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Introduction

Introduction

Introduction

@ This is the second part of notes for Systems of Two 1°! Order
Differential Equations

@ Part A has the topics below

e A motivating example of a Greenhouse/Rockbed system of
passive heating

e Solutions for the example above - illustrating key techniques

e Graphs for direction fields and phase portraits

e MatLab and Maple introduced for these problems

@ Part B has the following topics
o Definitions and theorems for Systems of Two 15¢ Order
Differential Equations

e Superposition and linear independence
e Solving with eigenvalue techniques

e Analysis of different cases with their phase portraits S0SJO
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o Introduction

e Solutions of Two 15! Order Linear DEs
@ Existence and Uniqueness

e Homogeneous Linear System of Autonomous DEs
@ Superposition and Linear Independence
@ Fundamental Solution
@ Eigenvalue Problem

e Case Studies and Bifurcation
@ Real and Different Eigenvalues
@ Complex Eigenvalues
@ Repeated Eigenvalues
@ Bifurcation Example and Stability Diagram
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Solutions of Two 1°! Order Linear DEs A N
Existence and Uniqueness

General Linear System - 2D

General System of Two 15 Order Linear DEs

p11(t)x1 + pi2(t)xe + g1(t)

( 2 ) N ( p21(t)x1 + paa(t)wa + g2(t) ) ' (1)

which can be written
x =P(t)x + g(t),

where

= () po= (5 ) wo= (200)

System (1) is a 15" order linear system of DEs of dimension 2

~

If g(t) = 0, then System (1) is homogeneous; otherwise it is
nonhomogeneous
SDST
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Solutions of Two 1°! Order Linear DEs

Existence and Uniqueness

Two 1%" Order Linear DEs

Existence and Uniqueness for Two 1°! Order Linear DEs

Theorem (Existence and Uniqueness)

Let each of the functions pi1,...,p22, g1, and gs be continuous on an
open interval I = {t|t € (o, B)}, let to be any point in I, and let x1
and xog be any given numbers. Then there exists a unique solution to
the system (1):

< i ) B ( p11(t) 1 + pra(t)z2 + 91(2) )

@y )\ par(t)zy + paa(t)z2 + ga(t)
that also satisfies the initial conditions
z1(to) = Z10, r2(to) = T20.

Further the solution exists throughout the interval I.
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Superposition and Linear Independence

. F 1a >ntal Soluti
Homogeneous Linear System of Autonomous DE poaamental S0 Hon
Eigenvalue Problem

Superposition Principle

Theorem (Superposition Principle)

Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE e e

Linear Autonomous System

Linear Autonomous System: If the coefficient matrix P and
vector function g are independent of time, i.e., constants, then we
have the linear autonomous system

X =Ax+ b,

with constant matrix A and constant vector b.

The equilibrium solutions or critical points are found by solving:

Ax.=-b or x. = —A"'b.

The change of variables y = x — x, allows us to concentrate on the
homogeneous linear system with constant coefficients

y=Ay
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Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE el Prelbilem

Wronskian and Linear Independence

Suppose that x1(t) and x2(t) are solutions of the equation
x(t) = Ax(t).
Then the expression
x(t) = c1x1(t) + coaxa(t),

where c¢1 and co are arbitrary constants, is also a solution.

We use the linearity of differentiation and matrices to show this

() = %(clxl(t)—kcsz(t)) = i (t) + ek (1)

= 1 Ax(t) + c2Axa(t) = A(c1xq(t) + coxa(t)) = Ax(t)

SDSJO
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Definition (Wronskian)

Suppose that x;(t) = [11(t), 221(t)]T and x2(t) = [212(t), z22(#)] 7.
The Wronskian of the solutions x;(t) and x5(¢) is given by the
determinant

Wi () = | 200 220

Definition (Linear Independence of Solutions)

Suppose that x;(¢) and x3(¢) are solutions of x(t) = Ax(t) on some
interval I. We say that x; and x5 are linearly dependent if there
exists a constant k such that

x1(t) = kxa(t), for all ¢ in 1.

Otherwise, x; and x5 are linearly independent. 50
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Superposition and Linear Independence Superposition and Linear Independence

Fundamental Solution Fundamental Solution

Homogeneous Linear System of Autonomous DE el Paeliom Homogeneous Linear System of Autonomous DE Eigenvalue Problem

Wronskian and Linear Independence Fundamental Solutions

Theorem (Fundamental Solutions)

Theorem (Wronskian and Linear Independence) .
Suppose that x1(t) and x2(t) are two solutions of
Suppose that

%(t) = Ax(t) (2)

$11(t) ) ( .’Elz(t) >

x1(t) = and Xq(t) =

1(t) ( 21 (1) 2(t) T22(t) and that their Wronskian is not zero on an interval I. Then x1 and
xo form a fundamental set of solutions for (2), and the general

are solutions of X(t) = Ax(t) on an interval I. Then x; and X2 are solution s given by

linearly independent if and only if the Wronskian
x(t) = c1x1(t) + caxa(t),

Wx1,x2](t) # 0, for all ¢ in I.

where c¢1 and co are arbitrary constants. If there is a given initial
condition x(tg) = Xo, where xg is any constant vector, then this
condition determines the constants ¢, and co uniquely.

The two linearly independent solutions of %(t) = Ax(t) are often
called a fundamental set of solutions

v
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Superposition and Linear Independence
Fundamental Solution
Eigenvalue Problem

Superposition and Linear Independence
Fundamental Solution

Homogeneous Linear System of Autonomous DE Eigenvalue Problem

Homogeneous Linear System of Autonomous DE

Solving x = Ax Eigenvalue Problem

Consider the general problem Thus, solving the homogeneous DE x(t) = Ax(t) is equivalent to
solving the eigenvalue problem
x(t) = Ax(t),
(A—A)v=0 with A= %2,
where Az Q29
N A [ @1 012
To )’ as1 a9 ) From Linear Algebra (Math 254) the eigenvalues are found by
We attempt a solution of the form solving Gt — ) u
det |A = M| =| " HA‘:o.
x = eMv, SO AeMv = Aetlv as asy —
This gives the characteristic equation
Since e* is never zero,

A — (a11 + ag2) A + araze — ajpaz =0
Av =)\v or (A= XI)v =0,
This is a quadratic equation, so easily solved for A\; and A,
where I is the 2 x 2 identity matrix o . .
Each ); is inserted into (A — AI)v = 0, and the corresponding

SDSO eigenvectors, v; are found S0S0

This is the classic eigenvalue problem
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Real and Different Eigenvalues

Consider x = Ax and assume that the eigenvalue problem
(A — MI)v = 0 has real and different eigenvalues, \; and A,

The two solutions are

X, (t) = eMlvy and Xo(t) = e*?lvy,
so the Wronskian is
At Ast
_ | e V12€ | Y11 V12 | (M)t
Whea(t) @)t = | W0 0L = e

Since e(M1 220t i5 nonzero, the Wronskian is nonzero if and only if
det |vi,va| = 0.

Recall if the Wronskian is nonzero, then x;(¢) and x2(¢) form a
fundamental set of solutions to the system of DEs
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Real and Different Eigenvalues
Complex Eigenvalues
Rer d Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Real and Different Eigenvalues
Complex Eigenvalues
ed Eigenvalues

Case Studies and Bifurcation ation Example and Stability Diagram

Linear Algebra Result

Theorem

Let A have real or complex eigenvalues, \1 and Ao, such that A1 # Ag,
and let the corresponding eigenvectors be

V12

V22 i

v
vy = 11
V21

If V is the matriz formed from vy and vo with

and Vg = (

VvV — V11 V12 7
V21 V22
then
det|V|=| 11 Y12 12,
V21 V22

v
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Complex Eige
Repeated Eig

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Real and Different Eigenvalues

The two previous slides show that if A has real and different
eigenvalues, \; and \,, then the system

x = Ax
has a fundamental set of solutions

Aot

x1(t) = eMlvy and Xa(t) = e™?"vq,

where v and vy are the corresponding eigenvectors for Ay and Ao,
respectively

It follows that the general solution can be written
x(t) = c1eMivy + coelvy.
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Real and Different Eigenvalues 2

Example 1: Consider the example:

1 B —0.5 2 T
fkg - 0 -1 To
Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

—0.5—-A 2
det 0 1o ‘—()\4—0.5)()\4—1)—0,
which is the characteristic equation with solutions \; = —0.5 and

A =—1

SDSJT
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation

Real and Different Eigenvalues

Example 1 (cont): For \; = —0.5 we have:

JE)=(5 2)(8)=(3)

This results in the eigenvector £ = ( (1) )

—0.5 -\ 2
0 -1-XN

Similarly, for As = —1 we have:

(U LR )() (7 8 (8)-()

This results in the eigenvector £(2) = ( _11 )

Bifurcation Example and Stability Diagram

3

Case Studies and Bifurcation

Real and Different Eigenvalues
plex Eigenvalues
ed Eigenvalues

Bifurcation Example and Stability Diagram

Real and Different Eigenvalues

Example 1 (cont): The results above give the general solution

(50 )=o) a4

Stable Node

i e NN LS S N N N N NN
~~ \\\\ S NN

which is a solution exponentially
decaying toward the origin.

This is a sink or stable node.

Solutions move rapidly

in the direction £@ — ( | )
while decaying more slowly in the
direction £ = < (1) >
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Real and Different Eigenvalues

Complex Eigenvalues

Rep d Eigenvalues

Bifu ion Example and Stability Diagram

Real and Different Eigenvalues
Complex Eigenvalues

Case Studies and Bifurcation Case Studies and Bifurcation tion Example and Stability Diagram

Real and Different Eigenvalues 5 Real and Different Eigenvalues §

Example 2 (cont): For \; =1 we have:

(e (8-

This results in the eigenvector £ = ( i )

Example 2: Consider the example:

(2)=(=3)(2) (5

Find the general solution to this problem and create a phase portrait.

o O
N—

From above we need to find the eigenvalues and eigenvectors, so solve Similarly, for Ay = 3 we have:

(7% ) (8)=(5 0)(8)=(

This results in the eigenvector £(2) = ( :15 >

- 1

det] 34—

‘:)\2—4)\4—3:()\—1)()\—3):0,

o O
N——

which is the characteristic equation with solutions \; = 1 and
Ao =3
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Bifurcation Example and Stability Diagram

Case Studies and Bifurcation

Real and Different Eigenvalues 7

Real and Different Eigenvalues 8

Example 2 (cont): The results above give the general solution
z1(t) ) _ 1 t 1 3t
<x2(t)>—01<1 crels )
Unstable Node x 1 B 1 3 T
.i'g o 1 -1 T2

Find the general solution to this problem and create a phase portrait.

Example 3: Consider the example:

which is a solution exponentially
growing away from the origin.

———a—a—x
N

This is a source or

unstable node. From above we need to find the eigenvalues and eigenvectors, so solve

Solutions first move away from
the origin in the direction

s =(1)

then asymptotically parallel the
direction £¢?) = ( ;’ ) for larger ¢

1—-A 3
1 -1-A

det

S N A
e N e N Y

3

/;g&&&ﬂ\\\\\
N e T —
= L

‘:)\2—4:()\—2)0\4—2):0,

which is the characteristic equation with solutions \; = 2 and
Ao = —2

NN
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Real and Different Eigenvalues

Complex Eigenvalues

Repeated Eigenvalues

Bifurcation Example and Stability Diagram

Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Case Studies and Bifurcation

Real and Different Eigenvalues 10

Real and Different Eigenvalues 9

Example 3 (cont): The results above give the general solution

z1(t) \ _ 3\ 2t T\ o
(2 )=o(F)erve( )
( ]._)\1 3 ) < §1 > . < _1 3 > < 61 > _ < 0 ) Saddle Node
1 -1-X\ &2 B 1 -3 &2 0 This is a saddle node. N \\\\::fXL:::::
\\\\\ \\\\ —
\

Example 3 (cont): For A\; = 2 we have:

D N NN
D e N

Solutions move toward the origin
\\ N ‘\\\\>\\ QQQQQQQQQ

in the direction ¢ = ( _i )
and move away from origin in the
direction £ = ( i’ ) for larger t

This results in the eigenvector £ = ( i’ )

Similarly, for Ao = —2 we have:

(7 8 (8)-(D(8)-(3)

This results in the eigenvector £(2) = ( _1 )

- \
ﬁﬁﬁﬁﬁﬁﬁﬁﬁ SO N \\
\\\\\\\\ SO SOSONON NN NN
\\\\\\\\\ SRS SN
\\\\\\\\ oS S SO NN

— (24/54)
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Real and Different Eigenvalues
plex Eigenvalues
ted Eigenvalues
tion Example and Stability Diagram

11

Case Studies and Bifurcation

Real and Different Eigenvalues

Example 4: Consider the example:

()= =) (%)

Find the general solution to this problem and create a phase portrait.
If we seek equilibria, then
—2 4

(o)=(1 =) ()

However, any solution of the form z1, = 2z, is a critical point,
giving a line of equilibria

1
T2

x1
X2

Tile
T2e

Our method from before still applies, so seek x(t) = ve*, which gives
the eigenvalue problem below

—2-A 4

det 1 9y

=N +4x=AA+4) =0,

Real and Different Eigenvalues

Co

Case Studies and Bifurcation

Real and Different Eigenvalues

Example 4 (cont): For \; = 0 we have:

(e L)(E)-(2

&2
This results in the eigenvector £ = ( i )
Similarly, for A\s = —4 we have:

(Lt )(8) = (1)

P
This results in the eigenvector £(2) = ( _i )

)(

&1
§2

plex Eigenvalues
ed Eigenvalue
Bifurcation Example and Stability Diagram

2S

)=o)

12
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has the characteristic equation with eigenvalues A = 0, —4 SO50
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Real and Different Eigenvalues
Complex Eigenvalues

Real and Different Eigenvalues
Complex Eigenvalues

Rep d Eigenvalues
Bifu ion Example and Stability Diagram

13

Case Studies and Bifurcation

Real and Different Eigenvalues

Example 4 (cont): The eigenvalue problem gives two solutions

to the DE
x1(t) = ( ? ) and xo(t) = ( _% >e4t
The Wronskian satisfies
2e~ —4t
Wx1,x2](t) = det | et | = —4e™ " £ 0,

so these do form a fundamental set of solutions

Thus the general solution is given by
z1(t 2 2 _
(56 )= (1)ea ()

xz(t)
SDSJ

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (27/54) i

1 Eigenval
Case Studies and Bifurcation

)=(1)em( )

Zero Eigenvalue — stable

This is a degenerate case
where the line x; = 225
all form equilibria.

e e NN
NN NN Y
N O e T N N NN

I NN
N O N Y

All solutions exponentially
SN OO SRS N

approach one of the equilibria
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along lines parallel to the line TSNS
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Note: There is an unstable case,
which we omit, where the
eigenvalues satisfy

A =0and Xy >0
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on Example and Stability Diagram
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Real and Different Eigenvalues Real and Different Eigenvalues
Complex Eigenvalues Complex Eigenvalues
Repeated Eigenvalues Repeated Eigenvalues
Case Studies and Bifurcation Bifurcation Example and Stability Diagram Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Complex Eigenvalues Complex Eigenvalues 2

Assume the DE, x = Ax, has eigenvalues \; = pu + iv and
Consider a system of two linear homogeneous differential Ao = A\ = p—iv
equations: % — Ax Assume v; is an eigenvector corresponding to A1, so
where A is a real-valued matrix. (A=XI)vi =0
With a solution of the form x(t) = ve*!, there are eigenvalues, \, Taking conjugates (with A, I, and 0, real)
with corresponding eigenvectors, v satisfying _

(A=XMIDvi=(A—-XD)v; =0
det|]A—AM|=0 and (A—-A)v=0
This gives two complex solutions to the system of DEs

The characteristic equation for the eigenvalues is a quadratic x1(t) = e+ Wtyy and Xy (t) = e~ Mty
equation.
Assume the eigenvalues are complex, then A = p =+ iv, since A is We use Euler’s formula to separate the solutions into real and
real-valued imaginary parts }
SDSU et = cos(vt) + isin(vt) SDST
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Real and Different Eigenvalues
Complex Eigenvalues
ed Eigenvalues
Case Studies and Bifurcation ifurcation Example and Stability Diagram

Real and Different Eigenvalues
Complex Eigenvalues
cated Eigenvalues
Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Complex Eigenvalues 3 Complex Eigenvalues 4

Assume the eigenvector, vi = a + ib, where a and b are real-valued,
then

Since x1(t) = u(t) +iw(t) is a solution to the DE %x; = Ax;, we have

x1(t) = (a+ib)e"(cos(vt) + isin(vt))
et (acos(vt) — bsin(vt)) + ie™ (asin(vt) + b cos(vt)) 0 = % —Ax; = (u+iw) - A(u+iw)
(0 — Au) +i(w — Aw)

Denote the real and imaginary parts of x; () = u(t) + iw(¢)

This vector is zero if and only if the real and imaginary parts are zero,
u(t) = e"(acos(vt)—bsin(vt)) and w(t) = e (asin(vt)+bcos(vt)) )

u—Au=0 and w—Aw =0

A similar calculation gives or u(t) and w(t) are real-valued solutions of x = Ax

x2(t) = u(t) —iw(t), It remains to show u(t) and w(t) form a fundamental set of
. solutions, which is done with the Wronskian

so x1(t) and x5(t) are complex conjugates.

The desire is to show that u(¢) and w(t) are real-valued solutions
forming a fundamental set for x = Ax

SDSJT
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Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Real and Different Eigenvalues
Complex Eigenvalues
Repeated Eigenvalues

Case Studies and Bifurcation Bifurcation Example and Stability Diagram Case Studies and Bifurcation Bifurcation Example and Stability Diagram

Complex Eigenvalues 5 Complex Eigenvalues §

The two solutions are

u(t) = e"(acos(vt)—bsin(vt)) and w(t) = e (asin(vt)+bcos(vt)), Example 5: Consider the example:

so let a = ( Z; ) and b = ( Z; ), then the Wronskian satisfies i\ (3 -2 T
3"}2 - 4 -1 T2

el (ay cos(vt) — by sin(vt))

et (ay cos(vt) — by sin(vt))

= ((Ilbg — agbl)ez“t

el (ay sin(vt) + by cos(vt))

Wlu, wi(t) = et (ag sin(vt) + by cos(vt))

Find the general solution to this problem and create a phase portrait.

From above we need to find the eigenvalues and eigenvectors, so solve

Assume v # 0 and the eigenvectors are vi = a + ib and vo = a — ib, 3—A -2 2 _
. ‘ det 4 1y =" —-2\+5=0,
ay + ’Lbl a1 — Zb1 .
+ ib —ib = —2z(a1b2 — agbl) 75 0
a2 T 102 a2 — 102 which is the characteristic equation with solutions A = 1 £ 2¢

by our Theorem from Linear Algebra (complex eigenvalues)

Thus, the Wronskian shows u(t) and w(t) form a fundamental set
of solutions to our problem
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Real and Different Eigenvalues
Complex Eigenvalues
>d Eigenvalues

Real and Different Eigenvalues
Complex Eigenvalues
>d Eigenvalues

Case Studies and Bifurcation cation Example and Stability Diagram

Case Studies and Bifurcation

Bifurcation Example and Stability Diagram

Complex Eigenvalues 7 Complex Eigenvalues 8

Example 5 (cont): From above the general solution is

< i;g; > - a ( et(cose(;i())s—|(—28ti)n(2t)) >+CZ < et(sin?;:)m_@zs(zt)) >

Unstable Spiral

Example 5 (cont): For \; =1+ 2i we have:

(L) ()= L) (2)=(0)

L. . S S s —~—~ NN 1]
This is an unstable spiral. LSS s s A\ | // 1/
This results in the eigenvector £ = ( ! ) jijjjj//////\i} ; / ; 7 ;
== . B ] 1 S =N /
1—34 All sol.u‘.mons spiral away from ey ma Ny
We have o = A d @ =D the origin. i?????i/??ﬂ??????
e have Az = Ay and &7 =& . : YIS S AN ) T
Solutions with complex LY Sl S LA 7T
Thus, . . . L UL LTS LTI 707 27 T
eigenvalues with negative T T T T T 77 777 777 %
B 1 . ) o)) real parts spiral toward the /§§f§?§f<:f///ﬂ§/§§§
xi(t) = 1-4 )¢ (cos(2t) +isin(2t)) = origin, creating a stable spiral Y N NS A AR
“ cos(2) a2 N
e’ cos e’ sin / N :
t w(t) = . ] . LV \\N~—AZ s s s s s s
u(t) +iw(t) < e'(cos(2t) + sin(2t)) >+Z< el (sin(2t) — cos(2t)) > /1 // N g
VNN~~~ S S
SDSJO SDSJ
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Real and Different Eigenvalues
Complex Eigenvalues
ed Eigenvalues
tion Example and Stability Diagram

Real and Different Eigenvalues

Complex Eigenvalues

Repeated Eigenvalues

Bifurcation Example and Stability Diagram

Case Studies and Bifurcation Case Studies and Bifurcation

Imaginary Eigenvalues 10

)

Imaginary Eigenvalues

Example 6 (cont): For A\; = ¢ we have:

(L)) =0 L) (8 )=(

This results in the eigenvector £¢1) = ( 2 —1H )

Example 6: Consider the example:

.fl o 2 =5 X1
3"}2 - 1 -2 T2
Find the general solution to this problem and create a phase portrait.

We have Ay = A; and £3) = ¢
Thus,

From above we need to find the eigenvalues and eigenvectors, so solve

2—-A -5

det 1 9\

’:/\2+1:0, () = ( 2?" )(cos(t)+isin(t>) =

ult) +iw(t) = < 2 cos(t) — sin(t) > H.( 2sin(t) + cos(t) >

cos(t) sin(t)

which is the characteristic equation with solutions A = +i (purely
imaginary eigenvalues)
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Example 6 (cont): From above the general solution is

( 1 (1) ) . ( 2 cos(t) — sin(t) ) e ( 2sin(t) + cos(?) ) Example 7: Consider the example:

(1) cos(t) sin(t) : ( 0 ) ) ( - ) ( N )
i 0 2 oo

W —
e — —
T —

This is a center. Find the general solution to this problem and create a phase portrait.

e — —
e e
x

All solutions form ellipses

e From above we need to find the eigenvalues and eigenvectors, so solve
around the origin.
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which has the characteristic equation with solutions A = 2 with an
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Example 7 (cont): This DE produces an unstable proper node
or star node with all solutions following straight paths away from

Example 7 (cont): For \; = Ao = 2 we have: the origin

2— )\ 0 &Y (00 &Y (0
0 2-M & ) L0 0 & )\ 0
Thus, A = 2 has a geometric multiplicity of 2, so the eigenspace
for A = 2 has dimension 2.

h
<
o

A e s e e e o o= §
o4 f .

\
R e e

It follows that we can select the standard basis vectors as our
eigenvectors, which gives the general solution

<§;8 >_Cl<é>e%+c2< ? >62t_

I L
~— =
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Example 8 (cont): Since there is only one eigenvector, we obtain
the one solution

_ 1 _
()= () - (})
{ o 0 -1
2 2 Thus, A = —1 has a geometric multiplicity of 1, so the
Find the general solution to this problem and create a phase portrait. eigenspace for A = —1 has dimension 1.

Example 8: Consider the example:

This is an upper triangular matrix, so its eigenvalues are the If we examine the scalar equations, then

diagonal elements. . .
T = —21 + o and Lo = —To
Thus, A = —1 with an algebraic multiplicity of 2

Thus, z5(t) = cee™?, s0
(Tt L) (8)-(00)(8)-(5)
0 —1-2X & )~ \o o & )7\ o 4w =ce”t with  pu(t) =éf

) This has the solution

S =

This system only has the 1 eigenvector v; = <

21(t) = cate "+ cre? sDST
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o= (o) = ()

1
= Cl<0

The second solution has the form

)< real(3 )

Xo(t) = vte ' + we ™!

Upon differentiation

%o(t) =v(l —t)e ! —we Tl = Axy = A(vte " +we )

Since (A + I)v = 0, this reduces to solving for w

6
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Example 8 (cont): This DE produces a stable improper node
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with all solutions moving toward the origin
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Repeated Eigenvalues - One Dimensional Null Space If the
2 x 2 matrix A has only one eigenvector v associated with A, then one
solution is

Repeated Eigenvalues - Two Dimensional Null Space

Suppose the 2 x 2 matrix A has a repeated eigenvalue A. At

x1(t) = ve
If the eigenspace spanned by the eigenvectors has dimension 2, v; and

vy, then the solution is simply We attempt a second solution of the form

_ At At
X(t) = ClVleAt + CQVQ@At X9 (t) = vte”" + we ,

which upon differentiation gives
Xo(t) = v(At + 1)eM + Awer = Axy = A(vte + wet)
Since (A — MI)v = 0, this reduces to solving for w
(A= MD)w=v
This gives the second linearly independent solution, x2(t), above,

where w solves this higher order null space problem, which will

SDSO include a particular solution and any multiple, kv
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Bifurcation Example

Bifurcation Example: Consider the example:

il . (6 2 T1
i‘z B -2 0 W) ’
which contains a parameter « that affects the behavior of this system

We want to determine the different qualitative behaviors for
different values of «

The eigenvalues satisfy

a—X 2 | 9 _
det 9 Y =X —-arA+4=0

Thus, the eigenvalues satisfy

a++va?2—16
2 SDSU

A=
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Real and Different Eigenvalues
Complex Eigenvalue
Repeated Eigenvalu

Case Studies and Bifurcation

Bifurcation Example and Stability Diagram

Bifurcation Example 2

Bifurcation Example: For

(2)=(20)(%) 3)

Voo
The eigenvalues are A = w

Classifications as a varies are:
@ For a < —4, System (3) is a Stable Node
For a = —4, System (3) is a Stable Improper Node
For —4 < a < 0, System (3) is a Stable Spiral
For o = 0, System (3) is a Center
For 0 < o < 4, System (3) is a Unstable Spiral
For oo = 4, System (3) is a Unstable Improper Node
For o > 4, System (3) is a Unstable Node
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Bifurcation Example: Phase Portraits (« < 0)

Observe a smooth transition as eigenvalues change from negative to
complex with negative real part
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Bifurcation Example: Phase Portraits (—4 < o < 4)

Observe the transitions as complex eigenvalues change from negative
real part to positive real part - This is a significant part of a Hopf
bifurcation
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. . . Consider the system , trace(]) st AR
Bifurcation Example: Phase Portraits (o > 0) Y i P
% = Jx 358
e . . i,=0
Observe a smooth transition as eigenvalues change from complex with sodde polst ! >I<
ositive real part to positive real values Re(d,;}>0
P part o P Let Ay and Ay be s haie o
eigenvalues of Jx \\/(- '
i,>0 i
Results from Linear Algebra - Ao cemter
. Re(2,)=0  defy
give tr(J) = A1 + g, 3o ! i @
1 < 1
RN N\ 7 det |J‘ - )\l . )\27 and _,j \\ H .
- . . . 2 . . 1
NSNS DS SR SSRR D = (j11 — j22)* + 4j12j21 . Mt 1o
S—— r %%’ stblefocs
“\\ The figure shows the saddigpolnt X :
Stability Diagram for By D<o
. . a8 0= D=0
x = Jx with axes i ks < Z‘ o0
= = = i stable no
a a a of tr(J) vs det |J| i
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