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Basic Mixing Problem 1

Basic Mixing Problem

This problem examines the mixing of an inert salt in two tanks

The flows are balanced to constant volume in each tank, and linear
differential equations are developed to analyze this system

The DEs describe concentrations of the state variables c1(t) and c2(t)
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Basic Mixing Problem 2

Conditions of the Model

Assume constant volumes,
V1 and V2, so the following
conditions hold:

f1 + f2 = f6 f1 + f3 = f4

f2 + f5 = f3 f5 + f6 = f4

Assume inflowing concentrations of inert salt, q1 and q2, into
Tank 1 and Tank 2

Assume initial concentrations, c1(0) = c10 and c2(0) = c20
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Basic Mixing Problem 3

Conservation of Amounts

Assume amounts,
A1(t) and A2(t),
then conservation demands:

dAi
dt

= amount entering − amount leaving

This results in the DEs describing the amounts

dA1

dt
= f1q1 + f3c2 − f4c1

dA2

dt
= f2q2 + f5c1 − f3c2

These are transformed into concentration equations by dividing by
V1 and V2

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (6/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Basic Mixing Problem - Water and Inert Salts
Mixing Problem Example
Pharmokinetic Problem
LSD Example

Basic Mixing Problem 4

Concentration Equations

dc1
dt

=
f1q1 + f3c2

V1
− f4
V1
c1

dc2
dt

=
f2q2 + f5c1

V2
− f3
V2
c2

This can be written as a system of 1st order linear DEs

(
ċ1
ċ2

)
=

 − f4
V1

f3
V1

f5
V2
− f3
V2

( c1
c2

)
+

 f1q1
V1

f2q2
V2


with c1(0) = c10 and c2(0) = c20, which in shorthand is

ċ = Ac + Q
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Basic Mixing Problem 5

Equilibrium: We find the equilibrium by solving

Ace = −Q

or  − f4
V1

f3
V1

f5
V2
− f3
V2

( c1e
c2e

)
=

 − f1q1V1

− f2q2V2


This has the general solution

(
c1e
c2e

)
=

 f1q1+f2q2
f4−f5

f1f5q1+f2f4q2
f3(f4−f5)
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Basic Mixing Problem 5

Eigenvalues: We find the eigenvalues by solving

det |A− λI| = 0

or

det

∣∣∣∣∣∣
− f4
V1
− λ f3

V1

f5
V2

− f3
V2
− λ

∣∣∣∣∣∣ = 0

This has the characteristic equation

λ2 +

(
f4
V1

+
f3
V2

)
λ+

f3(f4 − f5)

V1V2
= 0

Since det |A| > 0, discriminant D > 0, and tr(A) < 0, the Stability
Diagram from before shows this system has a Stable node or sink,
as we would expect

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (9/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Basic Mixing Problem - Water and Inert Salts
Mixing Problem Example
Pharmokinetic Problem
LSD Example

Mixing Problem Example 1

Mixing Problem Example

Assume the following parameters:

V1 = 100 l, V2 = 60 l,
q1 = 7 g/l, q2 = 12 g/l,
f1 = 0.2 l/min, f2 = 0.15 l/min,
f3 = 0.25 l/min, f4 = 0.45 l/min,
f5 = 0.1 l/min, f6 = 0.35 l/min

This can be written as
a system of 1st order linear DEs(
ċ1
ċ2

)
=

(
−0.0045 0.0025
0.00167 −0.004167

)(
c1
c2

)
+

(
0.014
0.03

)
with c1(0) = 2 g/l and c2(0) = 1 g/l

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (10/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Basic Mixing Problem - Water and Inert Salts
Mixing Problem Example
Pharmokinetic Problem
LSD Example

Mixing Problem Example 2

Mixing Problem Example satisfies the model equation(
ċ1
ċ2

)
=

(
−0.0045 0.0025
0.00167 −0.004167

)(
c1
c2

)
+

(
0.014
0.03

)

From our analysis of the general case, the equilibrium satisfies:(
c1e
c2e

)
=

(
9.14286
10.85714

)

The eigenvalues satisfy λ1 = −0.006381 and λ2 = −0.002285 with
corresponding eigenvectors

ξ1 =

(
1

−0.7525

)
and ξ2 =

(
1

0.8859

)
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Mixing Problem Example 3

Mixing Problem Example: The system is solved with ODE23 in
MatLab, and Maple is used to create a direction field with the
solution trajectory and eigenvectors at equilibrium
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Pharmokinetic Problem 1

Pharmokinetic Problem: Consider some drug (legal or illegal)
acting on the brain

This application examines a drug injected into the bloodstream

The simplified model divides the body into a Plasma
compartment and a Brain compartment

Track fraction of drug in each compartment, d1(t), in
plasma and d2(t), in brain
Assume linear transfer between compartments
Common assumption if gradient transfer between
compartments
Can assume preferential uptake by certain tissues

Assume drug eliminated only from Plasma compartment

Elimination can be from metabolism or kidney filtration
Neglect uptake in other tissues
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Pharmokinetic Problem 2

Pharmokinetic Problem: Diagram and Kinetic Equations

d1 and d2 are fractions of
drug in Plasma and Brain
compartments

Kinetic constants of transfer
are Kpb, Kbp, and Ke

Pharmokinetic Model(
ḋ1
ḋ2

)
=

(
−(Kpb +Ke) Kbp

Kpb −Kbp

)(
d1
d2

)
Assume initial conditions d1(0) = 1 and d2(0) = 0
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Pharmokinetic Problem 3

Pharmokinetic Model satisfies

ḋ =

(
ḋ1
ḋ2

)
=

(
−(Kpb +Ke) Kbp

Kpb −Kbp

)(
d1
d2

)
= Ad

Use A to compute elements of the stability diagram

The trace satisfies tr(A) = −(Kpb +Kbp +Ke) < 0
The determinant is det |A| = KbpKe > 0
The discriminant is

D = (Kpb +Kbp +Ke)
2 − 4KbpKe > 0

These facts prove the eigenvalues are negative and real

Since λ1 < λ2 < 0, this model has a stable node at the origin
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Pharmokinetic Problem 4

Eigenvalues satisfy

det

∣∣∣∣ −(Kpb +Ke)− λ Kbp

Kpb −Kbp − λ

∣∣∣∣ = 0,

which gives the characteristic equation

λ2 + (Kpb +Kbp +Ke)λ+KbpKe = 0

so

λ = 0.5

(
−(Kpb +Kbp +Ke)±

√
(Kpb +Kbp +Ke)2 − 4KbpKe

)
This produces the negative, real eigenvalues

This model has a stable node at the origin

Want to find parameters to fit data

Data often only from the Plasma compartment
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LSD Example 1

LSD Example: In the early 1960’s 5 healthy male subjects were
given LSD (lysergic acid diethylamide) in an experiment to determine
its effect on brain function 1

Below is a table averaging the data over the 5 subjects
Time (hr) 0.0833 0.25 0.5 1 2 4 8
Plasma (ng/ml) 9.54 7.24 6.44 5.38 4.18 2.825 1
Score (%) 68.6 44.6 29 33.2 38.4 58.8 79.4

Want to fit our Drug Model to these data

Have information on Plasma compartment, but must infer levels in
Brain compartment

Examine correlation between LSD levels and Test performance

1Aghajanian, G. K. and O. H. L. Bing. 1964. Persistence of lysergic
acid diethylamide in the plasma of human subjects. Clinical Pharmacology
and Therapeutics. 5: 611-614.
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LSD Example 2

LSD Model: From before we have the model(
ḋ1
ḋ2

)
=

(
−(Kpb +Ke) Kbp

Kpb −Kbp

)(
d1
d2

)

Can only directly fit solution d1(t) to the plasma data

Modify interpretation of model so d1 and d2 are masses in their
respective compartments

Perform a nonlinear least squares fit of d1(0) and the kinetic
parameters, Kpb, Ke, and Kbp to the LSD plasma data

Graph solution and compare to the data for the test scores
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LSD Example 3

MatLab Code for finding best parameters

Though this linear model could be solved, we’ll fit the numerical
solution to the data

1 function Lp = LSD(t,L,Kpb,Kbp,Ke)
2 % Model for LSD - rhs of Linear Drug Model
3 L1t = -(Kpb + Ke)*L(1) + Kbp*L(2);
4 L2t = Kpb*L(1)-Kbp*L(2);
5 Lp = [L1t;L2t];
6 end

Use a nonlinear least squares fit for finding best parameters
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LSD Example 4

MatLab Code for finding best parameters (Nonlinear least squares)

1 function J = leastLSD(p,tdata,xdata)
2 % Create the least squares error function
3 n1 = length(tdata);
4 [t,L] = ...

ode45(@LSD,tdata,[p(1),0],[],p(2),p(3),p(4));
5 errL1 = L(:,1)-xdata(1:n1);
6 J = errL1'*errL1;
7 end

Make an initial guess p0 = [12, 5, 4, 0.4], then use the MatLab
command
[p,J,flag] = fminsearch(@leastLSD,p0,[],td,L1); where td and
L1 are the data

This produces the best parameter values for our model
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LSD Example 5

MatLab Code finds the best parameters with previous programs

Make an initial guess p0 = [12, 5, 4, 0.4], then use the MatLab
command
[p,J,flag] = fminsearch(@leastLSD,p0,[],td,L1);

where td and L1 are the data

This produces the best initial condition and parameter values for our
model

d1(0) = 9.5330 Kpb = 2.0580 Kbp = 5.6030 Ke = 0.32904

The sum of square errors is J = 0.079948

The following MatLab commands produce the graph of the plasma
compartment
[t,L] = ode23(@LSD,[0,15],[9.5330;0],[],2.0580,5.6030,0.32904);

plot(t,L(:,1),’r-’,td,L1,’ro’);grid;
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LSD Example 6

Model Graphs

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

t (hr)

L
S
D

(n
g
/
m
l)

LSD in Plasma

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

t (hr)

2
6
.7
6
d
2
(t
)
+

1
2
.4
1

Missed Points

d1(t) with Data Scaled and shifted d2(t)

The graph on the right shows the strong correlation between missed
points on the test and the amount of LSD in the Tissue
compartment

Scores are vertically shifted to account for points missed without LSD
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Modeling Diabetes

Diabetes (diabetes mellitus) is a disease characterized by
excessive glucose in the blood

There are 3 forms

Type 1 or juvenile diabetes is an autoimmune disorder,
where the β-cells in the pancreas are destroyed, so insulin
cannot be produced
Type 2 or adult onset diabetes is where cells become
insulin resistant, often caused by excessive weight and poor
exercise
Gestational diabetes happens in some pregnant women

This study concentrates on Type 1 diabetes

Affects 4-20 per 100,000 with peak occurrence around 14 years of
age

Causes serious health conditions, especially heart disease and
nerve damage
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Glucose Metabolism

Glucose Metabolism

Ingest food for nutrients and energy

Carbohydrates are broken into simple sugars
Sugars are absorbed into the blood
Cells access blood sugar for energy

Glucose Control in Blood

High glucose levels are bad for tissues (osmotic pressure?)
β-cells in pancreas sense high levels and release insulin
Insulin facilitates glucose entering tissues (skeletal muscle,
esp.)
Convert glucose to glycogen to store in liver
Negative feedback control

Many other controlling hormones
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Modeling Glucose Metabolism

General Glucose Control Model Let G(t) be the blood glucose
level and I(t) be the blood insulin level

A general differential equation describing this system is

dG

dt
= f1(G, I) + J(t),

dI

dt
= f2(G, I),

where J(t) is the external uptake of glucose (a control function)

Many significantly more complex models exist

The body wants to maintain homeostasis, so assume an equilibrium
(G0, I0) or

f1(G0, I0) = 0 and f2(G0, I0) = 0.

We examine the translated variables (about equilibrium)

g(t) = G(t)−G0 and i(t) = I(t)− I0
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Linearization 1

Taylor’s Theorem for Two Variables allows the expansion of the
functions f1(G, I) and f2(G, I):

f1(G, I) = f1(G0, I0) +
∂f1(G0, I0)

∂G
(G−G0) +

∂f1(G0, I0)

∂I
(I − I0) + h.o.t.

f2(G, I) = f2(G0, I0) +
∂f2(G0, I0)

∂G
(G−G0) +

∂f2(G0, I0)

∂I
(I − I0) + h.o.t.,

where h.o.t. represents all higher order terms greater than linear

Recall that f1(G0, I0) = 0 and f2(G0, I0) = 0 (Equilibrium).

Also, g(t) = G(t)−G0 and i(t) = I(t)− I0,
which gives dG

dt = dg
dt and dI

dt = di
dt
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Linearization 2

Linear Terms from Taylor’s Expansion: We carefully analyze
each linear term

Begin with the glucose dynamics, f1(G, I)

Consider ∂f1(G0,I0)
∂G

Increases of glucose in the blood stimulates tissues to
uptake glucose and liver to store glycogen

Thus, this term is negative or ∂f1(G0,I0)
∂G = −a11 < 0

Consider ∂f1(G0,I0)
∂I

Increases of insulin in the blood facilitates uptake of glucose
in the tissues and liver
Thus, this term is negative or ∂f1(G0,I0)

∂I = −a12 < 0
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Linearization 3

Analysis of Linear Terms from Taylor’s Expansion: We
continue with the insulin dynamics, f2(G, I)

Consider ∂f2(G0,I0)
∂G

Increases of glucose in the blood stimulates production of
insulin from the β-cells

Thus, this term is positive or ∂f2(G0,I0)
∂G = a21 > 0

Consider ∂f2(G0,I0)
∂I

Increases of insulin in the blood results in increased
metabolism of the insulin
Thus, this term is negative or ∂f2(G0,I0)

∂I = −a22 < 0
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Linearized Glucose Model

Linearized Glucose Model: In the translated coordinates
g(t) = G(t)−G0 and i(t) = I(t)− I0, the model

dG

dt
= f1(G, I) + J(t),

dI

dt
= f2(G, I),

can be written in linearized form, where the h.o.t terms are
dropped along with the control function, J(t)

The linearized model is(
dg
dt
di
dt

)
=

(
−a11 −a12
a21 −a22

)(
g
i

)
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Analysis of Linearized Glucose Model

Analysis of Linearized Glucose Model:

ż =

(
dg
dt
di
dt

)
=

(
−a11 −a12
a21 −a22

)(
g
i

)
= Az,

where z = [g, i]T

Eigenvalues are found from the characteristic equation,
det |A− λI| = 0 or∣∣∣∣ −a11 − λ −a12

a21 −a22 − λ

∣∣∣∣ = λ2 + (a11 + a22)λ+ a11a22 + a12a21 = 0

Since this characteristic equation has only positive coefficients (or
tr(A) < 0 and det(A) > 0), the equilibrium is asymptotically
stable
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Simplified Glucose Model

Simplified Glucose Model: Only the blood sugar is measured, so
only need to track g(t)

The typical situation is that one is hungry after a period of time,
indicating blood sugar drops below equilibrium and suggesting a
damped oscillator solution or λ = −α± iω

g(t) = c1e
−αt cos(ωt) + c2e

−αt sin(ωt)

g(t) = Ae−αt cos(ω(t− δ)),

where A =
√
c21 + c22 and δ = 1

ω arctan
(
c2
c1

)
These results give the simplified Ackerman model for blood glucose

G(t) = G0 +Ae−αt cos(ω(t− δ)),

which is widely used to test for diabetes
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Glucose Tolerance Test 1

Glucose Tolerance Test (GTT) and Ackerman Model

GTT

Patient fasts for 12 hours
Patient drinks 1.75 mg of glucose/kg of body weight
Glucose levels in blood is monitored for 4-6 hours

Ackerman Model

Compartmental model for glucose and insulin in the body
Model tracks glucose in the blood
Model given by equation

G(t) = G0 +Ae−αt cos(ω(t− δ))

5 parameters fit to GTT blood data
Use parameters α and ω to detect diabetes
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Glucose Tolerance Test 2

Data for a Normal Subject A and Diabetic Subject B

t (hr) A B t (hr) A B
0 70 100 2 75 175

0.5 150 185 2.5 65 105
0.75 165 210 3 75 100

1 145 220 4 80 85
1.5 90 195 6 75 90

Model for Normal Patient with best parameters

G1(t) = 79.2 + 171.5e−0.99t cos(1.81(t− 0.901))

Model for Diabetic Patient with best parameters

G2(t) = 95.2 + 263.2e−0.63t cos(1.03(t− 1.52))
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Glucose Tolerance Test 3

Graph of data and models
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Glucose Tolerance Test 4

Model for Normal Patient with best parameters is

G1(t) = 79.2 + 171.5e−0.99t cos(1.81(t− 0.901))

Calculus techniques show a maximum at tmax = 0.624 hr with
G1(tmax) = 160.3 ng/dl and a minimum at tmin = 2.360 hr with
G1(tmin) = 64.7 ng/dl

Model for Diabetic Patient with best parameters is

G2(t) = 95.2 + 263.2e−0.63t cos(1.03(t− 1.52)),

Similar calculations give the maximum at tmax = 0.987 hr with
G2(tmax) = 215.8 ng/dl and a minimum at tmin = 4.037 hr with
G2(tmin) = 77.6 ng/dl
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Glucose Tolerance Test 5

The Ackerman Test examines the natural frequency, ω0, (study
in next chapter) and period, T0, of the models, where

ω2
0 = α2 + ω2 and T0 =

2π

ω0

Our models give the normal subject

ω0 = 2.067 and T0 = 3.04 hr

and the diabetic subject

ω0 = 1.210 and T0 = 5.19 hr

Note: T0 > 4 suggests diabetes

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (36/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Model of Glucose and Insulin Control
Glucose Tolerance Test
Competition Model

Two Species Competition Model 1

Two Species Competition Model: Let X(t) be the density of one
species of yeast and Y (t) be the density of another species of yeast.

Assume each species follows the logistic growth model for
interactions within the species.

Model has a Malthusian growth term.
Model has a term for intraspecies competition.

The differential equation for each species has a loss term for
interspecies competition.

Assume interspecies competition is represented by the
product of the two species.

If two species compete for a single resource, then
1. Competitive Exclusion - one species out competes the other and
becomes the only survivor
2. Coexistence - both species coexist around a stable equilibrium

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (37/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Model of Glucose and Insulin Control
Glucose Tolerance Test
Competition Model

Two Species Competition Model 2

Two Species Competition Model: The system of ordinary differential
equations (ODEs) for X(t) and Y (t) :

dX

dt
= a1X − a2X

2 − a3XY = f1(X,Y )

dY

dt
= b1Y − b2Y

2 − b3Y X = f2(X,Y )

First terms with a1 and b1 represent the exponential or Malthusian
growth at low densities

The terms a2 and b2 represent intraspecies competition from crowding
by the same species

The terms a3 and b3 represent interspecies competition from the second
species

Unlike the logistic growth model, this system of ODEs does not have an analytic
solution, so we must turn to other analyses.
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Competition Model – Analysis 1

Competition Model: Analysis always begins finding equilibria, which requires:

dX

dt
= 0 and

dY

dt
= 0,

in the model system of ODEs.

Thus,

a1Xe − a2X
2
e − a3XeYe = 0,

b1Ye − b2Y
2
e − b3XeYe = 0.

Factoring gives:

Xe(a1 − a2Xe − a3Ye) = 0,

Ye(b1 − b2Ye − b3Xe) = 0.
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Competition Model – Analysis 2

The equilibria of the competition model satisfy:

Xe(a1 − a2Xe − a3Ye) = 0,

Ye(b1 − b2Ye − b3Xe) = 0.

This system of equations must be solved simultaneously. The first equation gives:
Xe = 0 or a1 − a2Xe − a3Ye = 0.

If Xe = 0, then from the second equation we have either the extinction
equilibrium,

(Xe, Ye) = (0, 0)

or the competitive exclusion equilibrium (with Y winning):

(Xe, Ye) =

(
0,
b1

b2

)
,

where Ye is at carrying capacity.
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Competition Model – Analysis 3

Continuing the equilibria of the competition model: If
a1 − a2Xe − a3Ye = 0 from the first equation, then from the second
equation we have either the competitive exclusion equilibrium
(with X winning):

(Xe, Ye) =

(
a1
a2
, 0

)
,

where Xe is at carrying capacity or the nonzero equilibrium:

(Xe, Ye) =

(
a1b2 − a3b1
a2b2 − a3b3

,
a2b1 − a1b3
a2b2 − a3b3

)
.

If Xe > 0 and Ye > 0, then we obtain the cooperative equilibrium
with neither species going extinct.

Note: This last equilibrium could have a negative Xe or Ye,
depending on the values of the parameters.
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Maple Equilibrium

Maple can readily be used to find equilibria:

Later we find the numerical values of the parameters, so Maple easily finds all
equilibria:

Note: The positive equilibrium is close to the late data points.
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Nullclines 1

Equilibrium analysis shows there are always the extinction and
two competitive exclusion equilibria with the latter going to
carrying capacity for one of the species.

Provided a2b2 − a3b3 6= 0, there is another equilibrium, and it
satisfies: 1. Xe ≤ 0 and Ye > 0 or 2. Xe > 0 and Ye ≤ 0 or 3. Xe > 0
and Ye > 0.

We concentrate our studies on Case 3, where there exists a positive
cooperative equilibrium.

Finding equilibia can be done geometrically using nullclines.

Nullclines are simply curves where

dX

dt
= 0 and

dY

dt
= 0.
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Nullclines 2

For the competition model, the nullclines satisfy:

dX

dt
= X(a1 − a2X − a3Y ) = 0 and

dY

dt
= Y (b1 − b2Y − b3X) = 0,

where the first equation has solutions only flowing in the Y -direction and the
second equation has solutions only flowing in the X-direction.

Equilibria occur where the curves intersect.

The nullclines for the competition model are only straight lines:

The dX
dt

= 0 has X = 0 or the Y -axis preventing solutions in X from
becoming negative.

The dY
dt

= 0 has Y = 0 or the X-axis preventing solutions in Y from
becoming negative.

The other two nullclines are straight lines with negative slopes passing
through the positive quadrant, X > 0 and Y > 0.
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Nullclines 3

Example 1: Consider the competition model:

dX

dt
= 0.1X − 0.01X2 − 0.02XY,

dY

dt
= 0.2Y − 0.03Y 2 − 0.04XY.

Nullclines where dX
dt

= 0 are

1 X = 0.
2 0.1− 0.01X − 0.02Y = 0 or Y = 5− 0.5X.

Nullclines where dY
dt

= 0 are

1 Y = 0.
2 0.2− 0.03Y − 0.04X = 0 or Y = 20

3 −
4
3X.

Equilibria occur at intersections of a nullcline with dX
dt

= 0 and one with dY
dt

= 0.

The 4 equilibria are (0, 0),
(
0, 20

3

)
, (10, 0), and (2, 4).
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Linearization

Linearization: The competition model is below:

dX

dt
= 0.1X − 0.01X2 − 0.02XY = f1(X,Y ),

dY

dt
= 0.2Y − 0.03Y 2 − 0.04XY = f2(X,Y ),

and the linearization about the equilibria is found by evaluating the Jacobian
matrix at the equilibria:

J(X,Y ) =

( ∂f1(X,Y )
∂X

∂f1(X,Y )
∂Y

∂f2(X,Y )
∂X

∂f2(X,Y )
∂Y

)

=

(
0.1 − 0.02X − 0.02Y −0.02X

−0.04Y 0.2 − 0.06Y − 0.04X

)
.

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (46/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Model of Glucose and Insulin Control
Glucose Tolerance Test
Competition Model

Linearization and Equilibria

Linearization: Consider the extinction equilibrium, (Xe, Ye) = (0, 0), the
Jacobian satisfies:

J(0, 0) =

(
0.1 0

0 0.2

)
.

This has eigenvalues λ1 = 0.1 (ξ1 = [1, 0]T ) and λ2 = 0.2 (ξ1 = [0, 1]T ).

This is an unstable node, as we’d expect for low populations.

At the Xe carrying capacity equilibrium, (Xe, Ye) = (10, 0), the Jacobian
satisfies:

J(10, 0) =

(
−0.1 −0.2

0 −0.2

)
.

This has eigenvalues λ1 = −0.1 (ξ1 = [1, 0]T ) and λ2 = −0.2 (ξ1 = [2, 1]T ).

This is a stable node.
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Linearization and Equilibria

Linearization: At the Ye carrying capacity equilibrium, (Xe, Ye) = (0, 20/3),
the Jacobian satisfies:

J(0, 20/3) =

(
−0.03333 0

−0.2667 −0.2

)
.

This has eigenvalues λ1 = −0.03333 (ξ1 = [1,−1.6]T ) and λ2 = −0.2
(ξ1 = [0, 1]T ).

This is a stable node.

At the cooperative equilibrium, (Xe, Ye) = (2, 4), the Jacobian satisfies:

J(2, 4) =

(
−0.02 −0.04

−0.16 −0.12

)
.

This has eigenvalues λ1 = −0.1643 (ξ1 = [1, 3.609]T ) and λ2 = 0.02434
(ξ1 = [1,−1.1085]T ).

This is a saddle node.
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Phase Portrait

The figure below was generated with pplane8 and shows that Example 1
exhibits competitive exclusion with all solutions going to either the carrying
capacity equilibria, (Xe, Ye) =

(
0, 20

3

)
or (Xe, Ye) = (10, 0).
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Example/Equilibria

Example 2: Consider the competition model:

dX

dt
= 0.1X − 0.02X2 − 0.01XY,

dY

dt
= 0.2Y − 0.04Y 2 − 0.03XY.

Nullclines where dX
dt

= 0 are

1 X = 0.
2 0.1− 0.02X − 0.01Y = 0 or Y = 10− 2X.

Nullclines where dY
dt

= 0 are

1 Y = 0.
2 0.2− 0.04Y − 0.03X = 0 or Y = 5− 0.75X.

Equilibria occur at intersections of a nullcline with dX
dt

= 0 and one with dY
dt

= 0.

The 4 equilibria are (0, 0), (0, 5), (5, 0), and (4, 2).
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Linearization

Linearization: The competition model is below:

dX

dt
= 0.1X − 0.02X2 − 0.01XY = f1(X,Y ), ,

dY

dt
= 0.2Y − 0.04Y 2 − 0.03XY = f2(X,Y ),

and the linearization about the equilibria is found by evaluating the Jacobian
matrix at the equilibria:

J(X,Y ) =

( ∂f1(X,Y )
∂X

∂f1(X,Y )
∂Y

∂f2(X,Y )
∂X

∂f2(X,Y )
∂Y

)

=

(
0.1 − 0.04X − 0.01Y −0.01X

−0.03Y 0.2 − 0.08Y − 0.03X

)
.
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Linearization and Equilibria

Linearization: Consider the extinction equilibrium, (Xe, Ye) = (0, 0), the
Jacobian satisfies:

J(0, 0) =

(
0.1 0

0 0.2

)
.

This has eigenvalues λ1 = 0.1 (ξ1 = [1, 0]T ) and λ2 = 0.2 (ξ1 = [0, 1]T ).

This is an unstable node, as we’d expect for low populations.

At the Xe carrying capacity equilibrium, (Xe, Ye) = (5, 0), the Jacobian satisfies:

J(5, 0) =

(
−0.1 −0.05

0 0.05

)
.

This has eigenvalues λ1 = −0.1 (ξ1 = [1, 0]T ) and λ2 = 0.05 (ξ1 = [1,−3]T ).

This is a saddle node.
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Linearization and Equilibria

Linearization: At the Ye carrying capacity equilibrium, (Xe, Ye) = (0, 5), the
Jacobian satisfies:

J(0, 5) =

(
0.05 0

−0.15 −0.2

)
.

This has eigenvalues λ1 = 0.05 (ξ1 = [5,−3]T ) and λ2 = −0.2 (ξ1 = [0, 1]T ).

This is a saddle node.

At the cooperative equilibrium, (Xe, Ye) = (4, 2), the Jacobian satisfies:

J(2, 4) =

(
−0.08 −0.04

−0.06 −0.08

)
.

This has eigenvalues λ1 = −0.129 (ξ1 = [1, 1.2247]T ) and λ2 = −0.031
(ξ1 = [1,−1.2247]T ).

This is a stable node.
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Phase Portrait

The figure below was generated with pplane8 and shows that Example 2
exhibits cooperation with all solutions going toward the nonzero equilibrium,
(Xe, Ye) = (4, 2).

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Applications
— (54/68)



Introduction
Linear Applications of Systems of 1st Order DEs

Nonlinear Applications of Systems of DEs

Model of Glucose and Insulin Control
Glucose Tolerance Test
Competition Model

Yeast Competition Model 1

Competition Model: Competition is ubiquitous in ecological
studies and many other fields

Craft beer is a very important part of the San Diego economy

Researchers at UCSD created a company that provides brewers
with one of the best selections of diverse cultures of different
strains of the yeast, Saccharomyces cerevisiae

Different strains are cultivated for particular flavors

Often S. cerevisiae is maintained in a continuous chemostat for
constant quality - large beer manufacturers

Large cultures can become contaminated with other species of
yeast

It can be very expensive to start a new pure culture

We examine a competition model for different species of yeast
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Yeast Competition Model 2

Yeast Experiment: G. F. Gause 23 studied competing species of
yeast, Saccharomyces cerevisiae and a common contaminant species
Schizosaccharomyces kephir

The experiments examined growth in monocultures for individual
growth laws and in mixed cultures to observe competition

Below is a table combining two experimental studies of S. cerevisiae
Time (hr) 0 1.5 9 10 18 18 23
Volume 0.37 1.63 6.2 8.87 10.66 10.97 12.5

Time (hr) 25.5 27 34 38 42 45.5 47
Volume 12.6 12.9 13.27 12.77 12.87 12.9 12.7

Below is a table combining two experimental studies of S. kephir
Time (hr) 9 10 23 25.5 42 45.5 66 87 111 135
Volume 1.27 1 1.7 2.33 2.73 4.56 4.87 5.67 5.8 5.83

2G. F. Gause, Struggle for Existence, Hafner, New York, 1934.
3G. F. Gause (1932), Experimental studies on the struggle for existence.

I. Mixed populations of two species of yeast, J. Exp. Biol. 9, p. 389.
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Monoculture Models 1

Monoculture Model: Previous slide gave data for monocultures,
which should satisfy logistic growth model

dY

dt
= rY

(
1 −

Y

M

)
, Y (0) = Y0,

which has the solution

Y (t) =
MY0

Y0 + (M − Y0)e−rt

Use MatLab to fit parameters to the data, and the results for
Saccharomyces cerevisiae are

r = 0.25864 M = 12.742 Y0 = 1.2343

The results for Schizosaccharomyces kephir are

r = 0.057443 M = 5.8802 Y0 = 0.67805

These models show that S. cerevisiae grows much faster than S. kephir
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Monoculture Models 2

Monoculture Models and Data:

Yc(t) =
12.742

1 + 9.3230e−0.25864t
and Yk(t) =

5.8802

1 + 7.6723e−0.057443t

Graphs show the best fitting logistic models for the two species with
the Gause experiment data
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Competition Experiment

Competition Experiment: G. F. Gause ran experiments (same
nutrient conditions) mixing the cultures of S. cerevisiae and S. kephir

Table combining two experimental studies of the mixed culture

t (hr) 0 1.5 9 10 18 18 23
Yc 0.375 0.92 3.08 3.99 4.69 5.78 6.15
Yk 0.29 0.37 0.63 0.98 1.47 1.22 1.46
t (hr) 25.5 27 38 42 45.5 47
Yc 9.91 9.47 10.57 7.27 9.88 8.3
Yk 1.11 1.225 1.1 1.71 0.96 1.84

The data show the populations are increasing, but the S. cerevisiae
population is significantly below the carrying capacity

If two species compete for a single resource, then
1. Competitive Exclusion - one species out competes the other and
becomes the only survivor
2. Coexistence - both species coexist around a stable equilibrium
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Competition Model

Competition Model: Assume a competition model of the form

dYc
dt

= a1Yc − a2Y 2
c − a3YcYk = f1(Yc,Yk)

dYk
dt

= b1Yk − b2Y 2
k − b3YkYc = f2(Yc, Yk)

First terms with a1 and b1 represent the exponential or
Malthusian growth at low densities

The terms a2 and b2 represent intraspecies competition from
crowding by the same species

The terms a3 and b3 represent interspecies competition from
the second species
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Competition Model Parameters

Competition Model: Assume a competition model of the form

dYc

dt
= a1Yc − a2Y

2
c − a3YcYk

dYk

dt
= b1Yk − b2Y

2
k − b3YkYc

The monoculture experiments give the values:

a1 = 0.25864 a2 = 0.020298 b1 = 0.057443 b2 = 0.0097689

The competition experiments give the best interspecies
competition parameters

a3 = 0.057015 b3 = 0.0047581

These experiments also fit the best initial conditions:

Yc(0) = 0.41095 Yk(0) = 0.62579

More details for fitting a3, b3, Yc(0), and Yk(0) are available from
Math 636
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Competition Model Fit

Competition Model:

dYc

dt
= 0.25864Yc − 0.020298Y 2

c − 0.057015YcYk, Yc(0) = 0.41095

dYk

dt
= 0.057443Yk − 0.0097689Y 2

k − 0.0047581YkYc, Yk(0) = 0.62579
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Equilibria for Competition Model

Equilibria for Competition Model: Let the equilibria for
S. cerevisiae and S. kephir be Yce and Yke, respectively

Yce(0.25864 − 0.020298Yce − 0.057015Yke) = 0

Yke(0.057443 − 0.0097689Yke − 0.0047581Yce) = 0

Must solve the above equations simultaneously, giving 4
equilibria

Extinction equilibrium, (Yce, Yke) = (0, 0)

Carrying capacity equilibria, (Yce, Yke) = (12.742, 0) and
(Yce, Yke) = (0, 5.8802)

Coexistence equilibrium, (Yce, Yke) = (4.4407, 2.9554)
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Linearization of Competition Model

Linearization of Competition Model: With equilibria Yce and
Yke, let u = Yc − Yce and v = Yk − Yke(

u̇
v̇

)
=

 ∂f1(Yce,Yke)
∂u

∂f1(Yce,Yke)
∂v

∂f2(Yce,Yke)
∂u

∂f2(Yce,Yke)
∂v

( u
v

)
so the linear system is(

u̇
v̇

)
=

(
a1 − 2a2Yce − a3Yke a3Yce

b3Yke b1 − 2b2Yke − b3Yce

)(
u
v

)
,

where

a1 = 0.25864 a2 = 0.020298 a3 = 0.057015

b1 = 0.057443 b2 = 0.0097689 b3 = 0.0047581
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Local Stability of Competition Model

Local Stability of Competition Model: At the equilibrium,
(Yce, Yke) = (0, 0)(

u̇
v̇

)
=

(
0.25864 0

0 0.057443

)(
u
v

)
,

which has eigenvalues λ1 = 0.25864 and λ2 = 0.057443, so this
equilibrium is an Unstable Node

At the equilibrium,
(Yce, Yke) = (12.742, 0)(

u̇
v̇

)
=

(
−0.25864 0.72649

0 −0.0031847

)(
u
v

)
,

which has eigenvalues λ1 = −0.25864 and λ2 = −0.0031847, so this
equilibrium is a Stable Node
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Local Stability of Competition Model

Local Stability of Competition Model: At the equilibrium,
(Yce, Yke) = (0, 5.8802)(

u̇
v̇

)
=

(
−0.076620 0
0.027979 −0.057443

)(
u
v

)
,

which has eigenvalues λ1 = −0.07662 and λ2 = −0.057443, so this
equilibrium is a Stable Node

At the equilibrium,
(Yce, Yke) = (4.4407, 2.9554)(

u̇
v̇

)
=

(
−0.090137 0.25319
0.014062 −0.021428

)(
u
v

)
,

which has eigenvalues λ1 = −0.1246 and λ2 = 0.01307, so this
equilibrium is a Saddle Node
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Competition Model

Competition Model Phase Portrait: Plot shows nullclines and
solution trajectory
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Competition Model

Competition Model Time Series: Plot shows the solution
trajectories
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