to the fact that computers hold finite digits

Local Truncation Error

Assume that $\phi(t)$ solves the IVP, so

$$\phi'(t) = f(t, \phi(t))$$

Use Taylor's theorem with a remainder, then

$$\phi(t_n + h) = \phi(t_n) + \phi'(t_n)h + \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

where $\bar{t}_n \in (t_n, t_n + h)$

From ϕ being a solution of the IVP

$$\phi(t_{n+1}) = \phi(t_n) + hf(t_n, \phi(t_n)) + \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

If $y_n = \phi(t_n)$ is the correct solution, then the **Euler approximate** solution at t_{n+1} is

$$y_{n+1}^* = \phi(t_n) + hf(t_n, \phi(t_n)),$$

so the local truncation error satisfies

$$e_{n+1} = \phi(t_{n+1}) - y_{n+1}^* = \frac{1}{2}\phi''(\bar{t}_n)h^2$$

Since the local truncation error satisfies

$$e_{n+1} = \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

then if there is a **uniform bound** $M = \max_{t \in [a,b]} |\phi''(t)|$, the local error is bounded with

$$|e_n| \le \frac{Mh^2}{2}$$

Thus, Euler's Method is said to have a local truncation error of order h^2 often denoted $\mathcal{O}(h^2)$

This result allows the choice of a stepsize to keep the numerical solution within a certain tolerance, say ε , or

$$\frac{Mh^2}{2} \le \varepsilon$$
 or $h \le \sqrt{2\varepsilon/M}$

Often difficult to estimate either $|\phi''(t)|$ or M

Global Truncation

Other Errors

- The local truncation error satisfies $|e_n| \leq Mh^2/2$
 - This error is most significant for adaptive numerical routines where code is created to maintain a certain tolerance
- Global Truncation Error
 - The more important error for the numerical routines is this error over the entire simulation
 - Euler's method can be shown to have a global truncation error,

$$|E_n| \le Kh$$

- Note error is one order less than **local error**, which scales proportionally with the stepsize or $|E_n| \leq \mathcal{O}(h)$
- HW problem using Taylor's series and Math induction to prove this result

Global Truncation and Round-Off Error

Other Errors - continued

- Round-Off Error, R_n
 - This error results from the finite digits in the computer
 - All numbers in a computer are truncated
 - This is beyond the scope of this course
- Total Computed Error
 - The total error combines the machine error and the error of the algorithm employed
 - It follows that

$$|\phi(t_n) - Y_n| \le |E_n| + |R_n|$$

• The machine error cannot be controlled, but choosing a higher order method allows improving the global truncation error

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Numerical solutions of DEs

Numerical solutions of differential equations

- Euler's Method is simple and intuitive, but lacks accuracy
- Numerical methods are available through standard software
 - MatLab's ode23
 - Maple's dsolve with *numeric* option
- Many types of numerical methods different accuracies and stability
 - Easiest are single stepsize Runge-Kutta methods
 - Software above uses adaptive stepsize Runge-Kutta methods
 - Many other techniques shown in Math 542
- Improved Euler's method (or Heun formula) is a simple extension of Euler's method However, significantly better

Improved Euler's Method - Algorithm

Algorithm (Improved Euler's Method (or Heun Formula))

Consider the initial value problem

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0.$$

Let h be a fixed stepsize. Define $t_n = t_0 + nh$ and the approximate solution $y(t_n) = y_n$.

• Approximate y by Euler's Method

$$ye_n = y_n + hf(t_n, y_n)$$

2 Improved Euler's Method is the difference formula

$$y_{n+1} = y_n + \frac{h}{2} (f(t_n, y_n) + f(t_n + h, ye_n))$$

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Improved Euler's Method

Improved Euler's Method Formula: This technique is an easy extension of Euler's Method

- The Improved Euler's method uses an average of the Euler's method and an Euler's method approximation to the function
- This technique requires two function evaluations, instead of one
- Simple two step algorithm for implementation
- Can show this converges as $\mathcal{O}(h^2)$, which is significantly better than Euler's method

Improved Euler's Method - MatLab

Define a MatLab function for the Improved Euler's method for any function (func) with stepsize $h, t \in [t_0, t_f]$, and $y(t_0) = y_0$

```
function [t,y] = im_euler(func,h,t0,tf,y0)
1
    % Improved Euler's Method - Stepsize h, time from t0 to tf,
2
         initial v is v0
    % Create time interval and initialize y
3
    t = [t0:h:tf];
    v(1) = v0;
5
    % Loop for Improved Euler's method
    for i = 1: length(t) - 1
7
        ye = y(i) + h*(feval(func,t(i),y(i))); % Euler's step
        y(i+1) = y(i) + (h/2)*(feval(func, t(i), y(i)) + feval(i)
9
             func, t(i+1), ve);
    end
10
    % Create column vectors t and y
11
    t = t';
12
13
    v = v':
    end
14
```


Example: Improved Euler's Method: Consider the initial value problem:

$$\frac{dy}{dt} = y + t \qquad \text{with} \qquad y(0) = 3$$

• The solution to this differential equation is

$$y(t) = 4e^t - t - 1$$

- Numerically solve this using Euler's Method and Improved Euler's Method using h=0.1
- Compare these numerical solutions

Solution: Let $y_0 = 3$, the Euler's formula is

$$y_{n+1} = y_n + h(y_n + t_n) = y_n + 0.1(y_n + t_n)$$

The Improved Euler's formula is

$$ye_n = y_n + h(y_n + t_n) = y_n + 0.1(y_n + t_n)$$

with

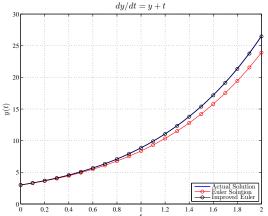
$$y_{n+1} = y_n + \frac{h}{2} ((y_n + t_n) + (ye_n + t_n + h))$$

$$y_{n+1} = y_n + 0.05 (y_n + ye_n + 2t_n + 0.1)$$

Solution: Below is a table of the numerical computations

t	Euler's Method	Improved Euler	Actual
0	$y_0 = 3$	$y_0 = 3$	y(0) = 3
0.1	$y_1 = 3.3$	$y_1 = 3.32$	y(0.1) = 3.3207
0.2	$y_2 = 3.64$	$y_2 = 3.6841$	y(0.2) = 3.6856
0.3	$y_3 = 4.024$	$y_3 = 4.0969$	y(0.3) = 4.0994
0.4	$y_4 = 4.4564$	$y_4 = 4.5636$	y(0.4) = 4.5673
0.5	$y_5 = 4.9420$	$y_5 = 5.0898$	y(0.5) = 5.0949
0.6	$y_6 = 5.4862$	$y_6 = 5.6817$	y(0.6) = 5.6885
0.7	$y_7 = 6.0949$	$y_7 = 6.3463$	y(0.7) = 6.3550
0.8	$y_8 = 6.7744$	$y_8 = 7.0912$	y(0.8) = 7.1022
0.9	$y_9 = 7.5318$	$y_9 = 7.9247$	y(0.9) = 7.9384
1	$y_{10} = 8.3750$	$y_{10} = 8.8563$	y(1) = 8.8731

Graph of Solution: Actual, Euler's and Improved Euler's



The Improved Euler's solution is very close to the actual solution

Solution: Comparison of the numerical simulations

- It is very clear that the Improved Euler's method does a substantially better job of tracking the actual solution
- The Improved Euler's method requires only one additional function, f(t, y), evaluation for this improved accuracy
- At t = 1, the Euler's method has a -5.6% error from the actual solution
- At t = 1, the Improved Euler's method has a -0.19% error from the actual solution

Improved Euler's Method Error

Improved Euler's Method Error

- Showed earlier that Euler's method had a local truncation error of $\mathcal{O}(h^2)$ with global error being $\mathcal{O}(h)$
- Similar Taylor expansions (in two variables) give the local truncation error for the Improved Euler's method as $\mathcal{O}(h^3)$
- For Improved Euler's method, the global truncation error is $\mathcal{O}(h^2)$
- From a practical perspective, these results imply:
 - With Euler's method, the reduction of the stepsize by a factor of 0.1 gains one digit of accuracy
 - With Improved Euler's method, the reduction of the stepsize by a factor of 0.1 gains two digits of accuracy
 - This is a **significant improvement** at only the cost of one additional function evaluation per step

Numerical Example

Numerical Example: Consider the IVP

$$\frac{dy}{dt} = 2e^{-0.1t} - \sin(y), \qquad y(0) = 3,$$

which has no exact solution, so must solve numerically

- Solve this problem with Euler's method and Improved Euler's method
- Show differences with different stepsizes for $t \in [0, 5]$
- Show the order of convergence by halving the stepsize twice
- Graph the solution and compare to solution from *ode23* in MatLab, closely approximating the exact solution

Numerical Example

Numerical Solution for $\frac{dy}{dt} = 2e^{-0.1t} - \sin(y)$, y(0) = 3

Used MatLab's ode 45 to obtain an accurate numerical solution to compare **Euler's method** and **Improved Euler's method** with stepsizes h = 0.2, h = 0.1, and h = 0.05

	"Actual"	Euler	Im Eul	Euler	Im Eul	Euler	Im Eul
t_n		h = 0.2	h = 0.2	h = 0.1	h = 0.1	h = 0.05	h = 0.05
0	3	3	3	3	3	3	3
1	5.5415	5.4455	5.5206	5.4981	5.5361	5.5209	5.5401
2	7.1032	7.1718	7.0881	7.1368	7.0995	7.1199	7.1023
3	7.753	7.836	7.743	7.7939	7.7505	7.7734	7.7524
4	8.1774	8.2818	8.167	8.2288	8.1748	8.2029	8.1768
5	8.5941	8.7558	8.5774	8.6737	8.5899	8.6336	8.5931
		1.88%	-0.194%	0.926%	-0.0489%	0.460%	-0.0116%

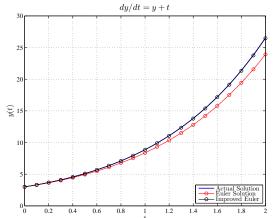
Last row shows percent error between the different approximations and the accurate solution

Numerical Example

Error of Numerical Solutions

- Observe that the Improved Euler's method with stepsize h = 0.2 is more accurate at t = 5 than Euler's method with stepsize h = 0.05
- With **Euler's method** the error cuts in half with halving of the stepsize
- With the **Improved Euler's method** the errors cuts in quarter with halving of the stepsize

Graph of Solution: Actual, Euler's and Improved Euler's methods with h=0.2



The Improved Euler's solution is very close to the actual solution

Order of Error

Error of Numerical Solutions

- Order of Error without good "Actual solution"
 - Simulate system with stepsizes h, h/2, and h/4 and define these simulates as y_n^1 , y_n^2 , and y_n^3 , respectively
 - Compute the ratio (from Cauchy sequence)

$$R = \frac{|y_n^3 - y_n^2|}{|y_n^2 - y_n^1|}$$

- If the numerical method is **order** m, then this ratio is approximately $\frac{1}{2m}$
- Above example at t = 5 has R = 0.488 for Euler's method and R = 0.256 for Improved Euler's method
- Allows user to determine how much error numerical routine is generating

