# Math 337 - Elementary Differential Equations Lecture Notes – Systems of Two First Order Equations: Applications

#### Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2022

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (1/68)



### Outline



#### Linear Applications of Systems of $1^{st}$ Order DEs

- Basic Mixing Problem Water and Inert Salts
- Mixing Problem Example
- Pharmokinetic Problem
- LSD Example

#### **3** Nonlinear Applications of Systems of DEs

- Model of Glucose and Insulin Control
- Glucose Tolerance Test
- Competition Model



# $\begin{array}{c} {\bf Introduction}\\ {\bf Linear Applications of Systems of 1}^{st} {\rm \ Order \ DEs}\\ {\rm \ Nonlinear \ Applications \ of \ Systems \ of \ DEs} \end{array}$

### Introduction

#### Introduction

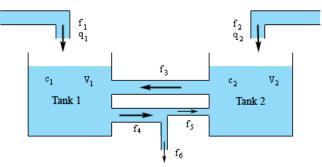
- Applications of Systems of Two 1<sup>st</sup> Order Differential Equations
  - Basic Mixing Problem Water and Inert Salts
  - Pharmokinetic Problem
- Extensions of techniques to Nonlinear Systems in Two Dimensions
  - Glucose and Insulin Dynamics
  - Competition of Species



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example

Pharmokinetic Probl LSD Example

#### **Basic Mixing Problem**



This problem examines the mixing of an **inert salt** in **two tanks** 

The flows are balanced to constant volume in each tank, and **linear differential equations** are developed to analyze this system

The DEs describe concentrations of the state variables  $c_1(t)$  and  $c_2(t)$ 

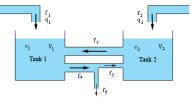
Basic Mixing Problem - Water and Inert Salts Mixing Problem Example

Pharmokinetic Pro LSD Example

2

#### **Conditions of the Model**

Assume constant volumes,  $V_1$  and  $V_2$ , so the following conditions hold:



$$f_1 + f_2 = f_6 f_1 + f_3 = f_4 f_2 + f_5 = f_3 f_5 + f_6 = f_4$$

Assume inflowing concentrations of **inert salt**,  $q_1$  and  $q_2$ , into **Tank 1** and **Tank 2** 

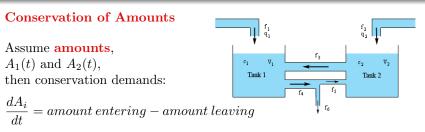
Assume initial concentrations,  $c_1(0) = c_{10}$  and  $c_2(0) = c_{20}$ 



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Beautrackingtic Broblem

LSD Example

# **Basic** Mixing Problem



This results in the DEs describing the **amounts** 

$$\frac{dA_1}{dt} = f_1q_1 + f_3c_2 - f_4c_1$$
$$\frac{dA_2}{dt} = f_2q_2 + f_5c_1 - f_3c_2$$

These are transformed into concentration equations by dividing by  $V_1$  and  $V_2$ 



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

### **Basic** Mixing Problem

#### **Concentration Equations**

$$\frac{dc_1}{dt} = \frac{f_1q_1 + f_3c_2}{V_1} - \frac{f_4}{V_1}c_1 \frac{dc_2}{dt} = \frac{f_2q_2 + f_5c_1}{V_2} - \frac{f_3}{V_2}c_2$$

This can be written as a system of  $1^{st}$  order linear DEs

$$\begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \end{pmatrix} = \begin{pmatrix} -\frac{f_4}{V_1} & \frac{f_3}{V_1} \\ \frac{f_5}{V_2} & -\frac{f_3}{V_2} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} \frac{f_1q_1}{V_1} \\ \frac{f_2q_2}{V_2} \end{pmatrix}$$

with  $c_1(0) = c_{10}$  and  $c_2(0) = c_{20}$ , which in shorthand is

$$\dot{\mathbf{c}} = \mathbf{A}\mathbf{c} + \mathbf{Q}$$



**Basic** Mixing Problem

**Equilibrium:** We find the equilibrium by solving

$$\mathbf{Ac}_e = -\mathbf{Q}$$

or

$$\begin{pmatrix} -\frac{f_4}{V_1} & \frac{f_3}{V_1} \\ \frac{f_5}{V_2} & -\frac{f_3}{V_2} \end{pmatrix} \begin{pmatrix} c_{1e} \\ c_{2e} \end{pmatrix} = \begin{pmatrix} -\frac{f_1q_1}{V_1} \\ -\frac{f_2q_2}{V_2} \end{pmatrix}$$

This has the general solution

$$\begin{pmatrix} c_{1e} \\ c_{2e} \end{pmatrix} = \begin{pmatrix} \frac{f_1q_1 + f_2q_2}{f_4 - f_5} \\ \frac{f_1f_5q_1 + f_2f_4q_2}{f_3(f_4 - f_5)} \end{pmatrix}$$

Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

5

**SDSU** 

Basic Mixing Problem

**Eigenvalues:** We find the eigenvalues by solving

 $\det |\mathbf{A} - \lambda \mathbf{I}| = 0$ 

or

$$\det \begin{vmatrix} -\frac{f_4}{V_1} - \lambda & \frac{f_3}{V_1} \\ \frac{f_5}{V_2} & -\frac{f_3}{V_2} - \lambda \end{vmatrix} = 0$$

This has the characteristic equation

$$\lambda^2 + \left(\frac{f_4}{V_1} + \frac{f_3}{V_2}\right)\lambda + \frac{f_3(f_4 - f_5)}{V_1 V_2} = 0$$

Since det  $|\mathbf{A}| > 0$ , discriminant D > 0, and  $tr(\mathbf{A}) < 0$ , the **Stability Diagram** from before shows this system has a **Stable node** or **sink**, as we would expect

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (9/68)

Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

5

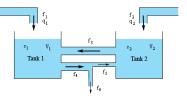
Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

### Mixing Problem Example

#### Mixing Problem Example

Assume the following parameters:

 $\begin{array}{ll} V_1 = 100 \ \mathrm{l}, & V_2 = 60 \ \mathrm{l}, \\ q_1 = 7 \ \mathrm{g/l}, & q_2 = 12 \ \mathrm{g/l}, \\ f_1 = 0.2 \ \mathrm{l/min}, & f_2 = 0.15 \ \mathrm{l/min}, \\ f_3 = 0.25 \ \mathrm{l/min}, & f_4 = 0.45 \ \mathrm{l/min}, \\ f_5 = 0.1 \ \mathrm{l/min}, & f_6 = 0.35 \ \mathrm{l/min} \end{array}$ 



This can be written as a system of  $1^{st}$  order linear DEs

$$\begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \end{pmatrix} = \begin{pmatrix} -0.0045 & 0.0025 \\ 0.00167 & -0.004167 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} 0.014 \\ 0.03 \end{pmatrix}$$
  
with  $c_1(0) = 2$  g/l and  $c_2(0) = 1$  g/l



Joseph M. Mahaffy,  $\langle jmahaffy@sdsu.edu \rangle = (10/68)$ 

Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

## Mixing Problem Example

Mixing Problem Example satisfies the model equation

$$\begin{pmatrix} \dot{c}_1 \\ \dot{c}_2 \end{pmatrix} = \begin{pmatrix} -0.0045 & 0.0025 \\ 0.00167 & -0.004167 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} 0.014 \\ 0.03 \end{pmatrix}$$

From our analysis of the general case, the **equilibrium** satisfies:

$$\left(\begin{array}{c}c_{1e}\\c_{2e}\end{array}\right) = \left(\begin{array}{c}9.14286\\10.85714\end{array}\right)$$

The eigenvalues satisfy  $\lambda_1 = -0.006381$  and  $\lambda_2 = -0.002285$  with corresponding eigenvectors

$$\xi_1 = \begin{pmatrix} 1 \\ -0.7525 \end{pmatrix}$$
 and  $\xi_2 = \begin{pmatrix} 1 \\ 0.8859 \end{pmatrix}$ 

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (11/68)

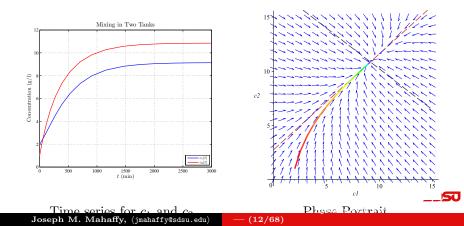


2

Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

# Mixing Problem Example

Mixing Problem Example: The system is solved with ODE23 in MatLab, and Maple is used to create a direction field with the solution trajectory and eigenvectors at equilibrium



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

# Pharmokinetic Problem

**Pharmokinetic Problem:** Consider some drug (legal or illegal) acting on the brain

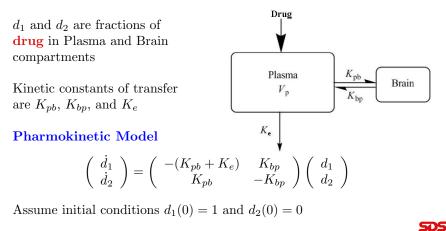
- This application examines a **drug** injected into the bloodstream
- The simplified model divides the body into a **Plasma** compartment and a **Brain compartment** 
  - Track fraction of **drug** in each compartment,  $d_1(t)$ , in plasma and  $d_2(t)$ , in brain
  - Assume linear transfer between compartments
  - Common assumption if gradient transfer between compartments
  - Can assume preferential uptake by certain tissues
- Assume drug eliminated only from Plasma compartment
  - Elimination can be from **metabolism** or **kidney filtration**
  - Neglect uptake in other tissues



Pharmokinetic Problem

Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

#### Pharmokinetic Problem: Diagram and Kinetic Equations



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

### Pharmokinetic Problem

**Pharmokinetic Model** satisfies

$$\dot{\mathbf{d}} = \begin{pmatrix} \dot{d}_1 \\ \dot{d}_2 \end{pmatrix} = \begin{pmatrix} -(K_{pb} + K_e) & K_{bp} \\ K_{pb} & -K_{bp} \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = \mathbf{A}\mathbf{d}$$

#### • Use A to compute elements of the stability diagram

- The trace satisfies  $tr(\mathbf{A}) = -(K_{pb} + K_{bp} + K_e) < 0$
- The **determinant** is det  $|\mathbf{A}| = K_{bp}K_e > 0$
- The **discriminant** is

$$D = (K_{pb} + K_{bp} + K_e)^2 - 4K_{bp}K_e > 0$$

- These facts prove the **eigenvalues** are negative and real
- Since  $\lambda_1 < \lambda_2 < 0$ , this model has a **stable node** at the origin



Basic Mixing Problem - Water and Inert Salts Mixing Problem Example Pharmokinetic Problem LSD Example

### Pharmokinetic Problem

**Eigenvalues** satisfy

$$\det \begin{vmatrix} -(K_{pb} + K_e) - \lambda & K_{bp} \\ K_{pb} & -K_{bp} - \lambda \end{vmatrix} = 0,$$

which gives the characteristic equation

$$\lambda^2 + (K_{pb} + K_{bp} + K_e)\lambda + K_{bp}K_e = 0$$

 $\mathbf{SO}$ 

$$\lambda = 0.5 \left( -(K_{pb} + K_{bp} + K_e) \pm \sqrt{(K_{pb} + K_{bp} + K_e)^2 - 4K_{bp}K_e} \right)$$

- This produces the negative, real **eigenvalues**
- This model has a **stable node** at the origin
- Want to find parameters to fit data
- Data often only from the **Plasma compartment**



| Linear Applications of Systems of Des Mit<br>Nonlinear Applications of Systems of Des | sic Mixing Problem - Water and Inert Salts<br>ixing Problem Example<br>armokinetic Problem<br>SD Example |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|

# LSD Example

**LSD Example:** In the early 1960's 5 healthy male subjects were given LSD (lysergic acid diethylamide) in an experiment to determine its effect on brain function  $^1$ 

| Dere is a table ateraging the data ever the e subjects |        |      |      |      |      |       |      |  |
|--------------------------------------------------------|--------|------|------|------|------|-------|------|--|
| Time (hr)                                              | 0.0833 | 0.25 | 0.5  | 1    | 2    | 4     | 8    |  |
| Plasma (ng/ml)                                         | 9.54   | 7.24 | 6.44 | 5.38 | 4.18 | 2.825 | 1    |  |
| Score (%)                                              | 68.6   | 44.6 | 29   | 33.2 | 38.4 | 58.8  | 79.4 |  |

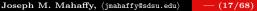
Below is a table averaging the data over the 5 subjects

Want to fit our **Drug Model** to these data

Have information on **Plasma compartment**, but must infer levels in **Brain compartment** 

Examine correlation between LSD levels and Test performance

<sup>1</sup>Aghajanian, G. K. and O. H. L. Bing. 1964. *Persistence of lysergic acid diethylamide in the plasma of human subjects*. Clinical Pharmacology and Therapeutics. **5**: 611-614.





# LSD Example

2

LSD Model: From before we have the model

$$\begin{pmatrix} \dot{d}_1 \\ \dot{d}_2 \end{pmatrix} = \begin{pmatrix} -(K_{pb} + K_e) & K_{bp} \\ K_{pb} & -K_{bp} \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$$

- Can only directly fit solution  $d_1(t)$  to the **plasma data**
- Modify interpretation of model so  $d_1$  and  $d_2$  are masses in their respective compartments
- Perform a nonlinear least squares fit of  $d_1(0)$  and the kinetic parameters,  $K_{pb}$ ,  $K_e$ , and  $K_{bp}$  to the LSD plasma data
- Graph solution and compare to the data for the test scores

 Introduction
 Basic Mixing Problem - Water and Inert Salts

 Linear Applications of Systems of 1<sup>st</sup> Order DEs
 Mixing Problem Example

 Nonlinear Applications of Systems of DEs
 Pharmokinetic Problem

 LSD Example
 LSD Example

## LSD Example

3

MatLab Code for finding best parameters

Though this linear model could be solved, we'll fit the numerical solution to the data

```
1 function Lp = LSD(t,L,Kpb,Kbp,Ke)
2 % Model for LSD - rhs of Linear Drug Model
3 L1t = -(Kpb + Ke)*L(1) + Kbp*L(2);
4 L2t = Kpb*L(1)-Kbp*L(2);
5 Lp = [L1t;L2t];
6 end
```

Use a nonlinear least squares fit for finding best parameters

| Introduction                                                | Basic Mixing Problem - Water and Inert Salts |
|-------------------------------------------------------------|----------------------------------------------|
| Linear Applications of Systems of 1 <sup>st</sup> Order DEs | Mixing Problem Example                       |
| Nonlinear Applications of Systems of DEs                    | Pharmokinetic Problem                        |
|                                                             | LSD Example                                  |

# LSD Example

MatLab Code for finding best parameters (Nonlinear least squares)

Make an initial guess  $p_0 = [12, 5, 4, 0.4]$ , then use the MatLab command [p,J,flag] = fminsearch(@leastLSD,p0,[],td,L1); where td and L1 are the data

This produces the best parameter values for our model

SDSU

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) \_\_\_\_\_ (20/68)

# LSD Example

MatLab Code finds the best parameters with previous programs

Make an initial guess  $p_0 = [12, 5, 4, 0.4]$ , then use the MatLab command [p,J,flag] = fminsearch(@leastLSD,p0,[],td,L1); where td and L1 are the data

This produces the best initial condition and parameter values for our model

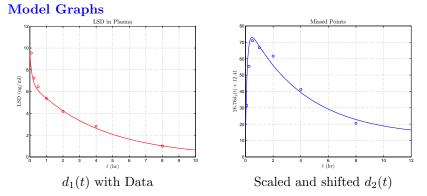
 $d_1(0) = 9.5330$   $K_{pb} = 2.0580$   $K_{bp} = 5.6030$   $K_e = 0.32904$ 

The sum of square errors is J = 0.079948

The following MatLab commands produce the graph of the **plasma compartment** [t,L] = ode23(@LSD,[0,15],[9.5330;0],[],2.0580,5.6030,0.32904); plot(t,L(:,1),'r-',td,L1,'ro');grid;



# LSD Example



The graph on the right shows the strong correlation between missed points on the test and the amount of LSD in the **Tissue compartment** 

Scores are vertically shifted to account for points missed without LSD

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (22/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

# Modeling Diabetes

**Diabetes (diabetes mellitus)** is a disease characterized by excessive glucose in the blood

- There are **3 forms** 
  - **Type 1** or **juvenile diabetes** is an autoimmune disorder, where the  $\beta$ -cells in the pancreas are destroyed, so insulin cannot be produced
  - **Type 2** or **adult onset diabetes** is where cells become insulin resistant, often caused by excessive weight and poor exercise
  - Gestational diabetes happens in some pregnant women
- This study concentrates on **Type 1** diabetes
- Affects 4-20 per 100,000 with peak occurrence around 14 years of age
- Causes serious health conditions, especially heart disease and nerve damage

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

# Glucose Metabolism

#### **Glucose Metabolism**

- Ingest food for nutrients and energy
  - Carbohydrates are broken into simple sugars
  - Sugars are absorbed into the blood
  - Cells access blood sugar for energy
- Glucose Control in Blood
  - High glucose levels are bad for tissues (osmotic pressure?)
  - $\beta$ -cells in pancreas sense high levels and release insulin
  - Insulin facilitates glucose entering tissues (skeletal muscle, esp.)
  - Convert glucose to glycogen to store in liver
  - Negative feedback control
- Many other controlling hormones

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

# Modeling Glucose Metabolism

**General Glucose Control Model** Let G(t) be the blood glucose level and I(t) be the blood insulin level

A general differential equation describing this system is

$$\frac{dG}{dt} = f_1(G, I) + J(t),$$
  
$$\frac{dI}{dt} = f_2(G, I),$$

where J(t) is the external uptake of glucose (a **control function**) Many significantly more complex models exist

The body wants to maintain homeostasis, so assume an equilibrium  $({\cal G}_0, {\cal I}_0)$  or

$$f_1(G_0, I_0) = 0$$
 and  $f_2(G_0, I_0) = 0.$ 

We examine the translated variables (about equilibrium)

$$g(t) = G(t) - G_0$$
 and  $i(t) = I(t) - I_0$ 

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (25/68)

Linearization

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

1

**Taylor's Theorem for Two Variables** allows the expansion of the functions  $f_1(G, I)$  and  $f_2(G, I)$ :

$$\begin{aligned} f_1(G,I) &= f_1(G_0,I_0) + \frac{\partial f_1(G_0,I_0)}{\partial G}(G-G_0) + \frac{\partial f_1(G_0,I_0)}{\partial I}(I-I_0) + h.o.t. \\ f_2(G,I) &= f_2(G_0,I_0) + \frac{\partial f_2(G_0,I_0)}{\partial G}(G-G_0) + \frac{\partial f_2(G_0,I_0)}{\partial I}(I-I_0) + h.o.t., \end{aligned}$$

where *h.o.t.* represents all higher order terms greater than linear Recall that  $f_1(G_0, I_0) = 0$  and  $f_2(G_0, I_0) = 0$  (**Equilibrium**). Also,  $g(t) = G(t) - G_0$  and  $i(t) = I(t) - I_0$ , which gives  $\frac{dG}{dt} = \frac{dg}{dt}$  and  $\frac{dI}{dt} = \frac{di}{dt}$ 



 $\begin{array}{c} {\rm Introduction}\\ {\rm Linear \ Applications \ of \ Systems \ of \ 1^{st} \ Order \ DEs}\\ {\rm Nonlinear \ Applications \ of \ Systems \ of \ DEs} \end{array}$ 

### Linearization

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

Linear Terms from Taylor's Expansion: We carefully analyze each linear term

Begin with the **glucose dynamics**,  $f_1(G, I)$ 

- Consider  $\frac{\partial f_1(G_0, I_0)}{\partial G}$ 
  - Increases of glucose in the blood stimulates tissues to uptake glucose and liver to store glycogen
  - Thus, this term is negative or  $\frac{\partial f_1(G_0, I_0)}{\partial G} = -a_{11} < 0$
- Consider  $\frac{\partial f_1(G_0, I_0)}{\partial I}$ 
  - Increases of insulin in the blood facilitates uptake of glucose in the tissues and liver
  - Thus, this term is negative or  $\frac{\partial f_1(G_0, I_0)}{\partial I} = -a_{12} < 0$



### Linearization

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

Analysis of Linear Terms from Taylor's Expansion: We continue with the insulin dynamics,  $f_2(G, I)$ 

- Consider  $\frac{\partial f_2(G_0, I_0)}{\partial G}$ 
  - Increases of glucose in the blood stimulates production of insulin from the  $\beta\text{-cells}$
  - Thus, this term is positive or  $\frac{\partial f_2(G_0, I_0)}{\partial G} = a_{21} > 0$
- Consider  $\frac{\partial f_2(G_0, I_0)}{\partial I}$ 
  - Increases of insulin in the blood results in increased metabolism of the insulin
  - Thus, this term is negative or  $\frac{\partial f_2(G_0, I_0)}{\partial I} = -a_{22} < 0$



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Linearized Glucose Model

**Linearized Glucose Model:** In the translated coordinates  $g(t) = G(t) - G_0$  and  $i(t) = I(t) - I_0$ , the model

$$\frac{dG}{dt} = f_1(G, I) + J(t),$$
  
$$\frac{dI}{dt} = f_2(G, I),$$

can be written in **linearized form**, where the *h.o.t* terms are dropped along with the **control function**, J(t)

The linearized model is

$$\begin{pmatrix} \frac{dg}{dt} \\ \frac{di}{dt} \end{pmatrix} = \begin{pmatrix} -a_{11} & -a_{12} \\ a_{21} & -a_{22} \end{pmatrix} \begin{pmatrix} g \\ i \end{pmatrix}$$



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Analysis of Linearized Glucose Model

Analysis of Linearized Glucose Model:

$$\dot{\mathbf{z}} = \begin{pmatrix} \frac{dg}{dt} \\ \frac{di}{dt} \end{pmatrix} = \begin{pmatrix} -a_{11} & -a_{12} \\ a_{21} & -a_{22} \end{pmatrix} \begin{pmatrix} g \\ i \end{pmatrix} = \mathbf{A}\mathbf{z},$$

where  $\mathbf{z} = [g, i]^T$ 

Eigenvalues are found from the **characteristic equation**, det  $|\mathbf{A} - \lambda \mathbf{I}| = 0$  or

$$\begin{vmatrix} -a_{11} - \lambda & -a_{12} \\ a_{21} & -a_{22} - \lambda \end{vmatrix} = \lambda^2 + (a_{11} + a_{22})\lambda + a_{11}a_{22} + a_{12}a_{21} = 0$$

Since this **characteristic equation** has only positive coefficients (or tr(A) < 0 and det(A) > 0), the **equilibrium** is **asymptotically stable** 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Simplified Glucose Model

Simplified Glucose Model: Only the blood sugar is measured, so only need to track g(t)

The typical situation is that one is hungry after a period of time, indicating blood sugar drops below equilibrium and suggesting a damped oscillator solution or  $\lambda = -\alpha \pm i\omega$ 

$$g(t) = c_1 e^{-\alpha t} \cos(\omega t) + c_2 e^{-\alpha t} \sin(\omega t)$$
  

$$g(t) = A e^{-\alpha t} \cos(\omega (t - \delta)),$$

where  $A = \sqrt{c_1^2 + c_2^2}$  and  $\delta = \frac{1}{\omega} \arctan\left(\frac{c_2}{c_1}\right)$ 

These results give the simplified **Ackerman model** for blood glucose

$$G(t) = G_0 + Ae^{-\alpha t} \cos(\omega(t - \delta)),$$

which is widely used to test for **diabetes** 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### **Glucose** Tolerance Test

#### Glucose Tolerance Test (GTT) and Ackerman Model

- GTT
  - Patient fasts for 12 hours
  - Patient drinks 1.75 mg of glucose/kg of body weight
  - Glucose levels in blood is monitored for 4-6 hours

#### • Ackerman Model

- Compartmental model for glucose and insulin in the body
- Model tracks glucose in the blood
- Model given by equation

$$G(t) = G_0 + Ae^{-\alpha t}\cos(\omega(t-\delta))$$

- 5 parameters fit to GTT blood data
- $\bullet$  Use parameters  $\alpha$  and  $\omega$  to detect diabetes



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### **Glucose** Tolerance Test

Data for a Normal Subject A and Diabetic Subject B

| t (hr) | Α   | В   | t (hr) | Α  | В   |
|--------|-----|-----|--------|----|-----|
| 0      | 70  | 100 | 2      | 75 | 175 |
| 0.5    | 150 | 185 | 2.5    | 65 | 105 |
| 0.75   | 165 | 210 | 3      | 75 | 100 |
| 1      | 145 | 220 | 4      | 80 | 85  |
| 1.5    | 90  | 195 | 6      | 75 | 90  |

Model for **Normal Patient** with best parameters

 $G_1(t) = 79.2 + 171.5e^{-0.99t} \cos(1.81(t - 0.901))$ 

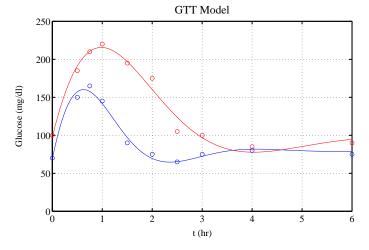
Model for **Diabetic Patient** with best parameters

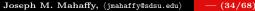
 $G_2(t) = 95.2 + 263.2e^{-0.63t}\cos(1.03(t-1.52))$ 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Glucose Tolerance Test

Graph of data and models





Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Glucose Tolerance Test

Model for **Normal Patient** with best parameters is

 $G_1(t) = 79.2 + 171.5e^{-0.99t} \cos(1.81(t - 0.901))$ 

Calculus techniques show a **maximum** at  $t_{max} = 0.624$  hr with  $G_1(t_{max}) = 160.3$  ng/dl and a **minimum** at  $t_{min} = 2.360$  hr with  $G_1(t_{min}) = 64.7$  ng/dl

Model for **Diabetic Patient** with best parameters is

 $G_2(t) = 95.2 + 263.2e^{-0.63t} \cos(1.03(t - 1.52)),$ 

Similar calculations give the maximum at  $t_{max} = 0.987$  hr with  $G_2(t_{max}) = 215.8$  ng/dl and a **minimum** at  $t_{min} = 4.037$  hr with  $G_2(t_{min}) = 77.6$  ng/dl



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Glucose Tolerance Test

5

The Ackerman Test examines the natural frequency,  $\omega_0$ , (study in next chapter) and period,  $T_0$ , of the models, where

$$\omega_0^2 = \alpha^2 + \omega^2$$
 and  $T_0 = \frac{2\pi}{\omega_0}$ 

Our models give the **normal subject** 

$$\omega_0 = 2.067$$
 and  $T_0 = 3.04$  hr

and the **diabetic subject** 

 $\omega_0 = 1.210$  and  $T_0 = 5.19$  hr

Note:  $T_0 > 4$  suggests diabetes



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Two Species Competition Model

**Two Species Competition Model:** Let X(t) be the density of one species of yeast and Y(t) be the density of another species of yeast.

- Assume each species follows the *logistic growth model* for interactions within the species.
  - Model has a *Malthusian growth term*.
  - Model has a term for *intraspecies competition*.
- The differential equation for each species has a loss term for *interspecies competition*.
- Assume *interspecies competition* is represented by the product of the two species.

If two species compete for a single resource, then

1. **Competitive Exclusion** - one species out competes the other and becomes the only survivor

2. Coexistence - both species coexist around a stable equilibrium

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Two Species Competition Model

Two Species Competition Model: The system of ordinary differential equations (ODEs) for X(t) and Y(t):

$$\frac{dX}{dt} = a_1 X - a_2 X^2 - a_3 X Y = f_1(X,Y) 
\frac{dY}{dt} = b_1 Y - b_2 Y^2 - b_3 Y X = f_2(X,Y)$$

- First terms with  $a_1$  and  $b_1$  represent the exponential or Malthusian growth at low densities
- The terms  $a_2$  and  $b_2$  represent intraspecies competition from crowding by the same species
- The terms  $a_3$  and  $b_3$  represent interspecies competition from the second species

Unlike the *logistic growth model*, this system of ODEs does not have an analytic solution, so we must turn to other analyses.

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Competition Model – Analysis

Competition Model: Analysis always begins finding equilibria, which requires:

$$\frac{dX}{dt} = 0$$
 and  $\frac{dY}{dt} = 0$ ,

in the model system of ODEs.

Thus,

$$a_1 X_e - a_2 X_e^2 - a_3 X_e Y_e = 0,$$
  
$$b_1 Y_e - b_2 Y_e^2 - b_3 X_e Y_e = 0.$$

Factoring gives:

$$\begin{aligned} X_e(a_1 - a_2 X_e - a_3 Y_e) &= 0, \\ Y_e(b_1 - b_2 Y_e - b_3 X_e) &= 0. \end{aligned}$$

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model – Analysis

The equilibria of the competition model satisfy:

$$\begin{aligned} X_e(a_1 - a_2 X_e - a_3 Y_e) &= 0, \\ Y_e(b_1 - b_2 Y_e - b_3 X_e) &= 0. \end{aligned}$$

This system of equations must be solved simultaneously. The first equation gives:  $X_e = 0$  or  $a_1 - a_2 X_e - a_3 Y_e = 0$ .

If  $X_e = 0$ , then from the second equation we have either the *extinction equilibrium*,

$$(X_e, Y_e) = (0, 0)$$

or the *competitive exclusion equilibrium* (with Y winning):

$$(X_e, Y_e) = \left(0, \frac{b_1}{b_2}\right),$$

where  $Y_e$  is at *carrying capacity*.



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model – Analysis

Continuing the *equilibria* of the *competition model*: If  $a_1 - a_2X_e - a_3Y_e = 0$  from the first equation, then from the second equation we have either the *competitive exclusion equilibrium* (with X winning):

$$(X_e, Y_e) = \left(\frac{a_1}{a_2}, 0\right),$$

where  $X_e$  is at *carrying capacity* or the **nonzero equilibrium**:

$$(X_e, Y_e) = \left(\frac{a_1b_2 - a_3b_1}{a_2b_2 - a_3b_3}, \frac{a_2b_1 - a_1b_3}{a_2b_2 - a_3b_3}\right).$$

If  $X_e > 0$  and  $Y_e > 0$ , then we obtain the *cooperative equilibrium* with neither species going extinct.

Note: This last *equilibrium* could have a negative  $X_e$  or  $Y_e$ , depending on the values of the parameters.

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Maple Equilibrium

Maple can readily be used to find *equilibria*:

Later we find the numerical values of the parameters, so **Maple** easily finds all equilibria:

$$\begin{array}{l} \hline eq3 := Xe \cdot (0.2586 - 0.02030 \cdot Xe - 0.05711 \cdot Ye) = 0; \\ eq4 := Ye \cdot (0.05744 - 0.009768 \cdot Ye - 0.004803 \cdot Xe) = 0; \\ eq3 := Xe (0.2586 - 0.02030 \cdot Xe - 0.05711 \cdot Ye) = 0 \\ eq4 := Ye \cdot (0.05744 - 0.009768 \cdot Ye - 0.004803 \cdot Xe) = 0 \\ \hline solve( \{eq3, eq4\}, \{Xe, Ye\}); \\ \{Xe = 0, Ye = 0, \}, \{Xe = 0, Ye = 5.880425880\}, \{Xe = 12.73891626, Ye = 0.\}, \{Xe = 9.925065384, Ye = 1.000195635\} \end{array}$$

Note: The *positive equilibrium* is close to the late data points.

SDSU

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (42/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Nullclines

1

*Equilibrium analysis* shows there are always the *extinction* and two *competitive exclusion* equilibria with the latter going to *carrying capacity* for one of the species.

Provided  $a_2b_2 - a_3b_3 \neq 0$ , there is another equilibrium, and it satisfies: 1.  $X_e \leq 0$  and  $Y_e > 0$  or 2.  $X_e > 0$  and  $Y_e \leq 0$  or 3.  $X_e > 0$  and  $Y_e > 0$ .

We concentrate our studies on Case 3, where there exists a *positive* cooperative equilibrium.

Finding *equilibia* can be done **geometrically** using *nullclines*.

 ${\it Null clines}$  are simply curves where

$$\frac{dX}{dt} = 0$$
 and  $\frac{dY}{dt} = 0.$ 



 $\begin{array}{c} {\rm Introduction}\\ {\rm Linear \ Applications \ of \ Systems \ of \ 1^{st} \ Order \ DEs}\\ {\rm Nonlinear \ Applications \ of \ Systems \ of \ DEs} \end{array}$ 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Nullclines

2

For the *competition model*, the *nullclines* satisfy:

$$\frac{dX}{dt} = X(a_1 - a_2 X - a_3 Y) = 0 \quad \text{and} \quad \frac{dY}{dt} = Y(b_1 - b_2 Y - b_3 X) = 0,$$

where the first equation has solutions only flowing in the Y-direction and the second equation has solutions only flowing in the X-direction.

*Equilibria* occur where the curves intersect.

The *nullclines* for the *competition model* are only straight lines:

- The  $\frac{dX}{dt} = 0$  has X = 0 or the Y-axis preventing solutions in X from becoming negative.
- The  $\frac{dY}{dt} = 0$  has Y = 0 or the X-axis preventing solutions in Y from becoming negative.
- The other *two nullclines* are straight lines with negative slopes passing through the positive quadrant, X > 0 and Y > 0.

 $\begin{array}{c} {\rm Introduction}\\ {\rm Linear \ Applications \ of \ Systems \ of \ 1^{st} \ Order \ DEs}\\ {\rm Nonlinear \ Applications \ of \ Systems \ of \ DEs} \end{array}$ 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Nullclines

3

**Example 1**: Consider the *competition model*:

$$\frac{dX}{dt} = 0.1 X - 0.01 X^2 - 0.02 XY,$$
  
$$\frac{dY}{dt} = 0.2 Y - 0.03 Y^2 - 0.04 XY.$$

Nullclines where dX/dt = 0 are
X = 0.
0.1 - 0.01 X - 0.02 Y = 0 or Y = 5 - 0.5 X.
Nullclines where dY/dt = 0 are
Y = 0.
0.2 - 0.03 Y - 0.04 X = 0 or Y = 20/3 - 4/3 X.
Equilibria occur at intersections of a nullcline with dX/dt = 0 and one with dY/dt = 0.

The **4** equilibria are (0,0),  $(0,\frac{20}{3})$ , (10,0), and (2,4).



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Linearization

Linearization: The competition model is below:

$$\frac{dX}{dt} = 0.1 X - 0.01 X^2 - 0.02 XY = f_1(X, Y),$$
  
$$\frac{dY}{dt} = 0.2 Y - 0.03 Y^2 - 0.04 XY = f_2(X, Y),$$

and the linearization about the equilibria is found by evaluating the Jacobian matrix at the equilibria:

$$J(X,Y) = \begin{pmatrix} \frac{\partial f_1(X,Y)}{\partial X} & \frac{\partial f_1(X,Y)}{\partial Y} \\ \frac{\partial f_2(X,Y)}{\partial X} & \frac{\partial f_2(X,Y)}{\partial Y} \end{pmatrix}$$
$$= \begin{pmatrix} 0.1 - 0.02X - 0.02Y & -0.02X \\ -0.04Y & 0.2 - 0.06Y - 0.04X \end{pmatrix}.$$



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Linearization and Equilibria

**Linearization**: Consider the *extinction equilibrium*,  $(X_e, Y_e) = (0, 0)$ , the Jacobian satisfies:

$$J(0,0) = \left( \begin{array}{cc} 0.1 & 0 \\ 0 & 0.2 \end{array} \right)$$

This has *eigenvalues*  $\lambda_1 = 0.1$  ( $\xi_1 = [1, 0]^T$ ) and  $\lambda_2 = 0.2$  ( $\xi_1 = [0, 1]^T$ ).

This is an *unstable node*, as we'd expect for low populations.

At the  $X_e$  carrying capacity equilibrium,  $(X_e, Y_e) = (10, 0)$ , the Jacobian satisfies:

$$J(10,0) = \left(\begin{array}{cc} -0.1 & -0.2\\ 0 & -0.2 \end{array}\right).$$

This has *eigenvalues*  $\lambda_1 = -0.1$  ( $\xi_1 = [1, 0]^T$ ) and  $\lambda_2 = -0.2$  ( $\xi_1 = [2, 1]^T$ ). This is a *stable node*.

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Linearization and Equilibria

**Linearization**: At the  $Y_e$  carrying capacity equilibrium,  $(X_e, Y_e) = (0, 20/3)$ , the Jacobian satisfies:

$$J(0, 20/3) = \begin{pmatrix} -0.03333 & 0\\ -0.2667 & -0.2 \end{pmatrix}.$$

This has *eigenvalues*  $\lambda_1 = -0.03333$  ( $\xi_1 = [1, -1.6]^T$ ) and  $\lambda_2 = -0.2$  ( $\xi_1 = [0, 1]^T$ ).

This is a *stable node*.

At the *cooperative equilibrium*,  $(X_e, Y_e) = (2, 4)$ , the Jacobian satisfies:

$$J(2,4) = \left(\begin{array}{cc} -0.02 & -0.04\\ -0.16 & -0.12 \end{array}\right)$$

This has *eigenvalues*  $\lambda_1 = -0.1643$  ( $\xi_1 = [1, 3.609]^T$ ) and  $\lambda_2 = 0.02434$  ( $\xi_1 = [1, -1.1085]^T$ ).

This is a *saddle node*.

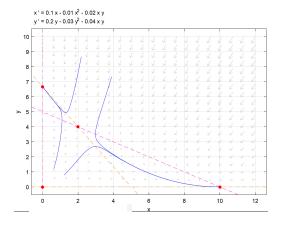
Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (48/68)



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Phase Portrait

The figure below was generated with pplane8 and shows that **Example 1** exhibits *competitive exclusion* with all solutions going to either the *carrying capacity equilibria*,  $(X_e, Y_e) = (0, \frac{20}{3})$  or  $(X_e, Y_e) = (10, 0)$ .



(49/68)



Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Example/Equilibria

**Example 2**: Consider the *competition model*:

$$\frac{dX}{dt} = 0.1 X - 0.02 X^2 - 0.01 XY,$$
  
$$\frac{dY}{dt} = 0.2 Y - 0.04 Y^2 - 0.03 XY.$$

The *4 equilibria* are (0,0), (0,5), (5,0), and (4,2).



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Linearization

Linearization: The competition model is below:

$$\frac{dX}{dt} = 0.1 X - 0.02 X^2 - 0.01 XY = f_1(X, Y),,$$
  
$$\frac{dY}{dt} = 0.2 Y - 0.04 Y^2 - 0.03 XY = f_2(X, Y),$$

and the linearization about the equilibria is found by evaluating the Jacobian matrix at the equilibria:

$$J(X,Y) = \begin{pmatrix} \frac{\partial f_1(X,Y)}{\partial X} & \frac{\partial f_1(X,Y)}{\partial Y} \\ \frac{\partial f_2(X,Y)}{\partial X} & \frac{\partial f_2(X,Y)}{\partial Y} \end{pmatrix}$$
$$= \begin{pmatrix} 0.1 - 0.04X - 0.01Y & -0.01X \\ -0.03Y & 0.2 - 0.08Y - 0.03X \end{pmatrix}.$$



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Linearization and Equilibria

**Linearization**: Consider the *extinction equilibrium*,  $(X_e, Y_e) = (0, 0)$ , the Jacobian satisfies:

$$J(0,0) = \left( \begin{array}{cc} 0.1 & 0 \\ 0 & 0.2 \end{array} \right).$$

This has *eigenvalues*  $\lambda_1 = 0.1 \ (\xi_1 = [1, 0]^T)$  and  $\lambda_2 = 0.2 \ (\xi_1 = [0, 1]^T)$ .

This is an *unstable node*, as we'd expect for low populations.

At the  $X_e$  carrying capacity equilibrium,  $(X_e, Y_e) = (5, 0)$ , the Jacobian satisfies:

$$J(5,0) = \left(\begin{array}{cc} -0.1 & -0.05\\ 0 & 0.05 \end{array}\right).$$

This has *eigenvalues*  $\lambda_1 = -0.1$  ( $\xi_1 = [1, 0]^T$ ) and  $\lambda_2 = 0.05$  ( $\xi_1 = [1, -3]^T$ ). This is a *saddle node*.



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Linearization and Equilibria

**Linearization**: At the  $Y_e$  carrying capacity equilibrium,  $(X_e, Y_e) = (0, 5)$ , the Jacobian satisfies:

$$J(0,5) = \left(\begin{array}{cc} 0.05 & 0\\ -0.15 & -0.2 \end{array}\right).$$

This has *eigenvalues*  $\lambda_1 = 0.05 \ (\xi_1 = [5, -3]^T)$  and  $\lambda_2 = -0.2 \ (\xi_1 = [0, 1]^T)$ . This is a *saddle node*.

At the *cooperative equilibrium*,  $(X_e, Y_e) = (4, 2)$ , the Jacobian satisfies:

$$J(2,4) = \left(\begin{array}{cc} -0.08 & -0.04\\ -0.06 & -0.08 \end{array}\right).$$

This has *eigenvalues*  $\lambda_1 = -0.129$  ( $\xi_1 = [1, 1.2247]^T$ ) and  $\lambda_2 = -0.031$  ( $\xi_1 = [1, -1.2247]^T$ ).

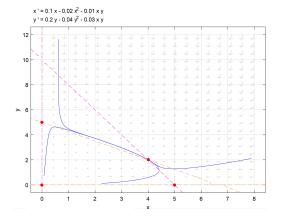
This is a *stable node*.



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

#### Phase Portrait

The figure below was generated with pplane8 and shows that **Example 2** exhibits *cooperation* with all solutions going toward the *nonzero equilibrium*,  $(X_e, Y_e) = (4, 2)$ .



(54/68)



Joseph M. Mahaffy,  $\langle jmahaffy@sdsu.edu \rangle$ 

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

## Yeast Competition Model

**Competition Model:** Competition is ubiquitous in ecological studies and many other fields

- Craft beer is a very important part of the San Diego economy
- Researchers at UCSD created a company that provides brewers with one of the best selections of diverse cultures of different strains of the yeast, *Saccharomyces cerevisiae*
- Different strains are cultivated for particular flavors
- Often *S. cerevisiae* is maintained in a continuous chemostat for constant quality large beer manufacturers
- Large cultures can become contaminated with other species of yeast
- It can be very expensive to start a new pure culture
- We examine a competition model for different species of yeast

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Yeast Competition Model

**Yeast Experiment:** G. F. Gause <sup>23</sup> studied competing species of yeast, *Saccharomyces cerevisiae* and a common contaminant species *Schizosaccharomyces kephir* 

The experiments examined growth in monocultures for individual growth laws and in mixed cultures to observe **competition** 

Below is a table combining two experimental studies of S. cerevisiae

| Time (hr) | 0    | 1.5  | 9     | 10    | 18    | 18    | 23   |
|-----------|------|------|-------|-------|-------|-------|------|
| Volume    | 0.37 | 1.63 | 6.2   | 8.87  | 10.66 | 10.97 | 12.5 |
| Time (hr) | 25.5 | 27   | 34    | 38    | 42    | 45.5  | 47   |
| Volume    | 12.6 | 12.9 | 13.27 | 12.77 | 12.87 | 12.9  | 12.7 |

Below is a table combining two experimental studies of S. kephir

| Time (hr) | 9    | 10 | 23  | 25.5 | 42   | 45.5 | 66   | 87   | 111 | 135  |
|-----------|------|----|-----|------|------|------|------|------|-----|------|
| Volume    | 1.27 | 1  | 1.7 | 2.33 | 2.73 | 4.56 | 4.87 | 5.67 | 5.8 | 5.83 |

<sup>2</sup>G. F. Gause, *Struggle for Existence*, Hafner, New York, 1934.

<sup>3</sup>G. F. Gause (1932), Experimental studies on the struggle for existence.

I. Mixed populations of two species of yeast, J. Exp. Biol. 9, p. 389.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (56/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Monoculture Models

1

Monoculture Model: Previous slide gave data for monocultures, which should satisfy logistic growth model

$$\frac{dY}{dt} = rY\left(1 - \frac{Y}{M}\right), \qquad Y(0) = Y_0,$$

which has the solution

$$Y(t) = \frac{MY_0}{Y_0 + (M - Y_0)e^{-rt}}$$

Use MatLab to fit parameters to the data, and the results for *Saccharomyces cerevisiae* are

r = 0.25864 M = 12.742  $Y_0 = 1.2343$ 

The results for *Schizosaccharomyces kephir* are

r = 0.057443 M = 5.8802  $Y_0 = 0.67805$ 

These models show that *S. cerevisiae* grows much faster than *S. kephir* 

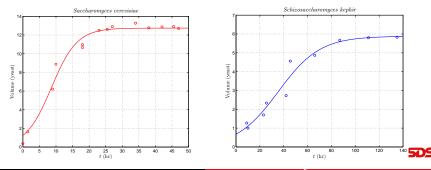
Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (57/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Monoculture Models

Monoculture Models and Data:  $Y_c(t) = \frac{12.742}{1+9.3230e^{-0.25864t}}$  and  $Y_k(t) = \frac{5.8802}{1+7.6723e^{-0.057443t}}$ 

Graphs show the best fitting logistic models for the two species with the Gause experiment data



Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

-(58/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

# Competition Experiment

**Competition Experiment:** G. F. Gause ran experiments (same nutrient conditions) mixing the cultures of *S. cerevisiae* and *S. kephir* 

Table combining two experimental studies of the mixed culture

| t (hr) | 0     | 1.5   | 9     | 10   | 18   | 18   | 23   |
|--------|-------|-------|-------|------|------|------|------|
| $Y_c$  | 0.375 | 0.92  | 3.08  | 3.99 | 4.69 | 5.78 | 6.15 |
| $Y_k$  | 0.29  | 0.37  | 0.63  | 0.98 | 1.47 | 1.22 | 1.46 |
| t (hr) | 25.5  | 27    | 38    | 42   | 45.5 | 47   |      |
| $Y_c$  | 9.91  | 9.47  | 10.57 | 7.27 | 9.88 | 8.3  |      |
| $Y_k$  | 1.11  | 1.225 | 1.1   | 1.71 | 0.96 | 1.84 |      |

The data show the populations are increasing, but the S. cerevisiae population is significantly below the carrying capacity

If two species compete for a single resource, then

1. **Competitive Exclusion** - one species out competes the other and becomes the only survivor

2. Coexistence - both species coexist around a stable equilibrium



Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (59/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model

**Competition Model:** Assume a competition model of the form

$$\frac{dY_c}{dt} = a_1Y_c - a_2Y_c^2 - a_3Y_cY_k = f_1(Y_c, Y_k) \frac{dY_k}{dt} = b_1Y_k - b_2Y_k^2 - b_3Y_kY_c = f_2(Y_c, Y_k)$$

- First terms with  $a_1$  and  $b_1$  represent the exponential or **Malthusian growth** at low densities
- The terms  $a_2$  and  $b_2$  represent intraspecies competition from crowding by the same species
- The terms  $a_3$  and  $b_3$  represent interspecies competition from the second species

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### **Competition** Model Parameters

Competition Model: Assume a competition model of the form

$$\frac{dY_c}{dt} = a_1Y_c - a_2Y_c^2 - a_3Y_cY_k$$

$$\frac{dY_k}{dt} = b_1Y_k - b_2Y_k^2 - b_3Y_kY_c$$

• The monoculture experiments give the values:

 $a_1 = 0.25864$   $a_2 = 0.020298$   $b_1 = 0.057443$   $b_2 = 0.0097689$ 

• The competition experiments give the best interspecies competition parameters

 $a_3 = 0.057015$   $b_3 = 0.0047581$ 

• These experiments also fit the best initial conditions:

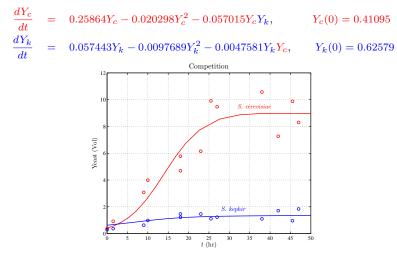
 $Y_c(0) = 0.41095$   $Y_k(0) = 0.62579$ 

• More details for fitting  $a_3$ ,  $b_3$ ,  $Y_c(0)$ , and  $Y_k(0)$  are available from Math 636

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model Fit

#### **Competition Model:**



-(62/68)

## Equilibria for Competition Model

**Equilibria for Competition Model:** Let the equilibria for *S. cerevisiae* and *S. kephir* be  $Y_{ce}$  and  $Y_{ke}$ , respectively

$$Y_{ce}(0.25864 - 0.020298Y_{ce} - 0.057015Y_{ke}) = 0$$

 $Y_{ke}(0.057443 - 0.0097689Y_{ke} - 0.0047581Y_{ce}) = 0$ 

- Must solve the above equations simultaneously, giving 4 equilibria
- Extinction equilibrium,  $(Y_{ce}, Y_{ke}) = (0, 0)$
- Carrying capacity equilibria,  $(Y_{ce}, Y_{ke}) = (12.742, 0)$  and  $(Y_{ce}, Y_{ke}) = (0, 5.8802)$
- Coexistence equilibrium,  $(Y_{ce}, Y_{ke}) = (4.4407, 2.9554)$

### Linearization of Competition Model

**Linearization of Competition Model:** With equilibria  $Y_{ce}$  and  $Y_{ke}$ , let  $u = Y_c - Y_{ce}$  and  $v = Y_k - Y_{ke}$ 

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1(Y_{ce}, Y_{ke})}{\partial u} & \frac{\partial f_1(Y_{ce}, Y_{ke})}{\partial v} \\ \frac{\partial f_2(Y_{ce}, Y_{ke})}{\partial u} & \frac{\partial f_2(Y_{ce}, Y_{ke})}{\partial v} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

so the linear system is

$$\begin{pmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \end{pmatrix} = \begin{pmatrix} a_1 - 2a_2 Y_{ce} - a_3 Y_{ke} & a_3 Y_{ce} \\ b_3 Y_{ke} & b_1 - 2b_2 Y_{ke} - b_3 Y_{ce} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{pmatrix},$$

where

$$a_1 = 0.25864$$
  $a_2 = 0.020298$   $a_3 = 0.057015$   
 $b_1 = 0.057443$   $b_2 = 0.0097689$   $b_3 = 0.0047581$ 



## Local Stability of Competition Model

Local Stability of Competition Model: At the equilibrium,  $(Y_{ce}, Y_{ke}) = (0, 0)$ 

$$\left(\begin{array}{c} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \end{array}\right) = \left(\begin{array}{c} 0.25864 & 0 \\ 0 & 0.057443 \end{array}\right) \left(\begin{array}{c} \boldsymbol{u} \\ \boldsymbol{v} \end{array}\right),$$

which has eigenvalues  $\lambda_1 = 0.25864$  and  $\lambda_2 = 0.057443$ , so this equilibrium is an Unstable Node

At the equilibrium,  $(Y_{ce}, Y_{ke}) = (12.742, 0)$   $(\dot{u}) (-0.25864 - 0.72649) (u)$ 

$$\begin{pmatrix} u \\ \dot{v} \end{pmatrix} = \begin{pmatrix} -0.23804 & 0.12049 \\ 0 & -0.0031847 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$

which has eigenvalues  $\lambda_1 = -0.25864$  and  $\lambda_2 = -0.0031847$ , so this equilibrium is a Stable Node



# Local Stability of Competition Model

**Local Stability of Competition Model:** At the equilibrium,  $(Y_{ce}, Y_{ke}) = (0, 5.8802)$ 

$$\left(\begin{array}{c} \dot{\boldsymbol{u}}\\ \dot{\boldsymbol{v}} \end{array}\right) = \left(\begin{array}{cc} -0.076620 & 0\\ 0.027979 & -0.057443 \end{array}\right) \left(\begin{array}{c} \boldsymbol{u}\\ \boldsymbol{v} \end{array}\right),$$

which has eigenvalues  $\lambda_1 = -0.07662$  and  $\lambda_2 = -0.057443$ , so this equilibrium is a **Stable Node** 

At the equilibrium,  $(Y_{ce}, Y_{ke}) = (4.4407, 2.9554)$ 

$$\left(\begin{array}{c} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \end{array}\right) = \left(\begin{array}{c} -0.090137 & 0.25319 \\ 0.014062 & -0.021428 \end{array}\right) \left(\begin{array}{c} \boldsymbol{u} \\ \boldsymbol{v} \end{array}\right),$$

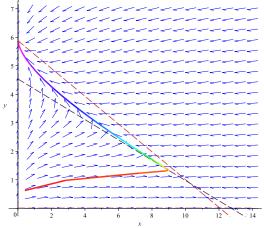
which has eigenvalues  $\lambda_1 = -0.1246$  and  $\lambda_2 = 0.01307$ , so this equilibrium is a Saddle Node



Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model

**Competition Model Phase Portrait:** Plot shows nullclines and solution trajectory





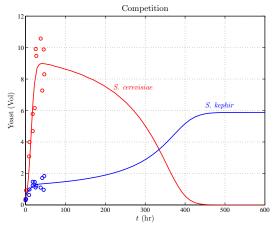
Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

-(67/68)

Model of Glucose and Insulin Control Glucose Tolerance Test Competition Model

### Competition Model

# **Competition Model Time Series:** Plot shows the solution trajectories



(68/68)

