Introduction Solutions of Two 1 $^{st}$  Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

# Math 337 - Elementary Differential Equations Lecture Notes – Systems of Two First Order Equations: Part B

Joseph M. Mahaffy, ⟨jmahaffy@sdsu.edu⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2022



### Outline

- 1 Introduction
- 2 Solutions of Two  $1^{st}$  Order Linear DEs
  - Existence and Uniqueness
- 3 Homogeneous Linear System of Autonomous DEs
  - Superposition and Linear Independence
  - Fundamental Solution
  - Eigenvalue Problem
- 4 Case Studies and Bifurcation
  - Real and Different Eigenvalues
  - Complex Eigenvalues
  - Repeated Eigenvalues
  - Bifurcation Example and Stability Diagram



#### Introduction

#### Introduction

- This is the second part of notes for Systems of Two 1<sup>st</sup> Order Differential Equations
- Part A has the topics below
  - A motivating example of a Greenhouse/Rockbed system of passive heating
  - Solutions for the example above illustrating key techniques
  - Graphs for direction fields and phase portraits
  - MatLab and Maple introduced for these problems
- Part B has the following topics
  - Definitions and theorems for Systems of Two 1<sup>st</sup> Order Differential Equations
  - Superposition and linear independence
  - Solving with eigenvalue techniques
  - Analysis of different cases with their phase portraits



## General Linear System - 2D

#### General System of Two 1<sup>st</sup> Order Linear DEs

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} p_{11}(t)x_1 + p_{12}(t)x_2 + g_1(t) \\ p_{21}(t)x_1 + p_{22}(t)x_2 + g_2(t) \end{pmatrix}, \tag{1}$$

which can be written

$$\dot{\mathbf{x}} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t),$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix}, \quad \text{and} \quad \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}$$

System (1) is a  $1^{st}$  order linear system of DEs of dimension 2

If  $\mathbf{g}(t) = \mathbf{0}$ , then System (1) is **homogeneous**; otherwise it is **nonhomogeneous** 



### Two $1^{st}$ Order Linear DEs

#### Existence and Uniqueness for Two 1st Order Linear DEs

#### Theorem (Existence and Uniqueness)

Let each of the functions  $p_{11},...,p_{22}$ ,  $g_1$ , and  $g_2$  be continuous on an open interval  $I = \{t | t \in (\alpha, \beta)\}$ , let  $t_0$  be any point in I, and let  $x_{10}$  and  $x_{20}$  be any given numbers. Then there exists a unique solution to the system (1):

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} p_{11}(t)x_1 + p_{12}(t)x_2 + g_1(t) \\ p_{21}(t)x_1 + p_{22}(t)x_2 + g_2(t) \end{pmatrix},$$

that also satisfies the initial conditions

$$x_1(t_0) = x_{10}, \qquad x_2(t_0) = x_{20}.$$

Further the solution exists throughout the interval I.



# Linear Autonomous System

**Linear Autonomous System:** If the coefficient matrix  $\mathbf{P}$  and vector function  $\mathbf{g}$  are independent of time, *i.e.*, **constants**, then we have the **linear autonomous system** 

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b},$$

with constant matrix **A** and constant vector **b**.

The **equilibrium solutions** or **critical points** are found by solving:

$$\mathbf{A}\mathbf{x}_e = -\mathbf{b}$$
 or  $\mathbf{x}_e = -\mathbf{A}^{-1}\mathbf{b}$ .

The change of variables  $\mathbf{y} = \mathbf{x} - \mathbf{x}_e$  allows us to concentrate on the homogeneous linear system with constant coefficients

$$\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$$



# Superposition Principle

#### Theorem (Superposition Principle)

Suppose that  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  are solutions of the equation

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t).$$

Then the expression

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t),$$

where  $c_1$  and  $c_2$  are arbitrary constants, is also a solution.

We use the linearity of differentiation and matrices to show this

$$\begin{split} \dot{\mathbf{x}}(t) &= \frac{d}{dt} \left( c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) \right) = c_1 \dot{\mathbf{x}}_1(t) + c_2 \dot{\mathbf{x}}_1(t) \\ &= c_1 \mathbf{A} \mathbf{x}_1(t) + c_2 \mathbf{A} \mathbf{x}_2(t) = \mathbf{A} \left( c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) \right) = \mathbf{A} \mathbf{x}(t) \end{split}$$



## Wronskian and Linear Independence

#### Definition (Wronskian)

Suppose that  $\mathbf{x}_1(t) = [x_{11}(t), x_{21}(t)]^T$  and  $\mathbf{x}_2(t) = [x_{12}(t), x_{22}(t)]^T$ . The **Wronskian** of the solutions  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  is given by the determinant

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

#### Definition (Linear Independence of Solutions)

Suppose that  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  are solutions of  $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$  on some interval I. We say that  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are **linearly dependent** if there exists a constant k such that

$$\mathbf{x}_1(t) = k\mathbf{x}_2(t)$$
, for all  $t$  in  $I$ .

Otherwise,  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are linearly independent.



## Wronskian and Linear Independence

#### Theorem (Wronskian and Linear Independence)

Suppose that

$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix}$$
 and  $\mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$ 

are solutions of  $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$  on an interval I. Then  $\mathbf{x}_1$  and  $\mathbf{x}_2$  are linearly independent if and only if the Wronskian

$$W[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0$$
, for all  $t$  in  $I$ .

The two linearly independent solutions of  $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$  are often called a fundamental set of solutions



#### Fundamental Solutions

#### Theorem (Fundamental Solutions)

Suppose that  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  are two solutions of

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) \tag{2}$$

and that their Wronskian is not zero on an interval I. Then  $\mathbf{x}_1$  and  $\mathbf{x}_2$  form a **fundamental set of solutions** for (2), and the general solution is given by

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t),$$

where  $c_1$  and  $c_2$  are arbitrary constants. If there is a given initial condition  $\mathbf{x}(t_0) = \mathbf{x}_0$ , where  $\mathbf{x}_0$  is any constant vector, then this condition determines the constants  $c_1$  and  $c_2$  uniquely.



# Solving $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

Consider the general problem

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t),$$

where

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right), \qquad \mathbf{A} = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right).$$

We attempt a solution of the form

$$\mathbf{x} = e^{\lambda t} \mathbf{v}, \quad \text{so} \quad \lambda e^{\lambda t} \mathbf{v} = \mathbf{A} e^{\lambda t} \mathbf{v}$$

Since  $e^{\lambda t}$  is never zero,

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 or  $(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$ ,

where **I** is the  $2 \times 2$  identity matrix

This is the classic **eigenvalue problem** 



## Eigenvalue Problem

Thus, solving the homogeneous DE  $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$  is equivalent to solving the **eigenvalue problem** 

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$
 with  $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ .

From Linear Algebra (Math 254) the **eigenvalues** are found by solving

$$\det |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0.$$

This gives the characteristic equation

$$\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

This is a quadratic equation, so easily solved for  $\lambda_1$  and  $\lambda_2$ 

Each  $\lambda_i$  is inserted into  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ , and the corresponding **eigenvectors**,  $\mathbf{v}_i$  are found



Consider  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$  and assume that the eigenvalue problem  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$  has real and different eigenvalues,  $\lambda_1$  and  $\lambda_2$ 

The two solutions are

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1$$
 and  $\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2$ ,

so the Wronskian is

$$W[\mathbf{x}_1(t), \mathbf{x}_2(t)](t) = \begin{vmatrix} v_{11}e^{\lambda_1 t} & v_{12}e^{\lambda_2 t} \\ v_{21}e^{\lambda_1 t} & v_{22}e^{\lambda_2 t} \end{vmatrix} = \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix} e^{(\lambda_1 + \lambda_2)t}$$

Since  $e^{(\lambda_1 + \lambda_2 t)t}$  is nonzero, the Wronskian is nonzero if and only if  $\det |\mathbf{v}_1, \mathbf{v}_2| = 0.$ 

Recall if the Wronskian is nonzero, then  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  form a fundamental set of solutions to the system of DEs



# Linear Algebra Result

#### Theorem

Let **A** have real or complex eigenvalues,  $\lambda_1$  and  $\lambda_2$ , such that  $\lambda_1 \neq \lambda_2$ , and let the corresponding eigenvectors be

$$\mathbf{v}_1 = \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix}$$
 and  $\mathbf{v}_2 = \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix}$ .

If V is the matrix formed from  $v_1$  and  $v_2$  with

$$\mathbf{V} = \left( \begin{array}{cc} v_{11} & v_{12} \\ v_{21} & v_{22} \end{array} \right),$$

then

$$\det |\mathbf{V}| = \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix} \neq 0.$$



The two previous slides show that if **A** has **real and different** eigenvalues,  $\lambda_1$  and  $\lambda_2$ , then the system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

has a fundamental set of solutions

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1$$
 and  $\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2$ ,

where  $\mathbf{v}_1$  and  $\mathbf{v}_2$  are the corresponding eigenvectors for  $\lambda_1$  and  $\lambda_2$ , respectively

It follows that the general solution can be written

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2.$$



Bifurcation Example and Stability Diagram

## Real and Different Eigenvalues

**Example 1:** Consider the example:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -0.5 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} -0.5 - \lambda & 2 \\ 0 & -1 - \lambda \end{vmatrix} = (\lambda + 0.5)(\lambda + 1) = 0,$$

which is the **characteristic equation** with solutions  $\lambda_1 = -0.5$  and  $\lambda_2 = -1$ 



**Example 1 (cont):** For  $\lambda_1 = -0.5$  we have:

$$\begin{pmatrix} -0.5 - \lambda_1 & 2 \\ 0 & -1 - \lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & -0.5 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = -1$  we have:

$$\begin{pmatrix} -0.5 - \lambda_2 & 2 \\ 0 & -1 - \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0.5 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ .



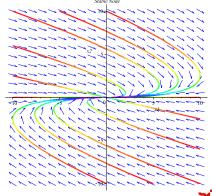
**Example 1 (cont):** The results above give the general solution

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-0.5t} + c_2 \begin{pmatrix} 4 \\ -1 \end{pmatrix} e^{-t},$$

which is a solution exponentially decaying toward the origin.

This is a **sink** or **stable node**.

Solutions move rapidly in the direction  $\xi^{(2)} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ , while decaying more slowly in the direction  $\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 



**Example 2:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ -3 & 4 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} -\lambda & 1 \\ -3 & 4 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0,$$

which is the characteristic equation with solutions  $\lambda_1 = 1$  and  $\lambda_2 = 3$ 



Bifurcation Example and Stability Diagram

## Real and Different Eigenvalues

**Example 2 (cont):** For  $\lambda_1 = 1$  we have:

$$\begin{pmatrix} -\lambda_1 & 1 \\ -3 & 4 - \lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = 3$  we have:

$$\begin{pmatrix} -\lambda_2 & 1 \\ -3 & 4 - \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} -3 & 1 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ .



**Example 2 (cont):** The results above give the general solution

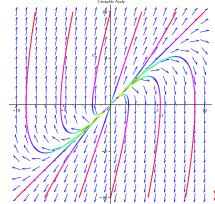
$$\left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) = c_1 \left(\begin{array}{c} 1 \\ 1 \end{array}\right) e^t + c_2 \left(\begin{array}{c} 1 \\ 3 \end{array}\right) e^{3t},$$

which is a solution exponentially growing away from the origin.

This is a **source** or **unstable node**.

Solutions first move away from the origin in the direction  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ,

then asymptotically parallel the direction  $\xi^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$  for larger t





**Example 3:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 3 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} 1 - \lambda & 3 \\ 1 & -1 - \lambda \end{vmatrix} = \lambda^2 - 4 = (\lambda - 2)(\lambda + 2) = 0,$$

which is the characteristic equation with solutions  $\lambda_1 = 2$  and  $\lambda_2 = -2$ 



**Example 3 (cont):** For  $\lambda_1 = 2$  we have:

$$\begin{pmatrix} 1 - \lambda_1 & 3 \\ 1 & -1 - \lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = -2$  we have:

$$\begin{pmatrix} 1 - \lambda_2 & 3 \\ 1 & -1 - \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .

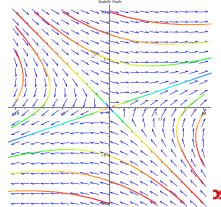


**Example 3 (cont):** The results above give the general solution

$$\left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) = c_1 \left(\begin{array}{c} 3 \\ 1 \end{array}\right) e^{2t} + c_2 \left(\begin{array}{c} 1 \\ -1 \end{array}\right) e^{-2t}.$$

This is a saddle node.

Solutions move toward the origin in the direction  $\xi^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$  and move away from origin in the direction  $\xi^{(1)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$  for larger t



**Example 4:** Consider the example:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Find the general solution to this problem and create a phase portrait.

If we seek equilibria, then

$$\left(\begin{array}{c} 0\\0 \end{array}\right) = \left(\begin{array}{cc} -2&4\\1&-2 \end{array}\right) \left(\begin{array}{c} x_{1e}\\x_{2e} \end{array}\right)$$

However, any solution of the form  $x_{1e} = 2x_{2e}$  is a **critical point**, giving a line of equilibria

Our method from before still applies, so seek  $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$ , which gives the eigenvalue problem below

$$\det \begin{vmatrix} -2 - \lambda & 4 \\ 1 & -2 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda = \lambda(\lambda + 4) = 0,$$

has the characteristic equation with eigenvalues  $\lambda = 0, -4$ 



**Example 4 (cont):** For  $\lambda_1 = 0$  we have:

$$\begin{pmatrix} -2 - \lambda_1 & 4 \\ 1 & -2 - \lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = -4$  we have:

$$\begin{pmatrix} -2 - \lambda_2 & 4 \\ 1 & -2 - \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ .



Example 4 (cont): The eigenvalue problem gives two solutions to the DE

$$\mathbf{x}_1(t) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and  $\mathbf{x}_2(t) = \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-4t}$ 

The Wronskian satisfies

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \det \begin{vmatrix} 2 & 2e^{-4t} \\ 1 & -e^{-4t} \end{vmatrix} = -4e^{-4t} \neq 0,$$

so these do form a fundamental set of solutions

Thus the general solution is given by

$$\left(\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right) = c_1 \left(\begin{array}{c} 2 \\ 1 \end{array}\right) + c_2 \left(\begin{array}{c} 2 \\ -1 \end{array}\right) e^{-4t}.$$



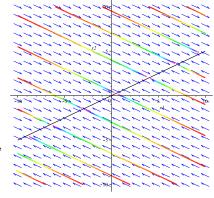
**Example 4 (cont):** The phase portrait for

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-4t}.$$

This is a degenerate case where the line  $x_1 = 2x_2$  all form equilibria.

All solutions **exponentially** approach one of the equilibria along lines parallel to the line  $x1 = -2x_2$ 

Note: There is an unstable case, which we omit, where the eigenvalues satisfy  $\lambda_1 = 0$  and  $\lambda_2 > 0$ 



Consider a system of two linear homogeneous differential equations:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

where **A** is a real-valued matrix.

With a solution of the form  $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$ , there are **eigenvalues**,  $\lambda$ , with corresponding **eigenvectors**,  $\mathbf{v}$  satisfying

$$\det |\mathbf{A} - \lambda \mathbf{I}| = 0$$
 and  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ 

The characteristic equation for the eigenvalues is a quadratic equation.

Assume the eigenvalues are complex, then  $\lambda = \mu \pm i\nu$ , since **A** is real-valued



Assume the DE,  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ , has eigenvalues  $\lambda_1 = \mu + i\nu$  and  $\lambda_2 = \bar{\lambda}_1 = \mu - i\nu$ 

Assume  $\mathbf{v}_1$  is an eigenvector corresponding to  $\lambda_1$ , so

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{v}_1 = \mathbf{0}$$

Taking **conjugates** (with  $\mathbf{A}$ ,  $\mathbf{I}$ , and  $\mathbf{0}$ , real)

$$(\mathbf{A} - \bar{\lambda}_1 \mathbf{I}) \bar{\mathbf{v}}_1 = (\mathbf{A} - \lambda_2 \mathbf{I}) \bar{\mathbf{v}}_1 = \mathbf{0}$$

This gives two complex solutions to the system of DEs

$$\mathbf{x}_1(t) = e^{(\mu + i\nu)t}\mathbf{v_1}$$
 and  $\mathbf{x}_2(t) = e^{(\mu - i\nu)t}\bar{\mathbf{v}}_1$ 

We use **Euler's formula** to separate the solutions into real and imaginary parts

$$e^{i\nu t} = \cos(\nu t) + i\sin(\nu t)$$



Assume the **eigenvector**,  $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b}$ , where  $\mathbf{a}$  and  $\mathbf{b}$  are real-valued, then

$$\mathbf{x}_{1}(t) = (\mathbf{a} + i\mathbf{b})e^{\mu t}(\cos(\nu t) + i\sin(\nu t))$$
$$= e^{\mu t}(\mathbf{a}\cos(\nu t) - \mathbf{b}\sin(\nu t)) + ie^{\mu t}(\mathbf{a}\sin(\nu t) + \mathbf{b}\cos(\nu t))$$

Denote the real and imaginary parts of  $\mathbf{x}_1(t) = \mathbf{u}(t) + i\mathbf{w}(t)$ 

$$\mathbf{u}(t) = e^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t))$$
 and  $\mathbf{w}(t) = e^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t))$ 

A similar calculation gives

$$\mathbf{x}_2(t) = \mathbf{u}(t) - i\mathbf{w}(t),$$

so  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  are complex conjugates.

The desire is to show that  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  are real-valued solutions forming a **fundamental set** for  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ 



Since  $\mathbf{x}_1(t) = \mathbf{u}(t) + i\mathbf{w}(t)$  is a solution to the DE  $\dot{\mathbf{x}}_1 = \mathbf{A}\mathbf{x}_1$ , we have

$$\mathbf{0} = \dot{\mathbf{x}}_1 - \mathbf{A}\mathbf{x}_1 = (\dot{\mathbf{u}} + i\dot{\mathbf{w}}) - \mathbf{A}(\mathbf{u} + i\mathbf{w})$$
$$= (\dot{\mathbf{u}} - \mathbf{A}\mathbf{u}) + i(\dot{\mathbf{w}} - \mathbf{A}\mathbf{w})$$

This vector is zero if and only if the real and imaginary parts are zero, so

$$\dot{\mathbf{u}} - \mathbf{A}\mathbf{u} = \mathbf{0} \qquad \text{and} \qquad \dot{\mathbf{w}} - \mathbf{A}\mathbf{w} = \mathbf{0}$$

or  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  are real-valued solutions of  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ 

It remains to show  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  form a fundamental set of solutions, which is done with the Wronskian



The two solutions are

$$\mathbf{u}(t) = e^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t)) \quad \text{and} \quad \mathbf{w}(t) = e^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t)),$$
so let  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ , then the **Wronskian** satisfies
$$W[\mathbf{u}, \mathbf{w}](t) = \begin{pmatrix} e^{\mu t} (a_1 \cos(\nu t) - b_1 \sin(\nu t)) & e^{\mu t} (a_1 \sin(\nu t) + b_1 \cos(\nu t)) \\ e^{\mu t} (a_2 \cos(\nu t) - b_2 \sin(\nu t)) & e^{\mu t} (a_2 \sin(\nu t) + b_2 \cos(\nu t)) \\ = (a_1 b_2 - a_2 b_1) e^{2\mu t} \end{pmatrix}$$

Assume  $\nu \neq 0$  and the eigenvectors are  $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b}$  and  $\mathbf{v}_2 = \mathbf{a} - i\mathbf{b}$ ,

$$\begin{vmatrix} a_1 + ib_1 & a_1 - ib_1 \\ a_2 + ib_2 & a_2 - ib_2 \end{vmatrix} = -2i(a_1b_2 - a_2b_1) \neq 0$$

by our Theorem from Linear Algebra

Thus, the Wronskian shows  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  form a fundamental set of solutions to our problem

**Example 5:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 3 & -2 \\ 4 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} 3-\lambda & -2\\ 4 & -1-\lambda \end{vmatrix} = \lambda^2 - 2\lambda + 5 = 0,$$

which is the **characteristic equation** with solutions  $\lambda = 1 \pm 2i$  (complex eigenvalues)



**Example 5 (cont):** For  $\lambda_1 = 1 + 2i$  we have:

$$\left(\begin{array}{cc} 3-\lambda_1 & -2 \\ 4 & -1-\lambda_1 \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{cc} 2-2i & -2 \\ 4 & -2-2i \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1-i \end{pmatrix}$ .

We have  $\lambda_2 = \bar{\lambda}_1$  and  $\xi^{(2)} = \bar{\xi}^{(1)}$ 

Thus,

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 1 \\ 1-i \end{pmatrix} e^{t}(\cos(2t) + i\sin(2t)) =$$

$$\mathbf{u}(t) + i\mathbf{w}(t) = \begin{pmatrix} e^{t}\cos(2t) \\ e^{t}(\cos(2t) + \sin(2t)) \end{pmatrix} + i\begin{pmatrix} e^{t}\sin(2t) \\ e^{t}(\sin(2t) - \cos(2t)) \end{pmatrix}$$



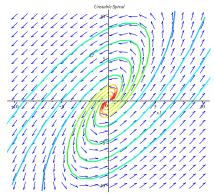
**Example 5 (cont):** From above the general solution is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} e^t \cos(2t) \\ e^t (\cos(2t) + \sin(2t)) \end{pmatrix} + c_2 \begin{pmatrix} e^t \sin(2t) \\ e^t (\sin(2t) - \cos(2t)) \end{pmatrix}.$$

This is an unstable spiral.

All solutions spiral away from the origin.

Solutions with complex eigenvalues with negative real parts spiral toward the origin, creating a stable spiral





#### **Example 6:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 2 & -5 \\ 1 & -2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} 2-\lambda & -5\\ 1 & -2-\lambda \end{vmatrix} = \lambda^2 + 1 = 0,$$

which is the **characteristic equation** with solutions  $\lambda = \pm i$  (purely imaginary eigenvalues)



### Imaginary Eigenvalues

**Example 6 (cont):** For  $\lambda_1 = i$  we have:

$$\left( \begin{array}{cc} 2-\lambda_1 & -5 \\ 1 & -2-\lambda_1 \end{array} \right) \left( \begin{array}{c} \xi_1 \\ \xi_2 \end{array} \right) = \left( \begin{array}{cc} 2-i & -5 \\ 1 & -2-i \end{array} \right) \left( \begin{array}{c} \xi_1 \\ \xi_2 \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \end{array} \right)$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 2+i \\ 1 \end{pmatrix}$ .

We have  $\lambda_2 = \bar{\lambda}_1$  and  $\xi^{(2)} = \bar{\xi}^{(1)}$ 

Thus,

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 2+i \\ 1 \end{pmatrix} (\cos(t) + i\sin(t)) =$$

$$\mathbf{u}(t) + i\mathbf{w}(t) = \begin{pmatrix} 2\cos(t) - \sin(t) \\ \cos(t) \end{pmatrix} + i\begin{pmatrix} 2\sin(t) + \cos(t) \\ \sin(t) \end{pmatrix}$$



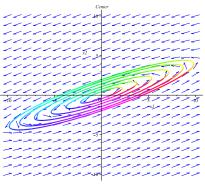
### Imaginary Eigenvalues

**Example 6 (cont):** From above the general solution is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 2\cos(t) - \sin(t) \\ \cos(t) \end{pmatrix} + c_2 \begin{pmatrix} 2\sin(t) + \cos(t) \\ \sin(t) \end{pmatrix}.$$

This is a **center**.

All solutions form ellipses around the origin.



**Example 7:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} 2-\lambda & 0\\ 0 & 2-\lambda \end{vmatrix} = (\lambda - 2)^2 = 0,$$

which has the characteristic equation with solutions  $\lambda = 2$  with an algebraic multiplicity of 2



**Example 7 (cont):** For  $\lambda_1 = \lambda_2 = 2$  we have:

$$\left(\begin{array}{cc} 2 - \lambda_1 & 0 \\ 0 & 2 - \lambda_1 \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

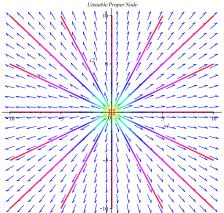
Thus,  $\lambda = 2$  has a geometric multiplicity of 2, so the eigenspace for  $\lambda = 2$  has dimension 2.

It follows that we can select the standard basis vectors as our eigenvectors, which gives the general solution

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{2t}.$$



Example 7 (cont): This DE produces an unstable proper node or star node with all solutions following straight paths away from the origin





**Example 8:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

This is an upper triangular matrix, so its eigenvalues are the diagonal elements.

Thus,  $\lambda = -1$  with an algebraic multiplicity of 2

$$\left(\begin{array}{cc} -1-\lambda & 1 \\ 0 & -1-\lambda \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

This system only has the **1** eigenvector  $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 



**Example 8 (cont):** Since there is only one eigenvector, we obtain the one solution

$$\mathbf{x}_1(t) = \mathbf{v_1} e^{-t} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t}$$

Thus,  $\lambda = -1$  has a **geometric multiplicity** of **1**, so the **eigenspace** for  $\lambda = -1$  has dimension 1.

If we examine the scalar equations, then

$$\dot{x}_1 = -x_1 + x_2$$
 and  $\dot{x}_2 = -x_2$ 

Thus,  $x_2(t) = c_2 e^{-t}$ , so

$$\dot{x}_1 + x_1 = c_2 e^{-t} \qquad \text{with} \qquad \mu(t) = e^t$$

This has the solution

$$x_1(t) = c_2 t e^{-t} + c_1 e^{-t}$$



Example 8 (cont): Combining the results above we see

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 + c_2 t \\ c_2 \end{pmatrix} e^{-t}$$
$$= c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t} + c_2 \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] e^{-t}$$

The second solution has the form

$$\mathbf{x}_2(t) = \mathbf{v}te^{-t} + \mathbf{w}e^{-t}$$

Upon differentiation

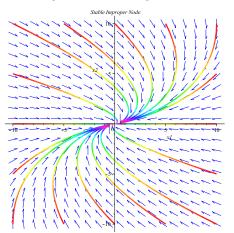
$$\dot{\mathbf{x}}_2(t) = \mathbf{v}(1-t)e^{-t} - \mathbf{w}e^{-t} = \mathbf{A}\mathbf{x}_2 = \mathbf{A}(\mathbf{v}te^{-t} + \mathbf{w}e^{-t})$$

Since  $(\mathbf{A} + \mathbf{I})\mathbf{v} = \mathbf{0}$ , this reduces to solving for  $\mathbf{w}$ 

$$(\mathbf{A} + \mathbf{I})\mathbf{w} = \mathbf{v}$$
 or  $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + k \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 



Example 8 (cont): This DE produces a stable improper node with all solutions moving toward the origin





### Repeated Eigenvalues - General

#### Repeated Eigenvalues - Two Dimensional Null Space

Suppose the  $2 \times 2$  matrix **A** has a repeated eigenvalue  $\lambda$ .

If the eigenspace spanned by the eigenvectors has dimension 2,  $\mathbf{v}_1$  and  $\mathbf{v}_2$ , then the solution is simply

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda t} + c_2 \mathbf{v}_2 e^{\lambda t}$$



(47/54)

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### Repeated Eigenvalues - General

Repeated Eigenvalues - One Dimensional Null Space If the  $2 \times 2$  matrix **A** has only one eigenvector **v** associated with  $\lambda$ , then one solution is

$$\mathbf{x}_1(t) = \mathbf{v}e^{\lambda t}$$

We attempt a second solution of the form

$$\mathbf{x}_2(t) = \mathbf{v}te^{\lambda t} + \mathbf{w}e^{\lambda t},$$

which upon differentiation gives

$$\dot{\mathbf{x}}_2(t) = \mathbf{v}(\lambda t + 1)e^{\lambda t} + \lambda \mathbf{w}e^{\lambda t} = \mathbf{A}\mathbf{x}_2 = \mathbf{A}(\mathbf{v}te^{\lambda t} + \mathbf{w}e^{\lambda t})$$

Since  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ , this reduces to solving for  $\mathbf{w}$ 

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{w} = \mathbf{v}$$

This gives the second linearly independent solution,  $\mathbf{x}_2(t)$ , above, where  $\mathbf{w}$  solves this **higher order null space problem**, which will include a particular solution and any multiple,  $k\mathbf{v}$ 



**Bifurcation Example:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} \alpha & 2 \\ -2 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right),$$

which contains a parameter  $\alpha$  that affects the behavior of this system

We want to determine the different qualitative behaviors for different values of  $\alpha$ 

The eigenvalues satisfy

$$\det \begin{vmatrix} \alpha - \lambda & 2 \\ -2 & -\lambda \end{vmatrix} = \lambda^2 - \alpha\lambda + 4 = 0$$

Thus, the eigenvalues satisfy

$$\lambda = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$$



Bifurcation Example: For

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \alpha & 2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{3}$$

The eigenvalues are  $\lambda = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$ 

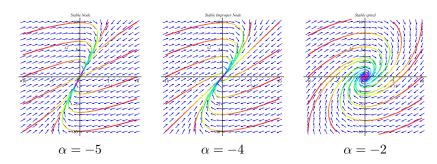
Classifications as  $\alpha$  varies are:

- For  $\alpha < -4$ , System (3) is a **Stable Node**
- For  $\alpha = -4$ , System (3) is a **Stable Improper Node**
- For  $-4 < \alpha < 0$ , System (3) is a **Stable Spiral**
- For  $\alpha = 0$ , System (3) is a **Center**
- For  $0 < \alpha < 4$ , System (3) is a **Unstable Spiral**
- For  $\alpha = 4$ , System (3) is a **Unstable Improper Node**
- For  $\alpha > 4$ , System (3) is a **Unstable Node**



#### **Bifurcation Example:** Phase Portraits ( $\alpha < 0$ )

Observe a smooth transition as eigenvalues change from negative to complex with negative real part

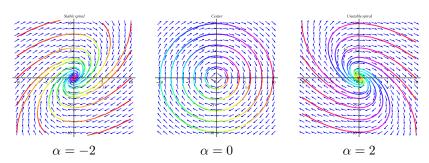




4

#### **Bifurcation Example:** Phase Portraits $(-4 < \alpha < 4)$

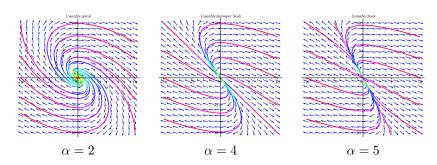
Observe the transitions as complex eigenvalues change from negative real part to positive real part - This is a significant part of a **Hopf** bifurcation





#### **Bifurcation Example:** Phase Portraits ( $\alpha > 0$ )

Observe a smooth transition as eigenvalues change from complex with positive real part to positive real values





# Stability Diagram

Consider the system

$$\dot{\mathbf{x}} = \mathbf{J}\mathbf{x}$$

Let  $\lambda_1$  and  $\lambda_2$  be eigenvalues of  $\mathbf{J}\mathbf{x}$ 

Results from Linear Algebra give  $tr(\mathbf{J}) = \lambda_1 + \lambda_2$ ,  $\det |\mathbf{J}| = \lambda_1 \cdot \lambda_2$ , and  $D = (j_{11} - j_{22})^2 + 4j_{12}j_{21}$ 

The figure shows the **Stability Diagram** for  $\dot{\mathbf{x}} = \mathbf{J}\mathbf{x}$  with axes of  $tr(\mathbf{J})$  vs det  $|\mathbf{J}|$ 

