Math 337 - Elementary Differential Equations

Lecture Notes – Systems of Two First Order Equations: Part B

Joseph M. Mahaffy, {jmahaffy@sdsu.edu}

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2022

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle = -(1/54)$

Introduction Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

Introduction

Introduction

- This is the second part of notes for Systems of Two 1st Order Differential Equations
- Part A has the topics below
 - A motivating example of a Greenhouse/Rockbed system of passive heating
 - Solutions for the example above illustrating key techniques
 - Graphs for **direction fields** and **phase portraits**
 - MatLab and Maple introduced for these problems
- Part B has the following topics
 - Definitions and theorems for Systems of Two 1st Order Differential Equations
 - Superposition and linear independence
 - Solving with **eigenvalue techniques**
 - Analysis of different cases with their phase portraits

Outline

General Linear System - 2D

Introduction

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Solutions of Two 1st Order Linear DEs

Homogeneous Linear System of Autonomous DE

General System of Two 1st Order Linear DEs

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} p_{11}(t)x_1 + p_{12}(t)x_2 + g_1(t) \\ p_{21}(t)x_1 + p_{22}(t)x_2 + g_2(t) \end{pmatrix},$$
(1)

-(2/54)

Existence and Uniqueness

which can be written

$$\dot{\mathbf{x}} = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$$

where

SDSU

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{P}(t) = \begin{pmatrix} p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t) \end{pmatrix}, \quad \text{and} \quad \mathbf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \end{pmatrix}$$

System (1) is a 1^{st} order linear system of DEs of dimension 2

If $\mathbf{g}(t) = \mathbf{0}$, then System (1) is **homogeneous**; otherwise it is **nonhomogeneous**

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (3/54)

Two 1^{st} Order Linear DEs

Existence and Uniqueness for Two 1st Order Linear DEs

Theorem (Existence and Uniqueness)

Let each of the functions $p_{11},...,p_{22}$, g_1 , and g_2 be continuous on an open interval $I = \{t | t \in (\alpha, \beta)\}$, let t_0 be any point in I, and let x_{10} and x_{20} be any given numbers. Then there exists a unique solution to the system (1):

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} p_{11}(t)x_1 + p_{12}(t)x_2 + g_1(t) \\ p_{21}(t)x_1 + p_{22}(t)x_2 + g_2(t) \end{pmatrix},$$

that also satisfies the initial conditions

$$x_1(t_0) = x_{10}, \qquad x_2(t_0) = x_{20}.$$

Further the solution exists throughout the interval I.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) = (5/54)

Introduction Solutions of Two 1st Order Linear DEs **Homogeneous Linear System of Autonomous DE** Case Studies and Bifurcation Superposition and Linear Independence Fundamental Solution Figenvalue Problem

Superposition Principle

Theorem (Superposition Principle)

Suppose that $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are solutions of the equation

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t).$$

Then the expression

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t),$$

where c_1 and c_2 are arbitrary constants, is also a solution.

We use the linearity of differentiation and matrices to show this

$$\dot{\mathbf{x}}(t) = \frac{d}{dt} (c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)) = c_1 \dot{\mathbf{x}}_1(t) + c_2 \dot{\mathbf{x}}_1(t) = c_1 \mathbf{A} \mathbf{x}_1(t) + c_2 \mathbf{A} \mathbf{x}_2(t) = \mathbf{A} (c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)) = \mathbf{A} \mathbf{x}(t)$$

SDSU

Superposition and Linear Independence Fundamental Solution Eigenvalue Problem

Linear Autonomous System

Linear Autonomous System: If the coefficient matrix **P** and vector function **g** are independent of time, *i.e.*, **constants**, then we have the **linear autonomous system**

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b},$$

with constant matrix A and constant vector b.

The **equilibrium solutions** or **critical points** are found by solving:

$$\mathbf{A}\mathbf{x}_e = -\mathbf{b}$$
 or $\mathbf{x}_e = -\mathbf{A}^{-1}\mathbf{b}$

The change of variables $\mathbf{y} = \mathbf{x} - \mathbf{x}_e$ allows us to concentrate on the homogeneous linear system with constant coefficients

 $\dot{\mathbf{y}} = \mathbf{A}\mathbf{y}$

5**D**50

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (6/54)

Introduction Solutions of Two 1st Order Linear DEs **Homogeneous Linear System of Autonomous DE** Case Studies and Bifurcation

Superposition and Linear Independence Fundamental Solution Eigenvalue Problem

Wronskian and Linear Independence

Definition (Wronskian)

Suppose that $\mathbf{x}_1(t) = [x_{11}(t), x_{21}(t)]^T$ and $\mathbf{x}_2(t) = [x_{12}(t), x_{22}(t)]^T$. The **Wronskian** of the solutions $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ is given by the determinant

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t) \end{vmatrix}$$

Definition (Linear Independence of Solutions)

Х

Suppose that $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are solutions of $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ on some interval I. We say that \mathbf{x}_1 and \mathbf{x}_2 are **linearly dependent** if there exists a constant k such that

$$\mathbf{x}_1(t) = k\mathbf{x}_2(t), \quad \text{for all } t \text{ in } I.$$

Otherwise, \mathbf{x}_1 and \mathbf{x}_2 are linearly independent.

Superposition and Linear Independence Fundamental Solution Eigenvalue Problem

Wronskian and Linear Independence

Theorem (Wronskian and Linear Independence)

Suppose that

$$\mathbf{x}_1(t) = \begin{pmatrix} x_{11}(t) \\ x_{21}(t) \end{pmatrix} \quad \text{and} \quad \mathbf{x}_2(t) = \begin{pmatrix} x_{12}(t) \\ x_{22}(t) \end{pmatrix}$$

are solutions of $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ on an interval *I*. Then \mathbf{x}_1 and \mathbf{x}_2 are **linearly independent** if and only if the **Wronskian**

 $W[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0,$ for all t in I.

The two linearly independent solutions of $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ are often called a **fundamental set of solutions**

SDSU

Introduction Solutions of Two 1st Order Linear DEs **Homogeneous Linear System of Autonomous DE** Case Studies and Bifurcation

Superposition and Linear Independence Fundamental Solution Eigenvalue Problem

Fundamental Solutions

Theorem (Fundamental Solutions)

Suppose that $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are two solutions of

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) \tag{2}$$

and that their Wronskian is not zero on an interval I. Then \mathbf{x}_1 and \mathbf{x}_2 form a **fundamental set of solutions** for (2), and the general solution is given by

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t),$$

where c_1 and c_2 are arbitrary constants. If there is a given initial condition $\mathbf{x}(t_0) = \mathbf{x}_0$, where \mathbf{x}_0 is any constant vector, then this condition determines the constants c_1 and c_2 uniquely.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(9/54)Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(10/54)Introduction Introduction Superposition and Linear Independence Superposition and Linear Independence Solutions of Two 1^{st} Order Linear DEs Solutions of Two 1^{st} Order Linear DEs Fundamental Solution Fundamental Solution Homogeneous Linear System of Autonomous DE Homogeneous Linear System of Autonomous DE **Eigenvalue Problem Eigenvalue Problem** Case Studies and Bifurcation Case Studies and Bifurcation Solving $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ **Eigenvalue** Problem

Consider the general problem

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \qquad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

We attempt a solution of the form

$$\mathbf{x} = e^{\lambda t} \mathbf{v}, \quad \text{so} \quad \lambda e^{\lambda t} \mathbf{v} = \mathbf{A} e^{\lambda t} \mathbf{v}$$

Since $e^{\lambda t}$ is never zero,

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 or $(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$

where **I** is the 2×2 identity matrix

This is the classic **eigenvalue problem**

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (11/54)

Thus, solving the homogeneous DE $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ is equivalent to solving the **eigenvalue problem**

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$
 with $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

From Linear Algebra (Math 254) the **eigenvalues** are found by solving

$$\det |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0.$$

This gives the characteristic equation

$$\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}a_{21} = 0$$

This is a quadratic equation, so easily solved for λ_1 and λ_2

Each λ_i is inserted into $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$, and the corresponding **eigenvectors**, \mathbf{v}_i are found

SDSU

SDSU

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (12/54)

Introduction Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Real and Different Eigenvalues

Consider $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ and assume that the **eigenvalue problem** $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ has **real and different eigenvalues**, λ_1 and λ_2

The two solutions are

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2$,

so the **Wronskian** is

$$W[\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)](t) = \begin{vmatrix} v_{11}e^{\lambda_{1}t} & v_{12}e^{\lambda_{2}t} \\ v_{21}e^{\lambda_{1}t} & v_{22}e^{\lambda_{2}t} \end{vmatrix} = \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix} e^{(\lambda_{1}+\lambda_{2})t}$$

-(13/54)

Since $e^{(\lambda_1+\lambda_2 t)t}$ is nonzero, the Wronskian is nonzero if and only if det $|\mathbf{v}_1, \mathbf{v}_2| = 0$.

Recall if the Wronskian is nonzero, then $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ form a **fundamental set of solutions** to the system of DEs

SDSU

Introduction Real Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation Bifur

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

Linear Algebra Result

Theorem

Let **A** have real or complex eigenvalues, λ_1 and λ_2 , such that $\lambda_1 \neq \lambda_2$, and let the corresponding eigenvectors be

$$\mathbf{v}_1 = \left(\begin{array}{c} v_{11} \\ v_{21} \end{array} \right)$$
 and $\mathbf{v}_2 = \left(\begin{array}{c} v_{12} \\ v_{22} \end{array} \right).$

If V is the matrix formed from $\mathbf{v_1}$ and $\mathbf{v_2}$ with

$$\mathbf{V} = \left(\begin{array}{cc} v_{11} & v_{12} \\ v_{21} & v_{22} \end{array}\right),\,$$

1 111 1110

then

$$\det |\mathbf{V}| = \begin{vmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{vmatrix} \neq 0.$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (14/54)

Real and Different Eigenvalues **Real and Different Eigenvalues** Introduction Introduction Solutions of Two 1st Order Linear DEs Solutions of Two 1st Order Linear DEs **Complex Eigenvalues Complex Eigenvalues** Homogeneous Linear System of Autonomous DE Homogeneous Linear System of Autonomous DE **Repeated Eigenvalues Repeated Eigenvalues Case Studies and Bifurcation** Case Studies and Bifurcation Bifurcation Example and Stability Diagram Bifurcation Example and Stability Diagram **Real and Different Eigenvalues Real and Different Eigenvalues**

The two previous slides show that if **A** has **real and different eigenvalues**, λ_1 and λ_2 , then the system

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

has a fundamental set of solutions

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda_2 t} \mathbf{v}_2$,

where \mathbf{v}_1 and \mathbf{v}_2 are the corresponding eigenvectors for λ_1 and λ_2 , respectively

It follows that the general solution can be written

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v}_1 + c_2 e^{\lambda_2 t} \mathbf{v}_2.$$

Example 1: Consider the example:

$$\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} -0.5 & 2\\ 0 & -1 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait. From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \left| \begin{array}{cc} -0.5-\lambda & 2 \\ 0 & -1-\lambda \end{array} \right| = (\lambda+0.5)(\lambda+1) = 0,$$

which is the **characteristic equation** with solutions $\lambda_1 = -0.5$ and $\lambda_2 = -1$

SDSU

Real and Different Eigenvalues

Example 1 (cont): For $\lambda_1 = -0.5$ we have:

$$\begin{pmatrix} -0.5 - \lambda_1 & 2 \\ 0 & -1 - \lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & -0.5 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This results in the eigenvector $\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Similarly, for $\lambda_2 = -1$ we have:

$$\begin{pmatrix} -0.5 - \lambda_2 & 2\\ 0 & -1 - \lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0.5 & 2\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector $\xi^{(2)} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

Introduction Solutions of Two 1^{st} Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

Real and Different Eigenvalues

Example 1 (cont): The results above give the general solution

$$\begin{array}{c} x_1(t) \\ x_2(t) \end{array} \right) = c_1 \left(\begin{array}{c} 1 \\ 0 \end{array} \right) e^{-0.5t} + c_2 \left(\begin{array}{c} 4 \\ -1 \end{array} \right) e^{-t},$$

which is a solution exponentially decaying toward the origin.

This is a **sink** or **stable node**.

Solutions move rapidly in the direction $\xi^{(2)} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, while decaying more slowly in the direction $\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Stable Node	
11111111111111111111111111111111111111	
1111111111111111111	
Manan Barren Mark	
11111111111111111111111111111111111111	
Will (111 / Concernance	
	_
11/1/ MANAGARANAN	
Willight continues	
VIVVVV Processes	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
VIVILLAND CONTRACTOR	
VIVVIV Carlor Cardon	
111111111111111111111111111111111111111	

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(17/54)Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(18/54)Real and Different Eigenvalues Real and Different Eigenvalues Introduction Introduction Solutions of Two 1st Order Linear DEs Solutions of Two 1st Order Linear DEs **Complex Eigenvalues Complex Eigenvalues** Homogeneous Linear System of Autonomous DE Homogeneous Linear System of Autonomous DE **Repeated Eigenvalues Repeated Eigenvalues** Case Studies and Bifurcation Bifurcation Example and Stability Diagram Case Studies and Bifurcation Bifurcation Example and Stability Diagram **Real and Different** Eigenvalues **Real and Different Eigenvalues** 5

SDSU

3

**Example 2:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{c} 0 & 1\\ -3 & 4 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait. From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} -\lambda & 1\\ -3 & 4-\lambda \end{vmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0,$$

which is the **characteristic equation** with solutions  $\lambda_1 = 1$  and  $\lambda_2 = 3$ 

**Example 2 (cont):** For  $\lambda_1 = 1$  we have:

$$\begin{pmatrix} -\lambda_1 & 1\\ -3 & 4-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} -1 & 1\\ -3 & 3 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = 3$  we have:

$$\begin{pmatrix} -\lambda_2 & 1\\ -3 & 4-\lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} -3 & 1\\ -3 & 1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ .

SDSU

### **Real and Different Eigenvalues**

**Example 2 (cont):** The results above give the general solution

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^3$$

which is a solution exponentially growing away from the origin.

# This is a **source** or **unstable node**.

Solutions first move away from the origin in the direction  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , then asymptotically parallel the direction  $\xi^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$  for larger t

 $1 ) e^{t} + c_{2} (3) e^{st},$   $\frac{1}{1} \int e^{st} + c_{2} (3) e^{st},$   $\frac{1$ 

Introduction Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

#### Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### **Real and Different Eigenvalues**

**Example 3 (cont):** For  $\lambda_1 = 2$  we have:

$$\begin{pmatrix} 1-\lambda_1 & 3\\ 1 & -1-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} -1 & 3\\ 1 & -3 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = -2$  we have:

$$\begin{pmatrix} 1-\lambda_2 & 3\\ 1 & -1-\lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 3 & 3\\ 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .

### **Real and Different Eigenvalues**

**Example 3:** Consider the example:

 $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 

Find the general solution to this problem and create a phase portrait. From above we need to find the eigenvalues and eigenvectors, so solve

 $\det \begin{vmatrix} 1-\lambda & 3\\ 1 & -1-\lambda \end{vmatrix} = \lambda^2 - 4 = (\lambda - 2)(\lambda + 2) = 0,$ 

which is the **characteristic equation** with solutions  $\lambda_1 = 2$  and  $\lambda_2 = -2$ 

SDSU

8

#### Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (22/54)

Introduction	Real and Different Eigenvalues
Solutions of Two 1 st Order Linear DEs	Complex Eigenvalues
Homogeneous Linear System of Autonomous DE	Repeated Eigenvalues
Case Studies and Bifurcation	Bifurcation Example and Stability Diagram
Posl and Different Figenuel	10

### Real and Different Eigenvalues

**Example 3 (cont):** The results above give the general solution

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t}$$

#### This is a **saddle node**.

Solutions move toward the origin in the direction  $\xi^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and move away from origin in the direction  $\xi^{(1)} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$  for larger t



9

Introduction Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation Bifurcation Example and Stability Diagram

### **Real and Different Eigenvalues**

**Example 4:** Consider the example:

 $\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} -2 & 4\\ 1 & -2 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$ 

Find the general solution to this problem and create a phase portrait. If we seek equilibria, then

$$\left(\begin{array}{c}0\\0\end{array}\right) = \left(\begin{array}{c}-2&4\\1&-2\end{array}\right) \left(\begin{array}{c}x_{1e}\\x_{2e}\end{array}\right)$$

However, any solution of the form  $x_{1e} = 2x_{2e}$  is a **critical point**, giving a line of **equilibria** 

Our method from before still applies, so seek  $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$ , which gives the **eigenvalue problem** below

det 
$$\begin{vmatrix} -2-\lambda & 4\\ 1 & -2-\lambda \end{vmatrix} = \lambda^2 + 4\lambda = \lambda(\lambda+4) = 0,$$

has the **characteristic equation** with eigenvalues  $\lambda = 0, -4$ 

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (25/54)

Introduction<br/>Solutions of Two 1st Order Linear DEs<br/>Homogeneous Linear System of Autonomous DE<br/>Case Studies and BifurcationReal and Different Eigenvalues<br/>Complex Eigenvalues<br/>Bifurcation Example and Stability Diagram

### Real and Different Eigenvalues

**Example 4 (cont):** The **eigenvalue problem** gives two solutions to the DE

$$\mathbf{x}_1(t) = \begin{pmatrix} 2\\1 \end{pmatrix}$$
 and  $\mathbf{x}_2(t) = \begin{pmatrix} 2\\-1 \end{pmatrix} e^{-4t}$ 

The  $\ensuremath{\mathbf{Wronskian}}$  satisfies

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \det \begin{vmatrix} 2 & 2e^{-4t} \\ 1 & -e^{-4t} \end{vmatrix} = -4e^{-4t} \neq 0,$$

### so these do form a **fundamental set of solutions**

Thus the general solution is given by

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-4t}$$

Introduction Real and Diff Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation Bifurcation

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### Real and Different Eigenvalues

11

SDSU

13

**Example 4 (cont):** For  $\lambda_1 = 0$  we have:

$$\begin{pmatrix} -2-\lambda_1 & 4\\ 1 & -2-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} -2 & 4\\ 1 & -2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ .

Similarly, for  $\lambda_2 = -4$  we have:

$$\begin{pmatrix} -2-\lambda_2 & 4\\ 1 & -2-\lambda_2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 2 & 4\\ 1 & 2 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(2)} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ .

SDSU

12

#### Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (26/54)

Introduction Solutions of Two 1st Order Linear DES Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

## Real and Different Eigenvalues

**Example 4 (cont):** The phase portrait for

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^{-4t}.$$

This is a **degenerate** case where the line  $x_1 = 2x_2$ all form **equilibria**.

All solutions **exponentially approach** one of the equilibria along lines parallel to the line  $x1 = -2x_2$ 

Note: There is an unstable case, which we omit, where the eigenvalues satisfy  $\lambda_1 = 0$  and  $\lambda_2 > 0$ 



Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(27/54)

### Complex Eigenvalues

Consider a system of two linear homogeneous differential equations:

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x},$ 

where **A** is a real-valued matrix.

With a solution of the form  $\mathbf{x}(t) = \mathbf{v}e^{\lambda t}$ , there are **eigenvalues**,  $\lambda$ , with corresponding **eigenvectors**,  $\mathbf{v}$  satisfying

det 
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 and  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ 

The **characteristic equation** for the **eigenvalues** is a quadratic equation.

Assume the eigenvalues are complex, then  $\lambda = \mu \pm i\nu$ , since **A** is real-valued

SDSU

### Complex Eigenvalues

**Complex** Eigenvalues

Assume the DE,  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ , has eigenvalues  $\lambda_1 = \mu + i\nu$  and  $\lambda_2 = \bar{\lambda}_1 = \mu - i\nu$ 

Assume  $\mathbf{v}_1$  is an eigenvector corresponding to  $\lambda_1$ , so

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{v}_1 = \mathbf{0}$$

Taking **conjugates** (with **A**, **I**, and **0**, real)

$$(\mathbf{A} - \bar{\lambda}_1 \mathbf{I}) \bar{\mathbf{v}}_1 = (\mathbf{A} - \lambda_2 \mathbf{I}) \bar{\mathbf{v}}_1 = \mathbf{0}$$

This gives two complex solutions to the system of DEs

$$\mathbf{x}_1(t) = e^{(\mu+i\nu)t}\mathbf{v}_1$$
 and  $\mathbf{x}_2(t) = e^{(\mu-i\nu)t}\bar{\mathbf{v}}_1$ 

We use **Euler's formula** to separate the solutions into real and imaginary parts

$$e^{i\nu t} = \cos(\nu t) + i\sin(\nu t)$$

#### Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(29/54)Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(30/54)Introduction Introduction Solutions of Two 1st Order Linear DEs Solutions of Two 1st Order Linear DEs **Complex Eigenvalues Complex Eigenvalues** Homogeneous Linear System of Autonomous DE Homogeneous Linear System of Autonomous DE **Repeated Eigenvalues Repeated Eigenvalues** Case Studies and Bifurcation Case Studies and Bifurcation Bifurcation Example and Stability Diagram Bifurcation Example and Stability Diagram

3

### Complex Eigenvalues

Assume the **eigenvector**,  $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b}$ , where  $\mathbf{a}$  and  $\mathbf{b}$  are real-valued, then

$$\mathbf{x}_{1}(t) = (\mathbf{a} + i\mathbf{b})e^{\mu t}(\cos(\nu t) + i\sin(\nu t))$$
  
=  $e^{\mu t}(\mathbf{a}\cos(\nu t) - \mathbf{b}\sin(\nu t)) + ie^{\mu t}(\mathbf{a}\sin(\nu t) + \mathbf{b}\cos(\nu t))$ 

Denote the real and imaginary parts of  $\mathbf{x}_1(t) = \mathbf{u}(t) + i\mathbf{w}(t)$ 

$$\mathbf{u}(t) = e^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t)) \text{ and } \mathbf{w}(t) = e^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t))$$

A similar calculation gives

$$\mathbf{x}_2(t) = \mathbf{u}(t) - i\mathbf{w}(t),$$

so  $\mathbf{x}_1(t)$  and  $\mathbf{x}_2(t)$  are complex conjugates.

The desire is to show that  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  are real-valued solutions forming a **fundamental set** for  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ 

5050

Since  $\mathbf{x}_1(t) = \mathbf{u}(t) + i\mathbf{w}(t)$  is a solution to the DE  $\dot{\mathbf{x}}_1 = \mathbf{A}\mathbf{x}_1$ , we have

$$0 = \dot{\mathbf{x}}_1 - \mathbf{A}\mathbf{x}_1 = (\dot{\mathbf{u}} + i\dot{\mathbf{w}}) - \mathbf{A}(\mathbf{u} + i\mathbf{w})$$
$$= (\dot{\mathbf{u}} - \mathbf{A}\mathbf{u}) + i(\dot{\mathbf{w}} - \mathbf{A}\mathbf{w})$$

This vector is zero if and only if the real and imaginary parts are zero, so

$$\dot{\mathbf{u}} - \mathbf{A}\mathbf{u} = \mathbf{0}$$
 and  $\dot{\mathbf{w}} - \mathbf{A}\mathbf{w} = \mathbf{0}$ 

or  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  are real-valued solutions of  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ 

It remains to show  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  form a fundamental set of solutions, which is done with the Wronskian

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) = -(31/54)

**Complex Eigenvalues Repeated Eigenvalues** Bifurcation Example and Stability Diagram

### Complex Eigenvalues

The two solutions are

$$\mathbf{u}(t) = e^{\mu t} (\mathbf{a} \cos(\nu t) - \mathbf{b} \sin(\nu t)) \quad \text{and} \quad \mathbf{w}(t) = e^{\mu t} (\mathbf{a} \sin(\nu t) + \mathbf{b} \cos(\nu t)),$$
  
so let  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ , then the Wronskian satisfies  
$$W[\mathbf{u}, \mathbf{w}](t) = \begin{vmatrix} e^{\mu t} (a_1 \cos(\nu t) - b_1 \sin(\nu t)) & e^{\mu t} (a_1 \sin(\nu t) + b_1 \cos(\nu t)) \\ e^{\mu t} (a_2 \cos(\nu t) - b_2 \sin(\nu t)) & e^{\mu t} (a_2 \sin(\nu t) + b_2 \cos(\nu t)) \end{vmatrix} = (a_1 b_2 - a_2 b_1) e^{2\mu t}$$

Assume  $\nu \neq 0$  and the eigenvectors are  $\mathbf{v}_1 = \mathbf{a} + i\mathbf{b}$  and  $\mathbf{v}_2 = \mathbf{a} - i\mathbf{b}$ ,

$$\begin{vmatrix} a_1 + ib_1 & a_1 - ib_1 \\ a_2 + ib_2 & a_2 - ib_2 \end{vmatrix} = -2i(a_1b_2 - a_2b_1) \neq 0$$

by our Theorem from Linear Algebra

Thus, the **Wronskian** shows  $\mathbf{u}(t)$  and  $\mathbf{w}(t)$  form a **fundamental set** 5757 of solutions to our problem

#### Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(33/54)

Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

**Complex Eigenvalues Repeated Eigenvalues** Bifurcation Example and Stability Diagram

### Complex Eigenvalues

**Example 5 (cont):** For  $\lambda_1 = 1 + 2i$  we have:

$$\begin{pmatrix} 3-\lambda_1 & -2\\ 4 & -1-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 2-2i & -2\\ 4 & -2-2i \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 1 \\ 1-i \end{pmatrix}$ .

We have 
$$\lambda_2 = \overline{\lambda}_1$$
 and  $\xi^{(2)} = \overline{\xi}^{(1)}$ 

Thus,

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 1\\ 1-i \end{pmatrix} e^{t}(\cos(2t) + i\sin(2t)) = \\ \mathbf{u}(t) + i\mathbf{w}(t) = \begin{pmatrix} e^{t}\cos(2t)\\ e^{t}(\cos(2t) + \sin(2t)) \end{pmatrix} + i \begin{pmatrix} e^{t}\sin(2t)\\ e^{t}(\sin(2t) - \cos(2t)) \end{pmatrix}$$

505

7

**Complex Eigenvalues Repeated Eigenvalues** Bifurcation Example and Stability Diagram

### Complex Eigenvalues

5

**Example 5:** Consider the example:

 $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 

Find the general solution to this problem and create a phase portrait. From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \left| \begin{array}{cc} 3-\lambda & -2 \\ 4 & -1-\lambda \end{array} \right| = \lambda^2 - 2\lambda + 5 = 0,$$

which is the **characteristic equation** with solutions  $\lambda = 1 \pm 2i$ (complex eigenvalues)

575

6

#### Introduction Solutions of Two 1st Order Linear DEs **Complex Eigenvalues** Homogeneous Linear System of Autonomous DE **Repeated Eigenvalues** Case Studies and Bifurcation Bifurcation Example and Stability Diagram 8

-(34/54)

## **Complex** Eigenvalues

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

**Example 5 (cont):** From above the general solution is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} e^t \cos(2t) \\ e^t (\cos(2t) + \sin(2t)) \end{pmatrix} + c_2 \begin{pmatrix} e^t \sin(2t) \\ e^t (\sin(2t) - \cos(2t)) \end{pmatrix}$$

This is an **unstable spiral**.

All solutions spiral away from the origin.

Solutions with complex eigenvalues with negative real parts spiral toward the origin, creating a stable spiral



Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (35/54)

Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### Imaginary Eigenvalues

**Example 6:** Consider the example:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

$$\det \begin{vmatrix} 2-\lambda & -5\\ 1 & -2-\lambda \end{vmatrix} = \lambda^2 + 1 = 0,$$

which is the **characteristic equation** with solutions  $\lambda = \pm i$  (purely imaginary eigenvalues)

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

10

### Imaginary Eigenvalues

### **Example 6 (cont):** For $\lambda_1 = i$ we have:

$$\begin{pmatrix} 2-\lambda_1 & -5\\ 1 & -2-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 2-i & -5\\ 1 & -2-i \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This results in the eigenvector  $\xi^{(1)} = \begin{pmatrix} 2+i \\ 1 \end{pmatrix}$ .

We have  $\lambda_2 = \overline{\lambda}_1$  and  $\xi^{(2)} = \overline{\xi}^{(1)}$ 

Thus,

$$\mathbf{x}_{1}(t) = \begin{pmatrix} 2+i\\1 \end{pmatrix} (\cos(t)+i\sin(t)) = \\ \mathbf{u}(t)+i\mathbf{w}(t) = \begin{pmatrix} 2\cos(t)-\sin(t)\\\cos(t) \end{pmatrix} + i\begin{pmatrix} 2\sin(t)+\cos(t)\\\sin(t) \end{pmatrix}$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(37/54)Joseph M. Mahaffy, (jmahaffy@sdsu.edu) -(38/54)Introduction Introduction Real and Different Eigenvalues Solutions of Two 1st Order Linear DEs Solutions of Two 1st Order Linear DEs **Complex Eigenvalues Complex Eigenvalues** Homogeneous Linear System of Autonomous DE Homogeneous Linear System of Autonomous DE **Repeated Eigenvalues Repeated Eigenvalues Case Studies and Bifurcation** Case Studies and Bifurcation Bifurcation Example and Stability Diagram Bifurcation Example and Stability Diagram **Imaginary** Eigenvalues 11 **Repeated** Eigenvalues

SDSU

9

**Example 6 (cont):** From above the general solution is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 2\cos(t) - \sin(t) \\ \cos(t) \end{pmatrix} + c_2 \begin{pmatrix} 2\sin(t) + \cos(t) \\ \sin(t) \end{pmatrix}$$

This is a **center**.

All solutions form ellipses around the origin.

**Example 7:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{c} 2 & 0\\ 0 & 2 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det 
$$\begin{vmatrix} 2-\lambda & 0\\ 0 & 2-\lambda \end{vmatrix} = (\lambda - 2)^2 = 0,$$

which has the **characteristic equation** with solutions  $\lambda = 2$  with an **algebraic multiplicity** of **2** 

5**D**50

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### **Repeated Eigenvalues**

**Example 7 (cont):** For  $\lambda_1 = \lambda_2 = 2$  we have:

$$\begin{pmatrix} 2-\lambda_1 & 0\\ 0 & 2-\lambda_1 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

Thus,  $\lambda = 2$  has a **geometric multiplicity** of **2**, so the **eigenspace** for  $\lambda = 2$  has dimension 2.

It follows that we can select the standard basis vectors as our eigenvectors, which gives the general solution

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{2t}.$$

SDSU

5051



**Example 8:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2\end{array}\right) = \left(\begin{array}{c} -1 & 1\\ 0 & -1\end{array}\right) \left(\begin{array}{c} x_1\\ x_2\end{array}\right)$$

Find the general solution to this problem and create a phase portrait.

This is an **upper triangular matrix**, so its eigenvalues are the diagonal elements.

Thus,  $\lambda = -1$  with an algebraic multiplicity of 2

$$\begin{pmatrix} -1-\lambda & 1\\ 0 & -1-\lambda \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

This system only has the **1** eigenvector  $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 

Real and Different Eigenvalues **Complex Eigenvalues** Repeated Eigenvalues Bifurcation Example and Stability Diagram

### **Repeated Eigenvalues**

Example 7 (cont): This DE produces an unstable proper node or star node with all solutions following straight paths away from the origin



5

3

Introduction	Real and Different Eigenvalues
Solutions of Two 1 st Order Linear DEs	Complex Eigenvalues
omogeneous Linear System of Autonomous DE	<b>Repeated Eigenvalues</b>
<b>Case Studies and Bifurcation</b>	Bifurcation Example and Stability Diagram

(42/54)

## **Repeated Eigenvalues**

**Example 8 (cont):** Since there is only one eigenvector, we obtain the one solution

$$\mathbf{x}_1(t) = \mathbf{v}_1 e^{-t} = \begin{pmatrix} 1\\ 0 \end{pmatrix} e^{-t}$$

Thus,  $\lambda = -1$  has a **geometric multiplicity** of **1**, so the eigenspace for  $\lambda = -1$  has dimension 1.

If we examine the scalar equations, then

$$\dot{x}_1 = -x_1 + x_2$$
 and  $\dot{x}_2 = -x_2$ 

Thus,  $x_2(t) = c_2 e^{-t}$ , so

$$\dot{x}_1 + x_1 = c_2 e^{-t}$$
 with  $\mu(t) = e^t$ 

This has the solution

 $x_1(t) = c_2 t e^{-t} + c_1 e^{-t}$ 

### Repeated Eigenvalues

**Example 8 (cont):** Combining the results above we see

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} c_1 + c_2 t \\ c_2 \end{pmatrix} e^{-t}$$
$$= c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^{-t} + c_2 \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] e^{-t}$$

The second solution has the form

$$\mathbf{x}_2(t) = \mathbf{v}te^{-t} + \mathbf{w}e^{-t}$$

Upon differentiation

$$\dot{\mathbf{x}}_2(t) = \mathbf{v}(1-t)e^{-t} - \mathbf{w}e^{-t} = \mathbf{A}\mathbf{x}_2 = \mathbf{A}(\mathbf{v}te^{-t} + \mathbf{w}e^{-t})$$

Since  $(\mathbf{A} + \mathbf{I})\mathbf{v} = \mathbf{0}$ , this reduces to solving for  $\mathbf{w}$ 

$$(\mathbf{A} + \mathbf{I})\mathbf{w} = \mathbf{v} \quad \text{or} \quad \mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + k \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (45/54)

Introduction Solutions of Two 1st Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation

Real and Different Eigenvalues Complex Eigenvalues **Repeated Eigenvalues** Bifurcation Example and Stability Diagram

### **Repeated Eigenvalues - General**

### Repeated Eigenvalues - Two Dimensional Null Space

Suppose the  $2 \times 2$  matrix **A** has a repeated eigenvalue  $\lambda$ .

If the eigenspace spanned by the eigenvectors has dimension 2,  $\mathbf{v}_1$  and  $\mathbf{v}_2$ , then the solution is simply

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda t} + c_2 \mathbf{v}_2 e^{\lambda t}$$



### Repeated Eigenvalues

6

SDSU

# **Example 8 (cont):** This DE produces a **stable improper node** with all solutions moving toward the origin



5050

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (46/54)

Introduction R Solutions of Two 1st Order Linear DEs C Homogeneous Linear System of Autonomous DE R Case Studies and Bifurcation B

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### **Repeated Eigenvalues - General**

#### **Repeated Eigenvalues - One Dimensional Null Space If the**

 $2 \times 2$  matrix **A** has only one eigenvector **v** associated with  $\lambda$ , then one solution is

$$\mathbf{x}_1(t) = \mathbf{v}e^{\lambda t}$$

We attempt a second solution of the form

$$\mathbf{x}_2(t) = \mathbf{v}te^{\lambda t} + \mathbf{w}e^{\lambda t}$$

which upon differentiation gives

$$\dot{\mathbf{x}}_2(t) = \mathbf{v}(\lambda t + 1)e^{\lambda t} + \lambda \mathbf{w}e^{\lambda t} = \mathbf{A}\mathbf{x}_2 = \mathbf{A}(\mathbf{v}te^{\lambda t} + \mathbf{w}e^{\lambda t})$$

Since  $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ , this reduces to solving for  $\mathbf{w}$ 

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{w} = \mathbf{v}$$

This gives the second linearly independent solution,  $\mathbf{x}_2(t)$ , above, where  $\mathbf{w}$  solves this **higher order null space problem**, which will include a particular solution and any multiple,  $k\mathbf{v}$ 

DSC

Real and Different Eigenvalues Introduction Solutions of Two 1st Order Linear DEs Complex Eigenvalues Repeated Eigenvalues Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation Bifurcation Example and Stability Diagram

### **Bifurcation Example**

**Bifurcation Example:** Consider the example:

$$\left(\begin{array}{c} \dot{x}_1\\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} \alpha & 2\\ -2 & 0 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right),$$

which contains a parameter  $\alpha$  that affects the behavior of this system

We want to determine the different **qualitative behaviors** for different values of  $\alpha$ 

The eigenvalues satisfy

$$\det \begin{vmatrix} \alpha - \lambda & 2 \\ -2 & -\lambda \end{vmatrix} = \lambda^2 - \alpha \lambda + 4 = 0$$

Thus, the eigenvalues satisfy

$$\lambda = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$$

SDSU

Real and Different Eigenvalues **Complex Eigenvalues** Repeated Eigenvalues Bifurcation Example and Stability Diagram

2

### **Bifurcation Example**

#### **Bifurcation Example:** For

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} \alpha & 2 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
(3)

The eigenvalues are  $\lambda = \frac{\alpha \pm \sqrt{\alpha^2 - 16}}{2}$ 

Classifications as  $\alpha$  varies are:

- For  $\alpha < -4$ , System (3) is a **Stable Node**
- For  $\alpha = -4$ , System (3) is a **Stable Improper Node**
- For  $-4 < \alpha < 0$ , System (3) is a **Stable Spiral**
- For  $\alpha = 0$ , System (3) is a **Center**
- For  $0 < \alpha < 4$ , System (3) is a **Unstable Spiral**
- For  $\alpha = 4$ , System (3) is a **Unstable Improper Node**
- For  $\alpha > 4$ , System (3) is a **Unstable Node**



#### **Bifurcation Example:** Phase Portraits ( $\alpha < 0$ )

Observe a smooth transition as eigenvalues change from negative to complex with negative real part



### **Bifurcation Example:** Phase Portraits $(-4 < \alpha < 4)$

Observe the transitions as complex eigenvalues change from negative real part to positive real part - This is a significant part of a **Hopf** bifurcation



Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

## **Bifurcation** Example

### **Bifurcation Example:** Phase Portraits $(\alpha > 0)$

Observe a smooth transition as eigenvalues change from complex with positive real part to positive real values



SDSU

5

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (53/54)

 $\begin{array}{c} {\rm Introduction}\\ {\rm Solutions \ of \ Two \ 1}^{st} \ {\rm Order \ Linear \ DEs}\\ {\rm Homogeneous \ Linear \ System \ of \ Autonomous \ DE}\\ {\rm Case \ Studies \ and \ Bifurcation}\end{array}$ 

Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram

### Stability Diagram

Consider the system

 $\dot{\mathbf{x}} = \mathbf{J}\mathbf{x}$ 

Let  $\lambda_1$  and  $\lambda_2$  be eigenvalues of  $\mathbf{J}\mathbf{x}$ Results from Linear Algebra give  $tr(\mathbf{J}) = \lambda_1 + \lambda_2$ , det  $|\mathbf{J}| = \lambda_1 \cdot \lambda_2$ , and  $D = (j_{11} - j_{22})^2 + 4j_{12}j_{21}$ 

The figure shows the **Stability Diagram** for  $\dot{\mathbf{x}} = \mathbf{J}\mathbf{x}$  with axes of  $tr(\mathbf{J})$  vs det  $|\mathbf{J}|$ 

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)



-(54/54)