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Introduction

Introduction

This is the second part of notes for Systems of Two 1st Order
Differential Equations

Part A has the topics below

A motivating example of a Greenhouse/Rockbed system of
passive heating
Solutions for the example above - illustrating key techniques
Graphs for direction fields and phase portraits
MatLab and Maple introduced for these problems

Part B has the following topics

Definitions and theorems for Systems of Two 1st Order
Differential Equations
Superposition and linear independence
Solving with eigenvalue techniques
Analysis of different cases with their phase portraits
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Existence and Uniqueness

General Linear System - 2D

General System of Two 1st Order Linear DEs(
ẋ1
ẋ2

)
=

(
p11(t)x1 + p12(t)x2 + g1(t)
p21(t)x1 + p22(t)x2 + g2(t)

)
, (1)

which can be written
ẋ = P(t)x + g(t),

where

x =

(
x1
x2

)
, P(t) =

(
p11(t) p12(t)
p21(t) p22(t)

)
, and g(t) =

(
g1(t)
g2(t)

)
System (1) is a 1st order linear system of DEs of dimension 2

If g(t) = 0, then System (1) is homogeneous; otherwise it is
nonhomogeneous
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Two 1st Order Linear DEs

Existence and Uniqueness for Two 1st Order Linear DEs

Theorem (Existence and Uniqueness)

Let each of the functions p11,...,p22, g1, and g2 be continuous on an
open interval I = {t|t ∈ (α, β)}, let t0 be any point in I, and let x10
and x20 be any given numbers. Then there exists a unique solution to
the system (1):(

ẋ1
ẋ2

)
=

(
p11(t)x1 + p12(t)x2 + g1(t)
p21(t)x1 + p22(t)x2 + g2(t)

)
,

that also satisfies the initial conditions

x1(t0) = x10, x2(t0) = x20.

Further the solution exists throughout the interval I.
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Linear Autonomous System

Linear Autonomous System: If the coefficient matrix P and
vector function g are independent of time, i.e., constants, then we
have the linear autonomous system

ẋ = Ax + b,

with constant matrix A and constant vector b.

The equilibrium solutions or critical points are found by solving:

Axe = −b or xe = −A−1b.

The change of variables y = x− xe allows us to concentrate on the
homogeneous linear system with constant coefficients

ẏ = Ay
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Superposition Principle

Theorem (Superposition Principle)

Suppose that x1(t) and x2(t) are solutions of the equation

ẋ(t) = Ax(t).

Then the expression

x(t) = c1x1(t) + c2x2(t),

where c1 and c2 are arbitrary constants, is also a solution.

We use the linearity of differentiation and matrices to show this

ẋ(t) =
d

dt
(c1x1(t) + c2x2(t)) = c1ẋ1(t) + c2ẋ1(t)

= c1Ax1(t) + c2Ax2(t) = A (c1x1(t) + c2x2(t)) = Ax(t)
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Wronskian and Linear Independence

Definition (Wronskian)

Suppose that x1(t) = [x11(t), x21(t)]T and x2(t) = [x12(t), x22(t)]T .
The Wronskian of the solutions x1(t) and x2(t) is given by the
determinant

W [x1,x2](t) =

∣∣∣∣ x11(t) x12(t)
x21(t) x22(t)

∣∣∣∣
Definition (Linear Independence of Solutions)

Suppose that x1(t) and x2(t) are solutions of ẋ(t) = Ax(t) on some
interval I. We say that x1 and x2 are linearly dependent if there
exists a constant k such that

x1(t) = kx2(t), for all t in I.

Otherwise, x1 and x2 are linearly independent.
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Wronskian and Linear Independence

Theorem (Wronskian and Linear Independence)

Suppose that

x1(t) =

(
x11(t)
x21(t)

)
and x2(t) =

(
x12(t)
x22(t)

)
are solutions of ẋ(t) = Ax(t) on an interval I. Then x1 and x2 are
linearly independent if and only if the Wronskian

W [x1,x2](t) 6= 0, for all t in I.

The two linearly independent solutions of ẋ(t) = Ax(t) are often
called a fundamental set of solutions

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Part B
— (9/54)

Introduction
Solutions of Two 1st Order Linear DEs

Homogeneous Linear System of Autonomous DEs
Case Studies and Bifurcation

Superposition and Linear Independence
Fundamental Solution
Eigenvalue Problem

Fundamental Solutions

Theorem (Fundamental Solutions)

Suppose that x1(t) and x2(t) are two solutions of

ẋ(t) = Ax(t) (2)

and that their Wronskian is not zero on an interval I. Then x1 and
x2 form a fundamental set of solutions for (2), and the general
solution is given by

x(t) = c1x1(t) + c2x2(t),

where c1 and c2 are arbitrary constants. If there is a given initial
condition x(t0) = x0, where x0 is any constant vector, then this
condition determines the constants c1 and c2 uniquely.
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Solving ẋ = Ax

Consider the general problem

ẋ(t) = Ax(t),

where

x =

(
x1
x2

)
, A =

(
a11 a12
a21 a22

)
.

We attempt a solution of the form

x = eλtv, so λeλtv = Aeλtv

Since eλt is never zero,

Av = λv or (A− λI)v = 0,

where I is the 2× 2 identity matrix

This is the classic eigenvalue problem
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Eigenvalue Problem

Thus, solving the homogeneous DE ẋ(t) = Ax(t) is equivalent to
solving the eigenvalue problem

(A− λI)v = 0 with A =

(
a11 a12
a21 a22

)
.

From Linear Algebra (Math 254) the eigenvalues are found by
solving

det |A− λI| =
∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0.

This gives the characteristic equation

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0

This is a quadratic equation, so easily solved for λ1 and λ2

Each λi is inserted into (A− λI)v = 0, and the corresponding
eigenvectors, vi are found
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Real and Different Eigenvalues

Consider ẋ = Ax and assume that the eigenvalue problem
(A− λI)v = 0 has real and different eigenvalues, λ1 and λ2

The two solutions are

x1(t) = eλ1tv1 and x2(t) = eλ2tv2,

so the Wronskian is

W [x1(t),x2(t)](t) =

∣∣∣∣ v11eλ1t v12e
λ2t

v21e
λ1t v22e

λ2t

∣∣∣∣ =

∣∣∣∣ v11 v12
v21 v22

∣∣∣∣ e(λ1+λ2)t

Since e(λ1+λ2t)t is nonzero, the Wronskian is nonzero if and only if
det |v1,v2| = 0.

Recall if the Wronskian is nonzero, then x1(t) and x2(t) form a
fundamental set of solutions to the system of DEs

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Part B
— (13/54)

Introduction
Solutions of Two 1st Order Linear DEs

Homogeneous Linear System of Autonomous DEs
Case Studies and Bifurcation

Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues
Bifurcation Example and Stability Diagram

Linear Algebra Result

Theorem

Let A have real or complex eigenvalues, λ1 and λ2, such that λ1 6= λ2,
and let the corresponding eigenvectors be

v1 =

(
v11
v21

)
and v2 =

(
v12
v22

)
.

If V is the matrix formed from v1 and v2 with

V =

(
v11 v12
v21 v22

)
,

then

det |V| =
∣∣∣∣ v11 v12
v21 v22

∣∣∣∣ 6= 0.
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Real and Different Eigenvalues 1

The two previous slides show that if A has real and different
eigenvalues, λ1 and λ2, then the system

ẋ = Ax

has a fundamental set of solutions

x1(t) = eλ1tv1 and x2(t) = eλ2tv2,

where v1 and v2 are the corresponding eigenvectors for λ1 and λ2,
respectively

It follows that the general solution can be written

x(t) = c1e
λ1tv1 + c2e

λ2tv2.
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Real and Different Eigenvalues 2

Example 1: Consider the example:(
ẋ1
ẋ2

)
=

(
−0.5 2

0 −1

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ −0.5− λ 2
0 −1− λ

∣∣∣∣ = (λ+ 0.5)(λ+ 1) = 0,

which is the characteristic equation with solutions λ1 = −0.5 and
λ2 = −1
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Real and Different Eigenvalues 3

Example 1 (cont): For λ1 = −0.5 we have:(
−0.5− λ1 2

0 −1− λ1

)(
ξ1
ξ2

)
=

(
0 2
0 −0.5

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
1
0

)
.

Similarly, for λ2 = −1 we have:(
−0.5− λ2 2

0 −1− λ2

)(
ξ1
ξ2

)
=

(
0.5 2
0 0

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(2) =

(
4
−1

)
.
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Real and Different Eigenvalues 4

Example 1 (cont): The results above give the general solution(
x1(t)
x2(t)

)
= c1

(
1
0

)
e−0.5t + c2

(
4
−1

)
e−t,

which is a solution exponentially
decaying toward the origin.

This is a sink or stable node.

Solutions move rapidly

in the direction ξ(2) =
(

4
−1

)
,

while decaying more slowly in the

direction ξ(1) =
(

1
0

)
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Real and Different Eigenvalues 5

Example 2: Consider the example:(
ẋ1
ẋ2

)
=

(
0 1
−3 4

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ −λ 1
−3 4− λ

∣∣∣∣ = λ2 − 4λ+ 3 = (λ− 1)(λ− 3) = 0,

which is the characteristic equation with solutions λ1 = 1 and
λ2 = 3
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Real and Different Eigenvalues 6

Example 2 (cont): For λ1 = 1 we have:(
−λ1 1
−3 4− λ1

)(
ξ1
ξ2

)
=

(
−1 1
−3 3

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
1
1

)
.

Similarly, for λ2 = 3 we have:(
−λ2 1
−3 4− λ2

)(
ξ1
ξ2

)
=

(
−3 1
−3 1

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(2) =

(
1
3

)
.
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Real and Different Eigenvalues 7

Example 2 (cont): The results above give the general solution(
x1(t)
x2(t)

)
= c1

(
1
1

)
et + c2

(
1
3

)
e3t,

which is a solution exponentially
growing away from the origin.

This is a source or
unstable node.

Solutions first move away from
the origin in the direction

ξ(1) =
(

1
1

)
,

then asymptotically parallel the

direction ξ(2) =
(

1
3

)
for larger t
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Real and Different Eigenvalues 8

Example 3: Consider the example:(
ẋ1
ẋ2

)
=

(
1 3
1 −1

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ 1− λ 3
1 −1− λ

∣∣∣∣ = λ2 − 4 = (λ− 2)(λ+ 2) = 0,

which is the characteristic equation with solutions λ1 = 2 and
λ2 = −2
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Real and Different Eigenvalues 9

Example 3 (cont): For λ1 = 2 we have:(
1− λ1 3

1 −1− λ1

)(
ξ1
ξ2

)
=

(
−1 3

1 −3

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
3
1

)
.

Similarly, for λ2 = −2 we have:(
1− λ2 3

1 −1− λ2

)(
ξ1
ξ2

)
=

(
3 3
1 1

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(2) =

(
1
−1

)
.
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Real and Different Eigenvalues 10

Example 3 (cont): The results above give the general solution(
x1(t)
x2(t)

)
= c1

(
3
1

)
e2t + c2

(
1
−1

)
e−2t.

This is a saddle node.

Solutions move toward the origin

in the direction ξ(2) =
(

1
−1

)
and move away from origin in the

direction ξ(1) =
(

3
1

)
for larger t
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Real and Different Eigenvalues 11

Example 4: Consider the example:(
ẋ1
ẋ2

)
=

(
−2 4

1 −2

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

If we seek equilibria, then(
0
0

)
=

(
−2 4

1 −2

)(
x1e
x2e

)
However, any solution of the form x1e = 2x2e is a critical point,
giving a line of equilibria

Our method from before still applies, so seek x(t) = veλt, which gives
the eigenvalue problem below

det

∣∣∣∣ −2− λ 4
1 −2− λ

∣∣∣∣ = λ2 + 4λ = λ(λ+ 4) = 0,

has the characteristic equation with eigenvalues λ = 0,−4
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Real and Different Eigenvalues 12

Example 4 (cont): For λ1 = 0 we have:(
−2− λ1 4

1 −2− λ1

)(
ξ1
ξ2

)
=

(
−2 4

1 −2

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
2
1

)
.

Similarly, for λ2 = −4 we have:(
−2− λ2 4

1 −2− λ2

)(
ξ1
ξ2

)
=

(
2 4
1 2

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(2) =

(
2
−1

)
.
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Real and Different Eigenvalues 13

Example 4 (cont): The eigenvalue problem gives two solutions
to the DE

x1(t) =

(
2
1

)
and x2(t) =

(
2
−1

)
e−4t

The Wronskian satisfies

W [x1,x2](t) = det

∣∣∣∣ 2 2e−4t

1 −e−4t

∣∣∣∣ = −4e−4t 6= 0,

so these do form a fundamental set of solutions

Thus the general solution is given by(
x1(t)
x2(t)

)
= c1

(
2
1

)
+ c2

(
2
−1

)
e−4t.
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Real and Different Eigenvalues 14

Example 4 (cont): The phase portrait for(
x1(t)
x2(t)

)
= c1

(
2
1

)
+ c2

(
2
−1

)
e−4t.

This is a degenerate case
where the line x1 = 2x2
all form equilibria.

All solutions exponentially
approach one of the equilibria
along lines parallel to the line
x1 = −2x2

Note: There is an unstable case,
which we omit, where the
eigenvalues satisfy
λ1 = 0 and λ2 > 0
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Complex Eigenvalues 1

Consider a system of two linear homogeneous differential
equations:

ẋ = Ax,

where A is a real-valued matrix.

With a solution of the form x(t) = veλt, there are eigenvalues, λ,
with corresponding eigenvectors, v satisfying

det |A− λI| = 0 and (A− λI)v = 0

The characteristic equation for the eigenvalues is a quadratic
equation.

Assume the eigenvalues are complex, then λ = µ± iν, since A is
real-valued
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Complex Eigenvalues 2

Assume the DE, ẋ = Ax, has eigenvalues λ1 = µ+ iν and
λ2 = λ̄1 = µ− iν
Assume v1 is an eigenvector corresponding to λ1, so

(A− λ1I)v1 = 0

Taking conjugates (with A, I, and 0, real)

(A− λ̄1I)v̄1 = (A− λ2I)v̄1 = 0

This gives two complex solutions to the system of DEs

x1(t) = e(µ+iν)tv1 and x2(t) = e(µ−iν)tv̄1

We use Euler’s formula to separate the solutions into real and
imaginary parts

eiνt = cos(νt) + i sin(νt)
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Complex Eigenvalues 3

Assume the eigenvector, v1 = a + ib, where a and b are real-valued,
then

x1(t) = (a + ib)eµt(cos(νt) + i sin(νt))

= eµt(a cos(νt)− b sin(νt)) + ieµt(a sin(νt) + b cos(νt))

Denote the real and imaginary parts of x1(t) = u(t) + iw(t)

u(t) = eµt(a cos(νt)−b sin(νt)) and w(t) = eµt(a sin(νt)+b cos(νt))

A similar calculation gives

x2(t) = u(t)− iw(t),

so x1(t) and x2(t) are complex conjugates.

The desire is to show that u(t) and w(t) are real-valued solutions
forming a fundamental set for ẋ = Ax
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Complex Eigenvalues 4

Since x1(t) = u(t) + iw(t) is a solution to the DE ẋ1 = Ax1, we have

0 = ẋ1 −Ax1 = (u̇ + iẇ)−A(u + iw)

= (u̇−Au) + i(ẇ −Aw)

This vector is zero if and only if the real and imaginary parts are zero,
so

u̇−Au = 0 and ẇ −Aw = 0

or u(t) and w(t) are real-valued solutions of ẋ = Ax

It remains to show u(t) and w(t) form a fundamental set of
solutions, which is done with the Wronskian
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Complex Eigenvalues 5

The two solutions are

u(t) = eµt(a cos(νt)−b sin(νt)) and w(t) = eµt(a sin(νt)+b cos(νt)),

so let a =
(
a1
a2

)
and b =

(
b1
b2

)
, then the Wronskian satisfies

W [u,w](t) =

∣∣∣∣ eµt(a1 cos(νt)− b1 sin(νt)) eµt(a1 sin(νt) + b1 cos(νt))
eµt(a2 cos(νt)− b2 sin(νt)) eµt(a2 sin(νt) + b2 cos(νt))

∣∣∣∣
= (a1b2 − a2b1)e2µt

Assume ν 6= 0 and the eigenvectors are v1 = a + ib and v2 = a− ib,∣∣∣∣ a1 + ib1 a1 − ib1
a2 + ib2 a2 − ib2

∣∣∣∣ = −2i(a1b2 − a2b1) 6= 0

by our Theorem from Linear Algebra

Thus, the Wronskian shows u(t) and w(t) form a fundamental set
of solutions to our problem
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Example 5: Consider the example:(
ẋ1
ẋ2

)
=

(
3 −2
4 −1

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ 3− λ −2
4 −1− λ

∣∣∣∣ = λ2 − 2λ+ 5 = 0,

which is the characteristic equation with solutions λ = 1± 2i
(complex eigenvalues)
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Example 5 (cont): For λ1 = 1 + 2i we have:(
3− λ1 −2

4 −1− λ1

)(
ξ1
ξ2

)
=

(
2− 2i −2

4 −2− 2i

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
1

1− i

)
.

We have λ2 = λ̄1 and ξ(2) = ξ̄(1)

Thus,

x1(t) =

(
1

1− i

)
et(cos(2t) + i sin(2t)) =

u(t) + iw(t) =

(
et cos(2t)

et(cos(2t) + sin(2t))

)
+ i

(
et sin(2t)

et(sin(2t)− cos(2t))

)
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Complex Eigenvalues 8

Example 5 (cont): From above the general solution is(
x1(t)
x2(t)

)
= c1

(
et cos(2t)

et(cos(2t) + sin(2t))

)
+c2

(
et sin(2t)

et(sin(2t)− cos(2t))

)
.

This is an unstable spiral.

All solutions spiral away from
the origin.

Solutions with complex
eigenvalues with negative
real parts spiral toward the
origin, creating a stable spiral
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Example 6: Consider the example:(
ẋ1
ẋ2

)
=

(
2 −5
1 −2

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ 2− λ −5
1 −2− λ

∣∣∣∣ = λ2 + 1 = 0,

which is the characteristic equation with solutions λ = ±i (purely
imaginary eigenvalues)
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Example 6 (cont): For λ1 = i we have:(
2− λ1 −5

1 −2− λ1

)(
ξ1
ξ2

)
=

(
2− i −5

1 −2− i

)(
ξ1
ξ2

)
=

(
0
0

)
This results in the eigenvector ξ(1) =

(
2 + i

1

)
.

We have λ2 = λ̄1 and ξ(2) = ξ̄(1)

Thus,

x1(t) =

(
2 + i

1

)
(cos(t) + i sin(t)) =

u(t) + iw(t) =

(
2 cos(t)− sin(t)

cos(t)

)
+ i

(
2 sin(t) + cos(t)

sin(t)

)
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Example 6 (cont): From above the general solution is(
x1(t)
x2(t)

)
= c1

(
2 cos(t)− sin(t)

cos(t)

)
+ c2

(
2 sin(t) + cos(t)

sin(t)

)
.

This is a center.

All solutions form ellipses
around the origin.
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Example 7: Consider the example:(
ẋ1
ẋ2

)
=

(
2 0
0 2

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

det

∣∣∣∣ 2− λ 0
0 2− λ

∣∣∣∣ = (λ− 2)2 = 0,

which has the characteristic equation with solutions λ = 2 with an
algebraic multiplicity of 2
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Example 7 (cont): For λ1 = λ2 = 2 we have:(
2− λ1 0

0 2− λ1

)(
ξ1
ξ2

)
=

(
0 0
0 0

)(
ξ1
ξ2

)
=

(
0
0

)
Thus, λ = 2 has a geometric multiplicity of 2, so the eigenspace
for λ = 2 has dimension 2.

It follows that we can select the standard basis vectors as our
eigenvectors, which gives the general solution(

x1(t)
x2(t)

)
= c1

(
1
0

)
e2t + c2

(
0
1

)
e2t.
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Example 7 (cont): This DE produces an unstable proper node
or star node with all solutions following straight paths away from
the origin
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Example 8: Consider the example:(
ẋ1
ẋ2

)
=

(
−1 1

0 −1

)(
x1
x2

)
Find the general solution to this problem and create a phase portrait.

This is an upper triangular matrix, so its eigenvalues are the
diagonal elements.

Thus, λ = −1 with an algebraic multiplicity of 2(
−1− λ 1

0 −1− λ

)(
ξ1
ξ2

)
=

(
0 1
0 0

)(
ξ1
ξ2

)
=

(
0
0

)

This system only has the 1 eigenvector v1 =

(
1
0

)
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Example 8 (cont): Since there is only one eigenvector, we obtain
the one solution

x1(t) = v1e
−t =

(
1
0

)
e−t

Thus, λ = −1 has a geometric multiplicity of 1, so the
eigenspace for λ = −1 has dimension 1.

If we examine the scalar equations, then

ẋ1 = −x1 + x2 and ẋ2 = −x2

Thus, x2(t) = c2e
−t, so

ẋ1 + x1 = c2e
−t with µ(t) = et

This has the solution

x1(t) = c2te
−t + c1e

−t
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Example 8 (cont): Combining the results above we see

x(t) =

(
x1(t)
x2(t)

)
=

(
c1 + c2t
c2

)
e−t

= c1

(
1
0

)
e−t + c2

[(
1
0

)
t+

(
0
1

)]
e−t

The second solution has the form

x2(t) = vte−t + we−t

Upon differentiation

ẋ2(t) = v(1− t)e−t −we−t = Ax2 = A(vte−t + we−t)

Since (A + I)v = 0, this reduces to solving for w

(A + I)w = v or w =
(

0
1

)
+ k

(
1
0

)
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Example 8 (cont): This DE produces a stable improper node
with all solutions moving toward the origin
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Repeated Eigenvalues - Two Dimensional Null Space

Suppose the 2× 2 matrix A has a repeated eigenvalue λ.

If the eigenspace spanned by the eigenvectors has dimension 2, v1 and
v2, then the solution is simply

x(t) = c1v1e
λt + c2v2e

λt
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Repeated Eigenvalues - General

Repeated Eigenvalues - One Dimensional Null Space If the
2× 2 matrix A has only one eigenvector v associated with λ, then one
solution is

x1(t) = veλt

We attempt a second solution of the form

x2(t) = vteλt + weλt,

which upon differentiation gives

ẋ2(t) = v(λt+ 1)eλt + λweλt = Ax2 = A(vteλt + weλt)

Since (A− λI)v = 0, this reduces to solving for w

(A− λI)w = v

This gives the second linearly independent solution, x2(t), above,
where w solves this higher order null space problem, which will
include a particular solution and any multiple, kv
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Bifurcation Example 1

Bifurcation Example: Consider the example:(
ẋ1
ẋ2

)
=

(
α 2
−2 0

)(
x1
x2

)
,

which contains a parameter α that affects the behavior of this system

We want to determine the different qualitative behaviors for
different values of α

The eigenvalues satisfy

det

∣∣∣∣ α− λ 2
−2 −λ

∣∣∣∣ = λ2 − αλ+ 4 = 0

Thus, the eigenvalues satisfy

λ =
α±
√
α2 − 16

2
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Bifurcation Example 2

Bifurcation Example: For(
ẋ1
ẋ2

)
=

(
α 2
−2 0

)(
x1
x2

)
(3)

The eigenvalues are λ =
α±
√
α2−16
2

Classifications as α varies are:

For α < −4, System (3) is a Stable Node

For α = −4, System (3) is a Stable Improper Node

For −4 < α < 0, System (3) is a Stable Spiral

For α = 0, System (3) is a Center

For 0 < α < 4, System (3) is a Unstable Spiral

For α = 4, System (3) is a Unstable Improper Node

For α > 4, System (3) is a Unstable Node
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Bifurcation Example 3

Bifurcation Example: Phase Portraits (α < 0)

Observe a smooth transition as eigenvalues change from negative to
complex with negative real part

α = −5 α = −4 α = −2

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Part B
— (51/54)

Introduction
Solutions of Two 1st Order Linear DEs

Homogeneous Linear System of Autonomous DEs
Case Studies and Bifurcation

Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues
Bifurcation Example and Stability Diagram

Bifurcation Example 4

Bifurcation Example: Phase Portraits (−4 < α < 4)

Observe the transitions as complex eigenvalues change from negative
real part to positive real part - This is a significant part of a Hopf
bifurcation

α = −2 α = 0 α = 2
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Bifurcation Example 5

Bifurcation Example: Phase Portraits (α > 0)

Observe a smooth transition as eigenvalues change from complex with
positive real part to positive real values

α = 2 α = 4 α = 5
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Stability Diagram

Consider the system

ẋ = Jx

Let λ1 and λ2 be
eigenvalues of Jx

Results from Linear Algebra
give tr(J) = λ1 + λ2,
det |J| = λ1 · λ2, and
D = (j11 − j22)2 + 4j12j21

The figure shows the
Stability Diagram for
ẋ = Jx with axes
of tr(J) vs det |J|
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