

Introduction Euler's Method Improved Euler's Method

Introduction

Introduction

- Most differential equations can **not** be solved exactly
- Use the definition of the derivative to create a **difference** equation
- Develop numerical methods to solve differential equations
 - Euler's Method
 - Improved Euler's Method

Initial Value Problem: Consider

$$\frac{dy}{dt} = f(t, y) \quad \text{with} \quad y(t_0) = y_0$$

• From the definition of the derivative

Euler's Method

Improved Euler's Method

$$\frac{dy}{dt} = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h}$$

Euler Error Analysis

• Instead of taking the limit, fix h, so

$$\frac{dy}{dt} \approx \frac{y(t+h) - y(t)}{h}$$

• Substitute into the differential equation and with algebra write

$$y(t+h) \approx y(t) + hf(t,y)$$

SDSU

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Euler's Method for a fixed h is

$$y(t+h) = y(t) + hf(t,y)$$

- Geometrically, Euler's method looks at the slope of the tangent line
 - The approximate solution follows the tangent line for a time step \boldsymbol{h}
 - Repeat this process at each time step to obtain an approximation to the solution
- The ability of this method to track the solution accurately depends on the length of the time step, h, and the nature of the function f(t, y)
- This technique is rarely used as it has very bad convergence properties to the actual solution

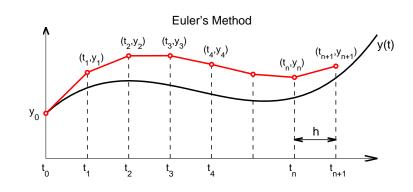
Euler's Method

2

SDSU

SDSU

Graph of Euler's Method



— (6/39)

Malthusian Growth Example

Euler Error Analysis

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (5/39)

Introduction Euler's Method Improved Euler's Method

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Euler's Method

Euler's Method Formula: Euler's method is just a discrete dynamical system for approximating the solution of a continuous model

- Let $t_{n+1} = t_n + h$
- Define $y_n = y(t_n)$
- The initial condition gives $y(t_0) = y_0$
- Euler's Method is the discrete dynamical system

$$y_{n+1} = y_n + h f(t_n, y_n)$$

• Euler's Method only needs the initial condition to start and the right hand side of the differential equation (the slope field), f(t, y) to obtain the approximate solution

Malthusian Growth Example: Consider the model

Introduction

Euler's Method

Improved Euler's Method

$$\frac{dP}{dt} = 0.2 P \qquad \text{with} \qquad P(0) = 50$$

Find the exact solution and approximate the solution with Euler's Method for $t \in [0, 1]$ with h = 0.1

Solution: The exact solution is

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Malthusian Growth Example

$$P(t) = 50 e^{0.2t}$$

3

Introduction Euler's Method Improved Euler's Method Improved Euler's Method

Malthusian Growth Example

Solution (cont): The Formula for Euler's Method is

$$P_{n+1} = P_n + h \, 0.2 \, P_n$$

Malthusian Growth Example

The initial condition P(0) = 50 implies that $t_0 = 0$ and $P_0 = 50$

Create a table for the Euler iterates

t_n	P_n
$t_0 = 0$	$P_0 = 50$
$t_1 = t_0 + h = 0.1$	$P_1 = P_0 + 0.1(0.2P_0) = 50 + 1 = 51$
$t_2 = t_1 + h = 0.2$	$P_2 = P_1 + 0.1(0.2P_1) = 51 + 1.02 = 52.02$
$t_3 = t_2 + h = 0.3$	$P_3 = P_2 + 0.1(0.2P_2) = 52.02 + 1.0404 = 53.0604$

Introduction Euler's Method Improved Euler's Method

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Malthusian Growth Example

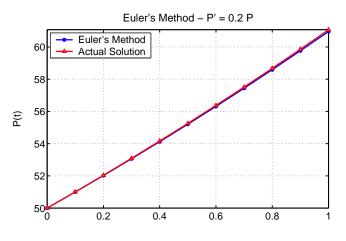
Solution (cont): Iterations are easily continued - Below is table of the actual solution and the Euler's method iterates

t	Euler Solution	Actual Solution
0	50	50
0.1	51	51.01
0.2	52.02	52.041
0.3	53.060	53.092
0.4	54.122	54.164
0.5	55.204	55.259
0.6	56.308	56.375
0.7	57.434	57.514
0.8	58.583	58.676
0.9	59.755	59.861
1.0	60.950	61.070

SDSU

2

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$	— (9/39)	$\textbf{Joseph M. Mahaffy}, \; \langle \texttt{jmahaffy@sdsu.edu} \rangle$	— (10/39)
Introduction Euler's Method Improved Euler's Method	Malthusian Growth Example Euler's Method - MatLab Example with $f(t, y)$ Euler Error Analysis	Introduction Euler's Method Improved Euler's Method	Malthusian Growth Example Euler's Method - MatLab Example with $f(t, y)$ Euler Error Analysis
Malthusian Growth Examp	le 4	Malthusian Growth Examp	le 5



Error Analysis and Larger Stepsize

- The table and the graph shows that Euler's method is tracking the solution fairly well over the interval of the simulation
- The error at t = 1 is only -0.2%
- However, this is a fairly short period of time and the stepsize is relatively small
- What happens when the stepsize is increased and the interval of time being considered is larger?

SDSU

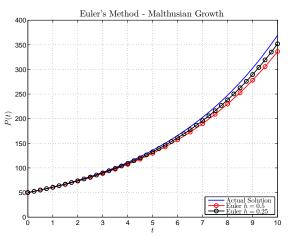
3

505

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Malthusian Growth Example

Graph of Euler's Method with h = 0.5 and h = 0.25



There is a -9% error in the numerical solution at t = 10 for h = 0.5, and a -4.7% error when h = 0.25

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (13/39)

Introduction Euler's Method Improved Euler's Method

Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Euler's Method - MatLab

Define a MatLab function for Euler's method for any function (func) with stepsize $h, t \in [t_0, t_f]$, and $y(t_0) = y_0$ function [t, y] = euler(func, h, t0, tf, y0)1 % Euler's Method - Stepsize h, time from t0 to tf, initial 2 y is y0 3 % Create time interval and initialize y 4 t = [t0:h:tf];y(1) = y0;6 % Loop for Euler's method 8 for i = 1: length (t) - 19 y(i+1) = y(i) + h*(feval(func, t(i), y(i)));10 end 11 12 % Create column vectors t and y 13t = t';14 15y = y';16 17end

Malthusian Growth Example **Euler's Method - MatLab** Example with f(t, y)Euler Error Analysis

Euler's Method - Algorithm

Algorithm (Euler's Method)

Consider the initial value problem

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0.$$

Let h be a fixed stepsize and define $t_n = t_0 + nh$. Also, let $y(t_n) = y_n$. Euler's Method for approximating the solution to the IVP satisfies the difference equation

$$y_{n+1} = y_n + hf(t_n, y_n)$$

SDSU

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle = -(14/39)$

 Introduction

 Euler's Method

 Mathing and Growth Example

 Euler's Method

 Improved Euler's Method

 Our initial example was $\frac{dP}{dt} = 0.2P$ with P(0) = 50

 1
 function z = pop(t, y) 2

 2
 % Malthusian growth
 3
 z = 0.2*y;

4 end

SDSU

Create graph shown above

```
tt = linspace(0, 10, 200);
 1
 2
      yy = 50 * exp(0.2 * tt);
                                                  % Actual solution
 3
      [t, y] = euler (@pop, 0.5, 0, 10, 50);
                                                 % Implement Euler's method, 0.5
      [t1,y1]=euler(@pop,0.25,0,10,50); % Implement Euler's method, 0.25
 4
      plot(tt,yy,'b-','LineWidth',1.5); % Actual solution
 5
                                                   % Plots Multiple graphs
      hold on
      plot(t,y, 'r-o', 'LineWidth', 1.5, 'MarkerSize',7); % Euler h = 0.5
plot(t1,y1, 'k-o', 'LineWidth', 1.5, 'MarkerSize',7); % Euler h = 0.25
 7
 8
                                                    \%~{\rm Adds}~{\rm Gridlines}
 9
      grid
      \mathbf{h} = \mathbf{legend} ('Actual Solution', 'Euler \mathbf{h} = 0.5\mathbf{s}', 'Euler \mathbf{h} = 0.25\mathbf{s}', 4)
10
      set(h, 'Interpreter', 'latex') % Allow LaTeX in legend
11
12
      axis([0 10 0 400]); % Defines limits of graph
```

Introduction Euler's Method Euler's Method

Euler's Method with f(t, y)

Euler's Method with f(t, y): Consider the model

$$\frac{dy}{dt} = y + t$$
 with $y(0) = 3$

Find the solution to this initial value problem

Rewrite this linear DE and find the integrating factor:

$$\frac{dy}{dt} - y = t$$
 with $\mu(t) = e^{-t}$

Solving

$$\frac{d}{dt}(e^{-t}y) = te^{-t}$$
 or $e^{-t}y(t) = \int te^{-t}dt = -(t+1)e^{-t} + C$

With the initial condition the solution is

$$y(t) = 4e^t - t - 1$$

SDSU

Euler's Method with f(t, y)

Solution (cont): Euler's formula with h = 0.25 is

$$y_{n+1} = y_n + 0.25(y_n + t_n)$$

t_n	Euler solution y_n
$t_0 = 0$	$y_0 = 3$
$t_1 = 0.25$	$y_1 = y_0 + h(y_0 + t_0) = 3 + 0.25(3 + 0) = 3.75$
$t_2 = 0.5$	$y_2 = y_1 + h(y_1 + t_1) = 3.75 + 0.25(3.75 + 0.25) = 4.75$
$t_3 = 0.75$	$y_3 = y_2 + h(y_2 + t_2) = 4.75 + 0.25(4.75 + 0.5) = 6.0624$
$t_4 = 1$	$y_4 = y_3 + h(y_3 + t_3) = 6.0624 + 0.25(6.0624 + 0.75) = 7.7656$

Actual solution is y(1) = 8.8731, so the Euler solution has a -12.5% error

If h = 0.1, after 10 steps $y(1) \approx y_{10} = 8.3750$ with -5.6% error

DSU

Joseph M. Mahaffy,
$$\langle jmahaffy@sdsu.edu \rangle$$
- (17/39)Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ - (18/39)Introduction
Euler's Method
Improved Euler's MethodMalthusian Growth Example
Euler's Method - MatLab
Example with $f(t, y)$
Euler Error AnalysisIntroduction
Euler's Method
Improved Euler's MethodMalthusian Growth Example
Euler's Method, MatLab
Example with $f(t, y)$
Euler Error AnalysisEuler's Method with $f(t, y)$ 3Euler Error Analysis

Solution (cont): Euler's formula with different h is

$$y_{n+1} = y_n + h(y_n + t_n)$$

t_n	h = 0.2	h = 0.1	h = 0.05	h = 0.025	Actual
0.2	3.6	3.64	3.662	3.6736	3.6856
0.4	4.36	4.4564	4.5098	4.538	4.5673
0.6	5.312	5.4862	5.5834	5.6349	5.6885
0.8	6.4944	6.7744	6.9315	7.015	7.1022
1	7.9533	8.375	8.6132	8.7403	8.8731
2	21.7669	23.91	25.16	25.8383	26.5562
% Err	-18.0	-9.96	-5.26	-2.70	

We see the percent error at t = 2 (compared to the actual solution) declining by about $\frac{1}{2}$ as h is halved

• Consider the solution of the IVP y' = f(t, y), $y(t_0) = y_0$ denoted $\phi(t)$

- Euler's formula, $y_{n+1} = y_n + hf(t_n, y_n)$, approximates $y_n \approx \phi(t_n)$
- $\bullet\,$ Expect the error to decrease as h decreases
- How small does h have to be to reach a certain tolerance?
- Errors
 - Local truncation error, e_n , is the amount of error at each step
 - Global truncation error, E_n , is the amount of error between the algorithm and $\phi(t)$
 - Round-off error, R_n , is the error due to the fact that computers hold finite digits

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Local Truncation Error

Assume that $\phi(t)$ solves the IVP, so

$$\phi'(t) = f(t, \phi(t))$$

Use Taylor's theorem with a remainder, then

$$\phi(t_n + h) = \phi(t_n) + \phi'(t_n)h + \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

where $\bar{t}_n \in (t_n, t_n + h)$

From ϕ being a solution of the IVP

$$\phi(t_{n+1}) = \phi(t_n) + hf(t_n, \phi(t_n)) + \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

If $y_n = \phi(t_n)$ is the correct solution, then the **Euler approximate** solution at t_{n+1} is

$$y_{n+1}^* = \phi(t_n) + hf(t_n, \phi(t_n)),$$

so the local truncation error satisfies

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

$$e_{n+1} = \phi(t_{n+1}) - y_{n+1}^* = \frac{1}{2}\phi''(\bar{t}_n)h^2$$

-(21/39)

Malthusian Growth Example

Example with f(t, y)

Euler Error Analysis

Introduction **Euler's Method** Improved Euler's Method

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Local Truncation Error

Since the local truncation error satisfies

$$e_{n+1} = \frac{1}{2}\phi''(\bar{t}_n)h^2,$$

then if there is a **uniform bound** $M = \max_{t \in [a,b]} |\phi''(t)|$, the local error is bounded with

$$|e_n| \le \frac{Mh^2}{2}$$

Thus, Euler's Method is said to have a local truncation error of order h^2 often denoted $\mathcal{O}(h^2)$

This result allows the choice of a stepsize to keep the numerical solution within a certain tolerance, say ε , or

$$\frac{Mh^2}{2} \le \varepsilon \qquad \text{or} \qquad h \le \sqrt{2\varepsilon/M}$$

Often difficult to estimate either $|\phi''(t)|$ or M

SDSU

2

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (22/39)

Introduction Euler's Method Improved Euler's Method

Malthusian Growth Example Euler's Method - MatLab Example with f(t, y)Euler Error Analysis

Global Truncation and Round-Off Error

Other Errors - continued

SDSU

SDSU

- Round-Off Error, R_n
 - This error results from the finite digits in the computer
 - All numbers in a computer are truncated
 - This is beyond the scope of this course

• Total Computed Error

- The total error combines the machine error and the error of the algorithm employed
- It follows that

$$|\phi(t_n) - Y_n| \le |E_n| + |R_n|$$

• The machine error cannot be controlled, but choosing a higher order method allows improving the global truncation error

Global Truncation

• The local truncation error satisfies $|e_n| \leq Mh^2/2$

Introduction Euler's Method

Improved Euler's Method

- This error is most significant for **adaptive numerical routines** where code is created to maintain a certain tolerance
- Global Truncation Error
 - The more important error for the numerical routines is this error over the entire simulation
 - Euler's method can be shown to have a global truncation error,

$|E_n| \le Kh$

- Note error is one order less than local error, which scales proportionally with the stepsize or $|E_n| \leq \mathcal{O}(h)$
- HW problem using Taylor's series and Math induction to prove this result

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Numerical solutions of DEs

Numerical solutions of differential equations

- Euler's Method is simple and intuitive, but lacks accuracy
- Numerical methods are available through standard software
 - MatLab's ode23
 - Maple's dsolve with *numeric* option
- Many types of numerical methods different accuracies and stability
 - Easiest are single stepsize Runge-Kutta methods
 - Software above uses adaptive stepsize Runge-Kutta methods

-(25/39)

- Many other techniques shown in Math 542
- Improved Euler's method (or Heun formula) is a simple extension of Euler's method However, significantly better

SDSU

Introduction Euler's Method Improved Euler's Method Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Improved Euler's Method - Algorithm

Improved Euler's Method - Algorithm

Algorithm (Improved Euler's Method (or Heun Formula))

Consider the initial value problem

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0.$$

Let h be a fixed stepsize. Define $t_n = t_0 + nh$ and the approximate solution $y(t_n) = y_n$.

Approximate y by Euler's Method

$$ye_n = y_n + hf(t_n, y_n)$$

2 Improved Euler's Method is the difference formula

$$y_{n+1} = y_n + \frac{h}{2} \left(f(t_n, y_n) + f(t_n + h, ye_n) \right)$$

Order of Error

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (26/39)

Improved Euler's Method

Improved Euler's Method - MatLab

Introduction

Euler's Method

Introduction Euler's Method Improved Euler's Method

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Improved Euler's Method

Improved Euler's Method Formula: This technique is an easy extension of Euler's Method

- The Improved Euler's method uses an average of the Euler's method and an Euler's method approximation to the function
- This technique requires two function evaluations, instead of one
- Simple two step algorithm for implementation
- $\bullet\,$ Can show this converges as $\mathcal{O}(h^2),$ which is significantly better than Euler's method

Define a MatLab function for the Improved Euler's method for any function (func) with stepsize $h, t \in [t_0, t_f]$, and $y(t_0) = y_0$

- 1 function $[t, y] = im_{euler}(func, h, t0, tf, y0)$
- 2 % Improved Euler's Method Stepsize h, time from t0 to tf, initial y is y0
- 3-% Create time interval and initialize y
- $4 \quad t = [t0:h:tf];$
- 5 y(1) = y0;
- 6~~% Loop for Improved Euler's method
- 7 for i = 1: length(t) 1
- $s \qquad ye = y(i) + h*(feval(func,t(i),y(i))); \ \% \text{ Euler's step}$
- 9 y(i+1) = y(i) + (h/2)*(feval(func,t(i),y(i)) + feval(func,t(i+1),ye));

```
10 end
```

11 $\,$ % Create column vectors t and y

$$12 t = t';$$

- $13 \quad y = y';$
- 14 end

SDSU

Introduction Euler's Method Improved Euler's Method Improved Euler's Method Error Order of Error

Example: Improved Euler's Method

Example: Improved Euler's Method: Consider the initial value problem:

$$\frac{dy}{dt} = y + t$$
 with $y(0) = 3$

• The solution to this differential equation is

$$y(t) = 4e^t - t - 1$$

- Numerically solve this using Euler's Method and Improved Euler's Method using h = 0.1
- Compare these numerical solutions

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

2

SDSU

Example: Improved Euler's Method

Solution: Let $y_0 = 3$, the Euler's formula is

$$y_{n+1} = y_n + h(y_n + t_n) = y_n + 0.1(y_n + t_n)$$

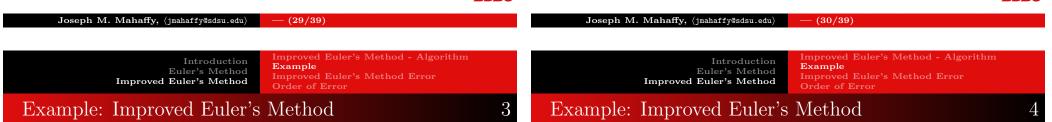
The Improved Euler's formula is

$$ye_n = y_n + h(y_n + t_n) = y_n + 0.1(y_n + t_n)$$

with

$$y_{n+1} = y_n + \frac{h}{2} \left((y_n + t_n) + (ye_n + t_n + h) \right)$$

$$y_{n+1} = y_n + 0.05 \left(y_n + ye_n + 2 t_n + 0.1 \right)$$

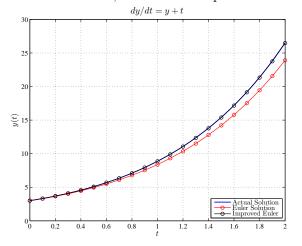


SDSU

Solution: Below is a table of the numerical computations

t	Euler's Method	Improved Euler	Actual
0	$y_0 = 3$	$y_0 = 3$	y(0) = 3
0.1	$y_1 = 3.3$	$y_1 = 3.32$	y(0.1) = 3.3207
0.2	$y_2 = 3.64$	$y_2 = 3.6841$	y(0.2) = 3.6856
0.3	$y_3 = 4.024$	$y_3 = 4.0969$	y(0.3) = 4.0994
0.4	$y_4 = 4.4564$	$y_4 = 4.5636$	y(0.4) = 4.5673
0.5	$y_5 = 4.9420$	$y_5 = 5.0898$	y(0.5) = 5.0949
0.6	$y_6 = 5.4862$	$y_6 = 5.6817$	y(0.6) = 5.6885
0.7	$y_7 = 6.0949$	$y_7 = 6.3463$	y(0.7) = 6.3550
0.8	$y_8 = 6.7744$	$y_8 = 7.0912$	y(0.8) = 7.1022
0.9	$y_9 = 7.5318$	$y_9 = 7.9247$	y(0.9) = 7.9384
1	$y_{10} = 8.3750$	$y_{10} = 8.8563$	y(1) = 8.8731

Graph of Solution: Actual, Euler's and Improved Euler's



The Improved Euler's solution is very close to the actual solution

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Example: Improved Euler's Method

Solution: Comparison of the numerical simulations

- It is very clear that the Improved Euler's method does a substantially better job of tracking the actual solution
- The Improved Euler's method requires only one additional function, f(t, y), evaluation for this improved accuracy
- At t = 1, the Euler's method has a -5.6% error from the actual solution
- At t = 1, the Improved Euler's method has a -0.19% error from the actual solution

Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error

Improved Euler's Method Error

Improved Euler's Method Error

- Showed earlier that Euler's method had a local truncation error of O(h²) with global error being O(h)
- Similar Taylor expansions (in two variables) give the local truncation error for the Improved Euler's method as $\mathcal{O}(h^3)$
- For **Improved Euler's method**, the **global truncation error** is $\mathcal{O}(h^2)$
- From a practical perspective, these results imply:
 - With **Euler's method**, the reduction of the stepsize by a factor of 0.1 gains one digit of accuracy
 - With **Improved Euler's method**, the reduction of the stepsize by a factor of 0.1 gains two digits of accuracy
 - This is a **significant improvement** at only the cost of one additional function evaluation per step

$\mathbf{Joseph} \ \mathbf{M}. \ \mathbf{Mahaffy}, \ \langle \texttt{jmahaffy@sdsu.edu} angle$	— (33/39)	${f Joseph}$ M. Mahaffy, $\langle { t jmahaffy@sdsu.edu} angle$	-(34/39)
Introduction Euler's Method Improved Euler's Method	Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error	Introduction Euler's Method Improved Euler's Method	Improved Euler's Method - Algorithm Example Improved Euler's Method Error Order of Error
Numerical Example	1	Numerical Example	

5050

5

Numerical Example: Consider the IVP

$$\frac{dy}{dt} = 2e^{-0.1t} - \sin(y), \qquad y(0) = 3,$$

which has no exact solution, so must solve numerically

- Solve this problem with **Euler's method** and **Improved Euler's method**
- Show differences with different stepsizes for $t \in [0, 5]$
- Show the order of convergence by halving the stepsize twice
- Graph the solution and compare to solution from *ode23* in MatLab, closely approximating the exact solution

Numerical Solution for $\frac{dy}{dt} = 2e^{-0.1t} - \sin(y), \quad y(0) = 3$

Used MatLab's *ode45* to obtain an accurate numerical solution to compare **Euler's method** and **Improved Euler's method** with stepsizes h = 0.2, h = 0.1, and h = 0.05

	"Actual"	Euler	Im Eul	Euler	Im Eul	Euler	Im Eul
t_n		h = 0.2	h = 0.2	h = 0.1	h = 0.1	h = 0.05	h = 0.05
0	3	3	3	3	3	3	3
1	5.5415	5.4455	5.5206	5.4981	5.5361	5.5209	5.5401
2	7.1032	7.1718	7.0881	7.1368	7.0995	7.1199	7.1023
3	7.753	7.836	7.743	7.7939	7.7505	7.7734	7.7524
4	8.1774	8.2818	8.167	8.2288	8.1748	8.2029	8.1768
5	8.5941	8.7558	8.5774	8.6737	8.5899	8.6336	8.5931
		1.88%	-0.194%	0.926%	-0.0489%	0.460%	-0.0116%

Last row shows percent error between the different approximations and the accurate solution

Improved Euler's Method - Algorith Example Improved Euler's Method Error Order of Error

Numerical Example

Error of Numerical Solutions

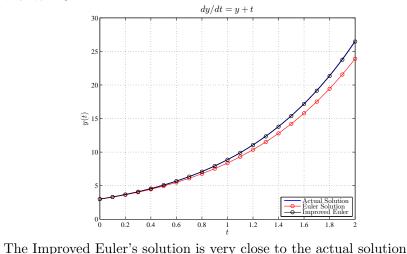
- Observe that the **Improved Euler's method** with stepsize h = 0.2 is more accurate at t = 5 than **Euler's method** with stepsize h = 0.05
- With **Euler's method** the error cuts in half with halving of the stepsize
- With the **Improved Euler's method** the errors cuts in quarter with halving of the stepsize

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Improved Euler's Method - Algorithn Example Improved Euler's Method Error Order of Error

Numerical Example

Graph of Solution: Actual, Euler's and Improved Euler's methods with h = 0.2



-(38/39)

SDSU

3

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (37/39)

Introduction Euler's Method Improved Euler's Method Improved Euler's Method - Algorithm Example Improved Euler's Method Error **Order of Error**

Order of Error

Error of Numerical Solutions

- Order of Error without good "Actual solution"
 - Simulate system with stepsizes h, h/2, and h/4 and define these simulates as y_n^1 , y_n^2 , and y_n^3 , respectively
 - Compute the ratio (from Cauchy sequence)

$$R = \frac{|y_n^3 - y_n^2|}{|y_n^2 - y_n^1|}$$

- If the numerical method is **order** m, then this ratio is approximately $\frac{1}{2^m}$
- Above example at t = 5 has R = 0.488 for Euler's method and R = 0.256 for Improved Euler's method
- Allows user to determine how much error numerical routine is generating

SDSU