Math 337 －Elementary Differential Equations
 Lecture Notes－Systems of Two First Order Equations： Part B

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2022
5050
Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉－（1／54）

Introduction
Homogeneous Linear System of Autonomous D
Case Studies and Bifurcation
Introduction

Introduction

－This is the second part of notes for Systems of Two $1^{\text {st }}$ Order Differential Equations
－Part A has the topics below
－A motivating example of a Greenhouse／Rockbed system of passive heating
－Solutions for the example above－illustrating key techniques
－Graphs for direction fields and phase portraits
－MatLab and Maple introduced for these problems
－Part B has the following topics
－Definitions and theorems for Systems of Two $1^{\text {st }}$ Order Differential Equations
－Superposition and linear independence
－Solving with eigenvalue techniques
－Analysis of different cases with their phase portraits
（1）Introduction
（2）Solutions of Two $1^{\text {st }}$ Order Linear DEs －Existence and Uniqueness
（3）Homogeneous Linear System of Autonomous DEs －Superposition and Linear Independence
－Fundamental Solution
－Eigenvalue Problem
（4）Case Studies and Bifurcation
－Real and Different Eigenvalues
－Complex Eigenvalues
－Repeated Eigenvalues
－Bifurcation Example and Stability Diagram

$$
\begin{align*}
& \text { Solutions of Two }{ }^{\text {st }} \text { Order Linear DEs } \\
& \begin{array}{l}
\text { Solutions of Two } 1 \text { Order Linear DEs } \\
\text { Homogeneous Linear System of Autonomous DE }
\end{array} \\
& \text { Case Studies and Bifurcation } \\
& \text { General System of Two } 1^{\text {st }} \text { Order Linear DEs } \\
& \binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{p_{11}(t) x_{1}+p_{12}(t) x_{2}+g_{1}(t)}{p_{21}(t) x_{1}+p_{22}(t) x_{2}+g_{2}(t)}, \tag{1}
\end{align*}
$$

which can be written

$$
\dot{\mathbf{x}}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)
$$

where
$\mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{P}(t)=\left(\begin{array}{cc}p_{11}(t) & p_{12}(t) \\ p_{21}(t) & p_{22}(t)\end{array}\right), \quad$ and $\quad \mathbf{g}(t)=\binom{g_{1}(t)}{g_{2}(t)}$
System（1）is a $1^{\text {st }}$ order linear system of DEs of dimension 2
If $\mathbf{g}(t)=\mathbf{0}$ ，then System（1）is homogeneous；otherwise it is nonhomogeneous

Linear Autonomous System

Existence and Uniqueness for Two $1^{\text {st }}$ Order Linear DEs

Theorem（Existence and Uniqueness）

Let each of the functions $p_{11}, \ldots, p_{22}, g_{1}$ ，and g_{2} be continuous on an open interval $I=\{t \mid t \in(\alpha, \beta)\}$ ，let t_{0} be any point in I ，and let x_{10} and x_{20} be any given numbers．Then there exists a unique solution to the system（1）：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{p_{11}(t) x_{1}+p_{12}(t) x_{2}+g_{1}(t)}{p_{21}(t) x_{1}+p_{22}(t) x_{2}+g_{2}(t)}
$$

that also satisfies the initial conditions

$$
x_{1}\left(t_{0}\right)=x_{10}, \quad x_{2}\left(t_{0}\right)=x_{20} .
$$

Further the solution exists throughout the interval I．
Linear Autonomous System：If the coefficient matrix \mathbf{P} and vector function \mathbf{g} are independent of time，i．e．，constants，then we have the linear autonomous system

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{b},
$$

with constant matrix \mathbf{A} and constant vector \mathbf{b} ．
The equilibrium solutions or critical points are found by solving：

$$
\mathbf{A} \mathbf{x}_{e}=-\mathbf{b} \quad \text { or } \quad \mathbf{x}_{e}=-\mathbf{A}^{-1} \mathbf{b} .
$$

The change of variables $\mathbf{y}=\mathbf{x}-\mathbf{x}_{e}$ allows us to concentrate on the homogeneous linear system with constant coefficients

$$
\dot{\mathbf{y}}=\mathbf{A y}
$$

Solutions of Two $1^{\text {st }}$ Order Linear DEs

Superposition and Linear Independence
Homogeneous Linear System of Autonomous DE
Eigenvalue Problem

Wronskian and Linear Independence

Theorem（Superposition Principle）

Suppose that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are solutions of the equation

$$
\dot{\mathbf{x}}(t)=\mathbf{A x}(t)
$$

Then the expression

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t),
$$

where c_{1} and c_{2} are arbitrary constants，is also a solution．
We use the linearity of differentiation and matrices to show this

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\frac{d}{d t}\left(c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)\right)=c_{1} \dot{\mathbf{x}}_{1}(t)+c_{2} \dot{\mathbf{x}}_{1}(t) \\
& =c_{1} \mathbf{A} \mathbf{x}_{1}(t)+c_{2} \mathbf{A} \mathbf{x}_{2}(t)=\mathbf{A}\left(c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)\right)=\mathbf{A} \mathbf{x}(t)
\end{aligned}
$$

Definition（Wronskian）

Suppose that $\mathbf{x}_{1}(t)=\left[x_{11}(t), x_{21}(t)\right]^{T}$ and $\mathbf{x}_{2}(t)=\left[x_{12}(t), x_{22}(t)\right]^{T}$ ． The Wronskian of the solutions $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ is given by the determinant

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Definition（Linear Independence of Solutions）

Suppose that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are solutions of $\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)$ on some interval I ．We say that \mathbf{x}_{1} and \mathbf{x}_{2} are linearly dependent if there exists a constant k such that

$$
\mathbf{x}_{1}(t)=k \mathbf{x}_{2}(t), \quad \text { for all } t \text { in } I .
$$

Otherwise， \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent．

Fundamental Solutions

Theorem（Wronskian and Linear Independence）

Suppose that

$$
\mathbf{x}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)} \quad \text { and } \quad \mathbf{x}_{2}(t)=\binom{x_{12}(t)}{x_{22}(t)}
$$

are solutions of $\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)$ on an interval I ．Then \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent if and only if the Wronskian

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0, \quad \text { for all } t \text { in } I
$$

The two linearly independent solutions of $\dot{\mathbf{x}}(t)=\mathbf{A x}(t)$ are often called a fundamental set of solutions

5050

Superposition and Linear Independence

Introduction
olutions of Two $1^{\text {st }}$ Order Linear DEs
Homogeneous Linear System of Autonomous DE
Case Studies and Bifurcation

Solving $\dot{\mathbf{x}}=\mathbf{A x}$

Consider the general problem

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)
$$

where

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) .
$$

We attempt a solution of the form

$$
\mathbf{x}=e^{\lambda t} \mathbf{v}, \quad \text { so } \quad \lambda e^{\lambda t} \mathbf{v}=\mathbf{A} e^{\lambda t} \mathbf{v}
$$

Since $e^{\lambda t}$ is never zero，

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \quad \text { or } \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0},
$$

where \mathbf{I} is the 2×2 identity matrix
This is the classic eigenvalue problem
SOSO

Theorem（Fundamental Solutions）

Suppose that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are two solutions of

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t) \tag{2}
\end{equation*}
$$

and that their Wronskian is not zero on an interval I ．Then \mathbf{x}_{1} and x_{2} form a fundamental set of solutions for（2），and the general solution is given by

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)
$$

where c_{1} and c_{2} are arbitrary constants．If there is a given initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ ，where \mathbf{x}_{0} is any constant vector，then this condition determines the constants c_{1} and c_{2} uniquely．

Introduction
 Homogeneous Linear System of Autonomous D
 Homogeneous Linear Studies and Bifurcation
 Superposition and Linear Independence
 Eigenvalue Problem

Eigenvalue Problem

Thus，solving the homogeneous $\mathrm{DE} \dot{\mathbf{x}}(t)=\mathbf{A x}(t)$ is equivalent to solving the eigenvalue problem

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0} \quad \text { with } \quad \mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) .
$$

From Linear Algebra（Math 254）the eigenvalues are found by solving

$$
\operatorname{det}|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
a_{11}-\lambda & a_{12} \\
a_{21} & a_{22}-\lambda
\end{array}\right|=0 .
$$

This gives the characteristic equation

$$
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+a_{11} a_{22}-a_{12} a_{21}=0
$$

This is a quadratic equation，so easily solved for λ_{1} and λ_{2} Each λ_{i} is inserted into $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$ ，and the corresponding eigenvectors， \mathbf{v}_{i} are found

Real and Different Eigenvalues

Linear Algebra Result

Consider $\dot{\mathbf{x}}=\mathbf{A x}$ and assume that the eigenvalue problem $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$ has real and different eigenvalues，λ_{1} and λ_{2}

The two solutions are

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\lambda_{2} t} \mathbf{v}_{2}
$$

so the Wronskian is

$$
W\left[\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)\right](t)=\left|\begin{array}{ll}
v_{11} e^{\lambda_{1} t} & v_{12} e^{\lambda_{2} t} \\
v_{21} e^{\lambda_{1} t} & v_{22} e^{\lambda_{2} t}
\end{array}\right|=\left|\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right| e^{\left(\lambda_{1}+\lambda_{2}\right) t}
$$

Since $e^{\left(\lambda_{1}+\lambda_{2} t\right) t}$ is nonzero，the Wronskian is nonzero if and only if $\operatorname{det}\left|\mathbf{v}_{1}, \mathbf{v}_{2}\right|=0$ ．
Recall if the Wronskian is nonzero，then $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ form a fundamental set of solutions to the system of DEs

Theorem

Let \mathbf{A} have real or complex eigenvalues，λ_{1} and λ_{2} ，such that $\lambda_{1} \neq \lambda_{2}$ ， and let the corresponding eigenvectors be

$$
\mathbf{v}_{1}=\binom{v_{11}}{v_{21}} \quad \text { and } \quad \mathbf{v}_{2}=\binom{v_{12}}{v_{22}} .
$$

If \mathbf{V} is the matrix formed from $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ with

$$
\mathbf{V}=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right)
$$

then

$$
\operatorname{det}|\mathbf{V}|=\left|\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right| \neq 0
$$

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉－（14／54）

$$
\begin{aligned}
& \begin{array}{c}
\text { Solutions of Two } 1^{\text {st }} \text { Order Lineduction } \mathrm{DEs} \\
\text { Homogeneous Linear System of Autonorous DE } \\
\text { Case Studies and Bifurcation }
\end{array}
\end{aligned} \begin{aligned}
& \text { Real and Different Eigenvalues } \\
& \text { Complex Eigenvalues } \\
& \text { Repeated Eigenvalues } \\
& \text { Bifurcation Example and Stabil }
\end{aligned}
$$

Solutions of Two $1^{\text {st }}$ Order Linear DEs	Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues		
Homogeneous Linear System of Autonomous DE			
Case Studies and Bifurcation		\quad	Bifurcation Example and Stability Diagram
:---			

The two previous slides show that if \mathbf{A} has real and different eigenvalues，λ_{1} and λ_{2} ，then the system

$$
\dot{\mathbf{x}}=\mathbf{A x}
$$

has a fundamental set of solutions

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\lambda_{2} t} \mathbf{v}_{2}
$$

where \mathbf{v}_{1} and \mathbf{v}_{2} are the corresponding eigenvectors for λ_{1} and λ_{2} ， respectively

It follows that the general solution can be written

$$
\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

Find the general solution to this problem and create a phase portrait．
From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
-0.5-\lambda & 2 \\
0 & -1-\lambda
\end{array}\right|=(\lambda+0.5)(\lambda+1)=0
$$

which is the characteristic equation with solutions $\lambda_{1}=-0.5$ and $\lambda_{2}=-1$

Real and Different Eigenvalues

Real and Different Eigenvalues

Example 1 （cont）：The results above give the general solution

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{1}{0} e^{-0.5 t}+c_{2}\binom{4}{-1} e^{-t},
$$

which is a solution exponentially decaying toward the origin．

This is a sink or stable node．
Solutions move rapidly
in the direction $\xi^{(2)}=\binom{4}{-1}$ ， while decaying more slowly in the direction $\xi^{(1)}=\binom{1}{0}$
Example 1 （cont）：For $\lambda_{1}=-0.5$ we have

$$
\left(\begin{array}{cc}
-0.5-\lambda_{1} & 2 \\
0 & -1-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{cc}
0 & 2 \\
0 & -0.5
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{1}{0}$ ．
Similarly，for $\lambda_{2}=-1$ we have：

$$
\left(\begin{array}{cc}
-0.5-\lambda_{2} & 2 \\
0 & -1-\lambda_{2}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{cc}
0.5 & 2 \\
0 & 0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(2)}=\binom{4}{-1}$ ．

Example 2：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
0 & 1 \\
-3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait． From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
-\lambda & 1 \\
-3 & 4-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)=0,
$$

which is the characteristic equation with solutions $\lambda_{1}=1$ and $\lambda_{2}=3$

Example 2 （cont）：For $\lambda_{1}=1$ we have：

$$
\left(\begin{array}{cc}
-\lambda_{1} & 1 \\
-3 & 4-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{ll}
-1 & 1 \\
-3 & 3
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{1}{1}$ ．
Similarly，for $\lambda_{2}=3$ we have：

$$
\left(\begin{array}{cc}
-\lambda_{2} & 1 \\
-3 & 4-\lambda_{2}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{ll}
-3 & 1 \\
-3 & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(2)}=\binom{1}{3}$ ．

Real and Different Eigenvalues

Example 3：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait． From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
1-\lambda & 3 \\
1 & -1-\lambda
\end{array}\right|=\lambda^{2}-4=(\lambda-2)(\lambda+2)=0,
$$

which is the characteristic equation with solutions $\lambda_{1}=2$ and $\lambda_{2}=-2$

Real and Different Eigenvalues

 Complex EigenvaluesBifurcation Example and Stability Diagram

Real and Different Eigenvalues

Solutions of Two $1^{\text {st }}$ Order Linear DEs Homogeneous Linear System of Autonomous D
Case Studies and Bifurcation Real and Different Eigenvalues

Real and Different Eigenvalues Complex Eigenvalues

Example 3 （cont）：The results above give the general solution

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{3}{1} e^{2 t}+c_{2}\binom{1}{-1} e^{-2 t} .
$$

This is a saddle node．
Solutions move toward the origin in the direction $\xi^{(2)}=\binom{1}{-1}$ and move away from origin in the direction $\xi^{(1)}=\binom{3}{1}$ for larger t

$$
\left(\begin{array}{cc}
1-\lambda_{2} & 3 \\
1 & -1-\lambda_{2}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(2)}=\binom{1}{-1}$ ．

$$
\left(\begin{array}{cc}
1-\lambda_{1} & 3 \\
1 & -1-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{rr}
-1 & 3 \\
1 & -3
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{3}{1}$ ．
Similarly，for $\lambda_{2}=-2$ we have：

Real and Different Eigenvalues

Example 4：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait．
If we seek equilibria，then

$$
\binom{0}{0}=\left(\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right)\binom{x_{1 e}}{x_{2 e}}
$$

However，any solution of the form $x_{1 e}=2 x_{2 e}$ is a critical point， giving a line of equilibria
Our method from before still applies，so seek $\mathbf{x}(t)=\mathbf{v} e^{\lambda t}$ ，which gives the eigenvalue problem below

$$
\operatorname{det}\left|\begin{array}{cc}
-2-\lambda & 4 \\
1 & -2-\lambda
\end{array}\right|=\lambda^{2}+4 \lambda=\lambda(\lambda+4)=0,
$$

has the characteristic equation with eigenvalues $\lambda=0,-4$

Real and Different Eigenvalues

Example 4 （cont）：The eigenvalue problem gives two solutions to the DE

$$
\mathbf{x}_{1}(t)=\binom{2}{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=\binom{2}{-1} e^{-4 t}
$$

The Wronskian satisfies

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left|\begin{array}{cc}
2 & 2 e^{-4 t} \\
1 & -e^{-4 t}
\end{array}\right|=-4 e^{-4 t} \neq 0
$$

so these do form a fundamental set of solutions
Thus the general solution is given by

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{2}{1}+c_{2}\binom{2}{-1} e^{-4 t} .
$$

5050

Example 4 （cont）：For $\lambda_{1}=0$ we have：

$$
\left(\begin{array}{cc}
-2-\lambda_{1} & 4 \\
1 & -2-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{2}{1}$ ．
Similarly，for $\lambda_{2}=-4$ we have：

$$
\left(\begin{array}{cc}
-2-\lambda_{2} & 4 \\
1 & -2-\lambda_{2}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{cc}
2 & 4 \\
1 & 2
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(2)}=\binom{2}{-1}$ ．

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉－（26／54）

Solutions of Two $1^{\text {st }}$ Order Linear DEs

Homogeneous Linear System of Autonomous DE
Case Studies and Bifurcation
:---
Complex Eigenvalues
Repeated Eigenvalues
Bifurcation Example and Stability Diagram

Example 4 （cont）：The phase portrait for

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{2}{1}+c_{2}\binom{2}{-1} e^{-4 t} .
$$

This is a degenerate case where the line $x_{1}=2 x_{2}$ all form equilibria．
All solutions exponentially approach one of the equilibria along lines parallel to the line $x 1=-2 x_{2}$

Note：There is an unstable case， which we omit，where the eigenvalues satisfy

Complex Eigenvalues

Consider a system of two linear homogeneous differential equations：

$$
\dot{\mathbf{x}}=\mathbf{A x},
$$

where \mathbf{A} is a real－valued matrix．
With a solution of the form $\mathbf{x}(t)=\mathbf{v} e^{\lambda t}$ ，there are eigenvalues，λ ， with corresponding eigenvectors， \mathbf{v} satisfying

$$
\operatorname{det}|\mathbf{A}-\lambda \mathbf{I}|=0 \quad \text { and } \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}
$$

The characteristic equation for the eigenvalues is a quadratic equation．
Assume the eigenvalues are complex，then $\lambda=\mu \pm i \nu$ ，since \mathbf{A} is real－valued

Assume the $\mathrm{DE}, \dot{\mathbf{x}}=\mathbf{A x}$ ，has eigenvalues $\lambda_{1}=\mu+i \nu$ and $\lambda_{2}=\bar{\lambda}_{1}=\mu-i \nu$

Assume \mathbf{v}_{1} is an eigenvector corresponding to λ_{1} ，so

$$
\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{v}_{1}=\mathbf{0}
$$

Taking conjugates（with \mathbf{A}, \mathbf{I} ，and $\mathbf{0}$ ，real）

$$
\left(\mathbf{A}-\bar{\lambda}_{1} \mathbf{I}\right) \overline{\mathbf{v}}_{1}=\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right) \overline{\mathbf{v}}_{1}=\mathbf{0}
$$

This gives two complex solutions to the system of DEs

$$
\mathbf{x}_{1}(t)=e^{(\mu+i \nu) t} \mathbf{v}_{\mathbf{1}} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{(\mu-i \nu) t} \overline{\mathbf{v}}_{1}
$$

We use Euler＇s formula to separate the solutions into real and imaginary parts

$$
e^{i \nu t}=\cos (\nu t)+i \sin (\nu t)
$$

Introduction Solutions of Two $1^{\text {st }}$ Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation	Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram
Complex Eigenvalues	3

Assume the eigenvector， $\mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}$ ，where \mathbf{a} and \mathbf{b} are real－valued， then

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =(\mathbf{a}+i \mathbf{b}) e^{\mu t}(\cos (\nu t)+i \sin (\nu t)) \\
& =e^{\mu t}(\mathbf{a} \cos (\nu t)-\mathbf{b} \sin (\nu t))+i e^{\mu t}(\mathbf{a} \sin (\nu t)+\mathbf{b} \cos (\nu t))
\end{aligned}
$$

Denote the real and imaginary parts of $\mathbf{x}_{1}(t)=\mathbf{u}(t)+i \mathbf{w}(t)$
$\mathbf{u}(t)=e^{\mu t}(\mathbf{a} \cos (\nu t)-\mathbf{b} \sin (\nu t)) \quad$ and $\quad \mathbf{w}(t)=e^{\mu t}(\mathbf{a} \sin (\nu t)+\mathbf{b} \cos (\nu t))$
A similar calculation gives

$$
\mathbf{x}_{2}(t)=\mathbf{u}(t)-i \mathbf{w}(t)
$$

so $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ are complex conjugates．
The desire is to show that $\mathbf{u}(t)$ and $\mathbf{w}(t)$ are real－valued solutions forming a fundamental set for $\dot{\mathbf{x}}=\mathbf{A x}$

Since $\mathbf{x}_{1}(t)=\mathbf{u}(t)+i \mathbf{w}(t)$ is a solution to the $\mathrm{DE} \dot{\mathbf{x}}_{1}=\mathbf{A} \mathbf{x}_{1}$ ，we have

$$
\begin{aligned}
\mathbf{0} & =\dot{\mathbf{x}}_{1}-\mathbf{A} \mathbf{x}_{1}=(\dot{\mathbf{u}}+i \dot{\mathbf{w}})-\mathbf{A}(\mathbf{u}+i \mathbf{w}) \\
& =(\dot{\mathbf{u}}-\mathbf{A u})+i(\dot{\mathbf{w}}-\mathbf{A} \mathbf{w})
\end{aligned}
$$

This vector is zero if and only if the real and imaginary parts are zero， so

$$
\dot{\mathbf{u}}-\mathbf{A u}=\mathbf{0} \quad \text { and } \quad \dot{\mathbf{w}}-\mathbf{A} \mathbf{w}=\mathbf{0}
$$

or $\mathbf{u}(t)$ and $\mathbf{w}(t)$ are real－valued solutions of $\dot{\mathbf{x}}=\mathbf{A x}$
It remains to show $\mathbf{u}(t)$ and $\mathbf{w}(t)$ form a fundamental set of solutions，which is done with the Wronskian

The two solutions are
$\mathbf{u}(t)=e^{\mu t}(\mathbf{a} \cos (\nu t)-\mathbf{b} \sin (\nu t)) \quad$ and $\quad \mathbf{w}(t)=e^{\mu t}(\mathbf{a} \sin (\nu t)+\mathbf{b} \cos (\nu t))$,
so let $\mathbf{a}=\binom{a_{1}}{a_{2}}$ and $\mathbf{b}=\binom{b_{1}}{b_{2}}$ ，then the Wronskian satisfies
$W[\mathbf{u}, \mathbf{w}](t)=\left|\begin{array}{ll}e^{\mu t}\left(a_{1} \cos (\nu t)-b_{1} \sin (\nu t)\right) & e^{\mu t}\left(a_{1} \sin (\nu t)+b_{1} \cos (\nu t)\right) \\ e^{\mu t}\left(a_{2} \cos (\nu t)-b_{2} \sin (\nu t)\right) & e^{\mu t}\left(a_{2} \sin (\nu t)+b_{2} \cos (\nu t)\right)\end{array}\right|$

$$
=\left(a_{1} b_{2}-a_{2} b_{1}\right) e^{2 \mu t}
$$

Assume $\nu \neq 0$ and the eigenvectors are $\mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}$ and $\mathbf{v}_{2}=\mathbf{a}-i \mathbf{b}$,

$$
\left|\begin{array}{ll}
a_{1}+i b_{1} & a_{1}-i b_{1} \\
a_{2}+i b_{2} & a_{2}-i b_{2}
\end{array}\right|=-2 i\left(a_{1} b_{2}-a_{2} b_{1}\right) \neq 0
$$

by our Theorem from Linear Algebra
Thus，the Wronskian shows $\mathbf{u}(t)$ and $\mathbf{w}(t)$ form a fundamental set of solutions to our problem

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉
（33／54）

Introduction

Solutions of Two $1^{s t}$ Order Linear DEs
Homogeneous Linear System of Autonomous DE
Case Studies and Bifurcation
:---
Complex Eigenvalues
Repeated Eigenvalues
Bifurcation Example and Stability Diagran

This results in the eigenvector $\xi^{(1)}=\binom{1}{1-i}$ ．
We have $\lambda_{2}=\bar{\lambda}_{1}$ and $\xi^{(2)}=\bar{\xi}^{(1)}$
Thus，

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =\binom{1}{1-i} e^{t}(\cos (2 t)+i \sin (2 t))= \\
\mathbf{u}(t)+i \mathbf{w}(t) & =\binom{e^{t} \cos (2 t)}{e^{t}(\cos (2 t)+\sin (2 t))}+i\binom{e^{t} \sin (2 t)}{e^{t}(\sin (2 t)-\cos (2 t))}
\end{aligned}
$$

Example 5：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait．
From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
3-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda+5=0
$$

which is the characteristic equation with solutions $\lambda=1 \pm 2 i$ （complex eigenvalues）

Introduction Solutions of Two $1^{\text {st }}$ Order Linear DEs Homogeneous Linear System of Autonomous DE Case Studies and Bifurcation	Real and Different Eigenvalues Complex Eigenvalues Repeated Eigenvalues Bifurcation Example and Stability Diagram
Complex Eigenvalues	8

Example 5 （cont）：From above the general solution is $\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{e^{t} \cos (2 t)}{e^{t}(\cos (2 t)+\sin (2 t))}+c_{2}\binom{e^{t} \sin (2 t)}{e^{t}(\sin (2 t)-\cos (2 t))}$.

This is an unstable spiral． All solutions spiral away from the origin．

Solutions with complex eigenvalues with negative real parts spiral toward the origin，creating a stable spiral

Example 6：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait． From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right|=\lambda^{2}+1=0
$$

which is the characteristic equation with solutions $\lambda= \pm i$（purely imaginary eigenvalues）

Imaginary Eigenvalues
Example 6 （cont）：From above the general solution is

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{2 \cos (t)-\sin (t)}{\cos (t)}+c_{2}\binom{2 \sin (t)+\cos (t)}{\sin (t)} .
$$

This is a center．
All solutions form ellipses around the origin．

Example 6 （cont）：For $\lambda_{1}=i$ we have：

$$
\left(\begin{array}{cc}
2-\lambda_{1} & -5 \\
1 & -2-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This results in the eigenvector $\xi^{(1)}=\binom{2+i}{1}$ ．
We have $\lambda_{2}=\bar{\lambda}_{1}$ and $\xi^{(2)}=\bar{\xi}^{(1)}$
Thus，

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =\binom{2+i}{1}(\cos (t)+i \sin (t))= \\
\mathbf{u}(t)+i \mathbf{w}(t) & =\binom{2 \cos (t)-\sin (t)}{\cos (t)}+i\binom{2 \sin (t)+\cos (t)}{\sin (t)}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Solutions of Two 1st } \\
\begin{array}{c}
\text { Introduction } \\
\text { Homogeneous Linear System of Autonomous DE } \\
\text { Case Studies and Bifurcation }
\end{array}
\end{array} \begin{array}{l}
\text { Real and Different Eig } \\
\text { Complex Eigenvalues } \\
\text { Repeated Eigenvalues } \\
\text { Bifurcation Example a }
\end{array} \\
& \text { Repeated Eigenvalues } \\
& \text { Example 7: Consider the example: } \\
& \qquad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

Real and Different Eigenvalues

Find the general solution to this problem and create a phase portrait．
From above we need to find the eigenvalues and eigenvectors，so solve

$$
\operatorname{det}\left|\begin{array}{cc}
2-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right|=(\lambda-2)^{2}=0
$$

which has the characteristic equation with solutions $\lambda=2$ with an algebraic multiplicity of 2

Repeated Eigenvalues

Example 7 （cont）：For $\lambda_{1}=\lambda_{2}=2$ we have：

$$
\left(\begin{array}{cc}
2-\lambda_{1} & 0 \\
0 & 2-\lambda_{1}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

Thus，$\lambda=2$ has a geometric multiplicity of $\mathbf{2}$ ，so the eigenspace for $\lambda=2$ has dimension 2 ．
It follows that we can select the standard basis vectors as our eigenvectors，which gives the general solution

$$
\binom{x_{1}(t)}{x_{2}(t)}=c_{1}\binom{1}{0} e^{2 t}+c_{2}\binom{0}{1} e^{2 t} .
$$

5050

Introduction
Linear DEs
Homogeneous Linear System of Autonomous D
Case Studies and Bifurcation

Real and Different Eigenvalues

 Repeated EigenvaluesBifurcation Example and Stability Diagram

Repeated Eigenvalues

Example 8：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Find the general solution to this problem and create a phase portrait．
This is an upper triangular matrix，so its eigenvalues are the diagonal elements．
Thus，$\lambda=-1$ with an algebraic multiplicity of $\mathbf{2}$

$$
\left(\begin{array}{cc}
-1-\lambda & 1 \\
0 & -1-\lambda
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

This system only has the $\mathbf{1}$ eigenvector $\mathbf{v}_{1}=\binom{1}{0}$

Repeated Eigenvalues

Example 7 （cont）：This DE produces an unstable proper node or star node with all solutions following straight paths away from the origin

Introduction
 Homogeneous Linear System of Autonomous D Case Studies and Bifurcation
 Real and Different Ei Complex Eigenvalues
 Repeated Eigenvalues
 Bifurcation Example and Stability Diagram
 Repeated Eigenvalues

Example 8 （cont）：Since there is only one eigenvector，we obtain the one solution

$$
\mathbf{x}_{1}(t)=\mathbf{v}_{\mathbf{1}} e^{-t}=\binom{1}{0} e^{-t}
$$

Thus，$\lambda=-1$ has a geometric multiplicity of $\mathbf{1}$ ，so the eigenspace for $\lambda=-1$ has dimension 1 ．
If we examine the scalar equations，then

$$
\dot{x}_{1}=-x_{1}+x_{2} \quad \text { and } \quad \dot{x}_{2}=-x_{2}
$$

Thus，$x_{2}(t)=c_{2} e^{-t}$ ，so

$$
\dot{x}_{1}+x_{1}=c_{2} e^{-t} \quad \text { with } \quad \mu(t)=e^{t}
$$

This has the solution

$$
x_{1}(t)=c_{2} t e^{-t}+c_{1} e^{-t}
$$

Repeated Eigenvalues

Example 8 （cont）：Combining the results above we see

$$
\begin{aligned}
\mathbf{x}(t)=\binom{x_{1}(t)}{x_{2}(t)} & =\binom{c_{1}+c_{2} t}{c_{2}} e^{-t} \\
& =c_{1}\binom{1}{0} e^{-t}+c_{2}\left[\binom{1}{0} t+\binom{0}{1}\right] e^{-t}
\end{aligned}
$$

The second solution has the form

$$
\mathbf{x}_{2}(t)=\mathbf{v} t e^{-t}+\mathbf{w} e^{-t}
$$

Upon differentiation

$$
\dot{\mathbf{x}}_{2}(t)=\mathbf{v}(1-t) e^{-t}-\mathbf{w} e^{-t}=\mathbf{A} \mathbf{x}_{2}=\mathbf{A}\left(\mathbf{v} t e^{-t}+\mathbf{w} e^{-t}\right)
$$

Since $(\mathbf{A}+\mathbf{I}) \mathbf{v}=\mathbf{0}$ ，this reduces to solving for \mathbf{w}

$$
(\mathbf{A}+\mathbf{I}) \mathbf{w}=\mathbf{v} \quad \text { or } \quad \mathbf{w}=\binom{0}{1}+k\binom{1}{0}
$$

Introduction Linear DEs

Homogeneous Linear System of Autonomous D
Case Studies and Bifurcation

Real and Different Eigenvalues

 Repeated EigenvaluesBifurcation Example and Stability Diagram

Repeated Eigenvalues－General

Repeated Eigenvalues－Two Dimensional Null Space Suppose the 2×2 matrix \mathbf{A} has a repeated eigenvalue λ ．
If the eigenspace spanned by the eigenvectors has dimension $2, \mathbf{v}_{1}$ and \mathbf{v}_{2} ，then the solution is simply

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2} \mathbf{v}_{2} e^{\lambda t}
$$

Solutions of Two $1^{\text {st }}$ Order Linear DEs Case Studies and Bifurcation

Repeated Eigenvalues

Example 8 （cont）：This DE produces a stable improper node with all solutions moving toward the origin

Introduction Linear DEs
 Homogeneous Linear System of Autonomous D Case Studies and Bifurcation
 Real and Different Eigenvalues
 Complex Eigenvalues
 Bifurcation Example and Stability Diagram
 Repeated Eigenvalues－General

Repeated Eigenvalues－One Dimensional Null Space If the 2×2 matrix \mathbf{A} has only one eigenvector \mathbf{v} associated with λ ，then one solution is

$$
\mathbf{x}_{1}(t)=\mathbf{v} e^{\lambda t}
$$

We attempt a second solution of the form

$$
\mathbf{x}_{2}(t)=\mathbf{v} t e^{\lambda t}+\mathbf{w} e^{\lambda t}
$$

which upon differentiation gives

$$
\dot{\mathbf{x}}_{2}(t)=\mathbf{v}(\lambda t+1) e^{\lambda t}+\lambda \mathbf{w} e^{\lambda t}=\mathbf{A} \mathbf{x}_{2}=\mathbf{A}\left(\mathbf{v} t e^{\lambda t}+\mathbf{w} e^{\lambda t}\right)
$$

Since $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$ ，this reduces to solving for \mathbf{w}

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}
$$

This gives the second linearly independent solution， $\mathbf{x}_{2}(t)$ ，above， where \mathbf{w} solves this higher order null space problem，which will include a particular solution and any multiple，$k \mathbf{v}$

Bifurcation Example

Bifurcation Example

Bifurcation Example：Consider the example：

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
\alpha & 2 \\
-2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}},
$$

which contains a parameter α that affects the behavior of this system We want to determine the different qualitative behaviors for different values of α
The eigenvalues satisfy

$$
\operatorname{det}\left|\begin{array}{cc}
\alpha-\lambda & 2 \\
-2 & -\lambda
\end{array}\right|=\lambda^{2}-\alpha \lambda+4=0
$$

Thus，the eigenvalues satisfy

$$
\lambda=\frac{\alpha \pm \sqrt{\alpha^{2}-16}}{2}
$$

5050

Bifurcation Example：For

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
\alpha & 2 \tag{3}\\
-2 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

The eigenvalues are $\lambda=\frac{\alpha \pm \sqrt{\alpha^{2}-16}}{2}$
Classifications as α varies are：
－For $\alpha<-4$ ，System（3）is a Stable Node
－For $\alpha=-4$ ，System（3）is a Stable Improper Node
－For $-4<\alpha<0$ ，System（3）is a Stable Spiral
－For $\alpha=0$ ，System（3）is a Center
－For $0<\alpha<4$ ，System（3）is a Unstable Spiral
－For $\alpha=4$ ，System（3）is a Unstable Improper Node
－For $\alpha>4$ ，System（3）is a Unstable Node

Sntroduction	Real and Different Eigenvalues Solutions of Two 1
Complex Eigenvalues	
Order Linear DEs	

Bifurcation Example

Bifurcation Example：Phase Portraits（ $\alpha<0$ ）
Observe a smooth transition as eigenvalues change from negative to complex with negative real part

Introduction
Solutions of Two $1^{\text {st }}$ Order Linear DEs
Homogeneous Linear System of Autonomous DE
Case Studies and Bifurcation
Case Studies and Bifurcation
Real and Different Ei

Bifurcation Example

Bifurcation Example：Phase Portraits（ $-4<\alpha<4$ ）
Observe the transitions as complex eigenvalues change from negative real part to positive real part－This is a significant part of a Hopf bifurcation

Bifurcation Example：Phase Portraits（ $\alpha>0$ ）
Observe a smooth transition as eigenvalues change from complex with positive real part to positive real values

$\alpha=2$

$\alpha=4$

$\alpha=5$

Solutions of Two 1st $\begin{array}{r}\text { Introduction } \\ \text { Order Linear DEs }\end{array}$ Homogeneous Linear System of Autonomous D
Case Studies and Bifurcation Case Studies and Bifurcation

Stability Diagram

Consider the system

$$
\dot{\mathrm{x}}=\mathbf{J x}
$$

Let λ_{1} and λ_{2} be eigenvalues of $\mathbf{J x}$
Results from Linear Algebra give $\operatorname{tr}(\mathbf{J})=\lambda_{1}+\lambda_{2}$ ， $\operatorname{det}|\mathbf{J}|=\lambda_{1} \cdot \lambda_{2}$ ，and $D=\left(j_{11}-j_{22}\right)^{2}+4 j_{12} j_{21}$

The figure shows the Stability Diagram for $\dot{\mathbf{x}}=\mathbf{J} \mathbf{x}$ with axes of $\operatorname{tr}(\mathbf{J})$ vs $\operatorname{det}|\mathbf{J}|$

5050

