Math 337 - Elementary Differential Equations Lecture Notes – Systems of Two First Order Equations: Part A

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://jmahaffy.sdsu.edu

Spring 2022

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (1/32)

Outline

• Model Solution

- Greenhouse Example Revisited
- MatLab and Maple Summary

Introduction

Introduction

- Many applications use more than one variable
- Use techniques from Linear Algebra
- Solve basic 2-dimensional linear ordinary differential equations
 - Systems with constant coefficients
 - Find eigenvalues and eigenvectors
 - Graph phase portraits
 - Qualitative Analysis
- Introduce nonlinear 2D systems

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

505

Greenhouse/Rockbed

Greenhouse/Rockbed

Greenhouse/Rockbed

Greenhouse/Rockbed System

- Greenhouse heats during the day and cools at night
- Insulated bed of rocks stores and releases heat
- Automated fan pumps air from greenhouse to bed of rocks
- Greenhouse air readily heated with the sun and lost at night

Two Dimensional Model

Eigenvalue Analysis

Model Solution

- Heat capacity of rocks absorbs heat during day from hot air, then releases during night
- System can maintain a more constant temperature

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse/Rockbed

Simplified Model: Lumped system thermal analysis using Newton's Law of Cooling

Define model parameters

- m_1, m_2 Masses of Air and Rocks
- C_1, C_2 Specific heat of Air and Rocks
- A_1, A_2 Surface areas of Greenhouse and Rocks
- h_1, h_2 Heat transfer coefficients across A_1 and A_2
- T_a Temperature of air external to greenhouse

Greenhouse/Rockbed

Conservation of Energy gives

$$m_1 C_1 \frac{du_1}{dt} = -h_1 A_1 (u_1 - T_a) - h_2 A_2 (u_1 - u_2)$$
$$m_2 C_2 \frac{du_2}{dt} = -h_2 A_2 (u_2 - u_1)$$

Can write system

$$\begin{aligned} \frac{du_1}{dt} &= -(k_1 + k_2)u_1 + k_2u_2 + K_1T_a \\ \frac{du_2}{dt} &= \varepsilon k_2u_1 - \varepsilon k_2u_2 \end{aligned}$$

with

$$k_1 = \frac{h_1 A_1}{m_1 C_1}$$
 $k_2 = \frac{h_2 A_2}{m_1 C_1}$ $\varepsilon = \frac{m_1 C_1}{m_2 C_2}$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (7/32)

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse/Rockbed

Model Design

• Allows simulation to choose the size of rock bed and amount of airflow based on size of greenhouse

Two Dimensional Model

Eigenvalue Analysis

- Varying quantities and material changes coefficients
- Coefficients are known based on thermal properties of gases and building materials
- Given initial conditions

$$u_1(0) = u_{10}$$
 and $u_2(0) = u_{20}$

can easily simulate

• Analysis allows optimal design

SDSU

Greenhouse/Rockbed

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Model: Actual determining the values of the kinetic parameters for a particular greenhouse/rockbed configuration can be a very difficult problem

This is the **most important** problem in design

Suppose that we have

$$k_1 = \frac{7}{8}$$
 $k_2 = \frac{3}{4}$ $\varepsilon = \frac{1}{3}$ $T_a = 16^{\circ} \text{C}$

Then

$$\frac{du_1}{dt} = -\frac{13}{8}u_1 + \frac{3}{4}u_2 + 14$$
$$\frac{du_2}{dt} = \frac{1}{4}u_1 - \frac{1}{4}u_2$$

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Model in Matrix Form (Note: We define $\frac{du_1(t)}{dt} = \dot{u}_1$.)

$$\begin{pmatrix} \dot{u}_1 \\ \dot{u}_2 \end{pmatrix} = \begin{pmatrix} -\frac{13}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} 14 \\ 0 \end{pmatrix}$$

which has the form

$$\dot{\mathbf{u}} = \mathbf{K}\mathbf{u} + \mathbf{b}$$

with initial condition

$$\mathbf{u}(0) = \mathbf{u}_0 = \left(\begin{array}{c} u_{10} \\ u_{20} \end{array}\right)$$

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Model Analysis - Expectations

Qualitative Model Expectations

- $\bullet\,$ The only energy input into the system is the environment at $16^{\circ}{\rm C}$
- With this constant environmental temperature, expect

$$\lim_{t \to \infty} \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} = \lim_{t \to \infty} \mathbf{u}(t) = \begin{pmatrix} 16 \\ 16 \end{pmatrix} = \mathbf{u}_e$$

• Model uses **Newton's Law of Cooling**, so expect an exponential decay toward **u**_e

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Model Analysis - Steady State: At steady state, $\dot{\mathbf{u}} = 0$

Need to solve

$$\mathbf{K}\mathbf{u} + \mathbf{b} = \mathbf{0}$$
 or $\mathbf{K}\mathbf{u} = -\mathbf{b}$

This solves the linear system

$$\begin{pmatrix} -\frac{13}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} u_{1e} \\ u_{2e} \end{pmatrix} = \begin{pmatrix} -14 \\ 0 \end{pmatrix}$$

This is readily solved by row reduction (**row reduced echelon** form)

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Solve Linear System

1

Solve Linear System: Write $[\mathbf{A} : \mathbf{b}]$, so

 $\begin{bmatrix} -\frac{13}{8} & \frac{3}{4} & \vdots & -14 \\ \frac{1}{4} & -\frac{1}{4} & \vdots & 0 \end{bmatrix} \xrightarrow{-\frac{8}{13}R_1} \begin{bmatrix} 1 & -\frac{6}{13} & \vdots & \frac{112}{13} \\ 1 & -1 & \vdots & 0 \end{bmatrix}$ $R_2 - R_1 \qquad \begin{bmatrix} 1 & -\frac{6}{13} & \vdots & \frac{112}{13} \\ 0 & -\frac{7}{13} & \vdots & -\frac{112}{13} \end{bmatrix} \xrightarrow{-\frac{13}{7}R_2} \begin{bmatrix} 1 & -\frac{6}{13} & \vdots & \frac{112}{13} \\ 0 & 1 & \vdots & 16 \end{bmatrix}$ $R_1 + \frac{6}{13}R_2 \qquad \begin{bmatrix} 1 & 0 & \vdots & 16 \\ 0 & 1 & \vdots & 16 \end{bmatrix} \qquad \text{or} \qquad \mathbf{u}_e = \begin{bmatrix} 16 \\ 16 \end{bmatrix}$

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Solve Linear System

2

Solve Linear System: Linear systems are efficiently solved in MatLab and Maple

- MatLab Solving equilibrium
 - $\bullet\,$ Enter matrix, A, and vector, b
 - Use *linsolve* command or inv(A)*b
 - $\bullet\,$ Augment A with b and use rref
- Maple Solving equilibrium
 - Start *with(LinearAlgebra)* to invoke the Linear Algebra package
 - $\bullet\,$ Enter matrix, A, and vector, b
 - Use LinearSolve(A,b) command or $Multiply(A^{-1},b)$ operation
- Detailed supplemental sheets are provided

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Solving the System of DEs

Model System satisfies

$$\dot{\mathbf{u}} = \mathbf{K}\mathbf{u} + \mathbf{b}$$

and has a steady state solution $\mathbf{u}(t) = \mathbf{u}_e$, where $\mathbf{K}\mathbf{u}_e = -\mathbf{b}$

Make a change of variables $\mathbf{v}(t) = \mathbf{u}(t) - \mathbf{u}_e$, then $\dot{\mathbf{v}} = \dot{\mathbf{u}}$ and

$$\dot{\mathbf{v}} = \mathbf{K}(\mathbf{v} + \mathbf{u}_e) + \mathbf{b} = \mathbf{K}\mathbf{v}$$

This change of variables allows considering the simpler system

$$\dot{\mathbf{v}} = \mathbf{K}\mathbf{v}$$

Two Dimensional Model Steady State Analysis **Eigenvalue Analysis** Model Solution

Solving the System of DEs

Model System has a Newton's Law of Cooling, so anticipate an exponential (decaying) solution

Try a solution of the form $\mathbf{v}(t) = \xi e^{\lambda t}$, where $\xi = [v_1, v_2]^T$ is a constant vector, so $\dot{\mathbf{v}}(t) = \lambda \xi e^{\lambda t}$

The translated **Model System** $\dot{\mathbf{v}}(t) = \mathbf{K}\mathbf{v}(t)$ becomes

$$\lambda \xi e^{\lambda t} = \mathbf{K} \xi e^{\lambda t}$$
 or $\lambda \xi = \mathbf{K} \xi$

This is the classic **eigenvalue problem**

$$(\mathbf{K} - \lambda \mathbf{I})\xi = \mathbf{0},$$

which has **eigenvalues**, λ , and associated **eigenvectors**, ξ

The solution of the **eigenvalue problem** gives the solution of the **Model System**, $\mathbf{v}(t) = \xi e^{\lambda t}$

Two Dimensional Model Steady State Analysis **Eigenvalue Analysis** Model Solution

Greenhouse Example

Example Model: satisfies the DE:

$$\begin{pmatrix} \dot{u}_1 \\ \dot{u}_2 \end{pmatrix} = \begin{pmatrix} -\frac{13}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} 14 \\ 0 \end{pmatrix},$$

which has the equilibrium solution

$$\mathbf{u}_e = \left(\begin{array}{c} 16\\16\end{array}\right)$$

Taking $\mathbf{v}(t) = \mathbf{u}(t) - \mathbf{u}_e$, we examine the translated model

$$\left(\begin{array}{c} \dot{v}_1(t) \\ \dot{v}_2(t) \end{array}\right) = \left(\begin{array}{cc} -\frac{13}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} \end{array}\right) \left(\begin{array}{c} v_1(t) \\ v_2(t) \end{array}\right)$$

Two Dimensional Model Steady State Analysis **Eigenvalue Analysis** Model Solution

Greenhouse Example

Example Model: Try a solution $\mathbf{v}(t) = \xi e^{\lambda t}$ with $\xi = [\xi_1, \xi_2]^T$, so the DE can be written

$$\lambda \left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right) e^{\lambda t} = \left(\begin{array}{cc} -\frac{13}{8} & \frac{3}{4}\\ \frac{1}{4} & -\frac{1}{4} \end{array}\right) \left(\begin{array}{c} \xi_1\\ \xi_2 \end{array}\right) e^{\lambda t}$$

Dividing by $e^{\lambda t}$, we obtain the **eigenvalue problem**

$$\begin{pmatrix} -\frac{13}{8} - \lambda & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} - \lambda \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Two Dimensional Model Steady State Analysis **Eigenvalue Analysis** Model Solution

Greenhouse Example

3

Eigenvalue Problem: Eigenvalues for the problem $(\mathbf{A} - \lambda \mathbf{I})\xi = \mathbf{0}$ solve det $|\mathbf{A} - \lambda \mathbf{I}| = 0$, so

$$\det \begin{vmatrix} -\frac{13}{8} - \lambda & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{4} - \lambda \end{vmatrix} = 0$$

The characteristic equation is

$$\lambda^2 + \frac{15}{8}\lambda + \frac{7}{32} = 0,$$

which has solutions

$$\lambda_1 = -\frac{1}{8}$$
 and $\lambda_2 = -\frac{7}{4}$

Two Dimensional Model Steady State Analysis **Eigenvalue Analysis** Model Solution

Greenhouse Example

4

Eigenvalue Problem: For $\lambda_1 = -\frac{1}{8}$, we solve

$$\begin{pmatrix} -\frac{3}{2} & \frac{3}{4} \\ \frac{1}{4} & -\frac{1}{8} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which gives a corresponding **eigenvector**, $\xi^{(1)} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$

For
$$\lambda_2 = -\frac{7}{4}$$
, we solve

$$\begin{pmatrix} \frac{1}{8} & \frac{3}{4} \\ \frac{1}{4} & -\frac{3}{2} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which gives a corresponding **eigenvector**, $\xi^{(2)} = \begin{pmatrix} -6 \\ 1 \end{pmatrix}$

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse Example

Solution $\mathbf{v}(t)$: The eigenvalue problem shows that there are two solutions to the Greenhouse example, $\dot{\mathbf{v}} = \mathbf{K}\mathbf{v}$

$$\mathbf{v}_1(t) = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{-t/8}$$
 and $\mathbf{v}_2(t) = \begin{pmatrix} -6 \\ 1 \end{pmatrix} e^{-7t/4}$

along with any constant multiples of these solutions

We combine results above to obtain the general solution

$$\mathbf{u}(t) = c_1 \mathbf{v}_1(t) + c_2 \mathbf{v}_2(t) + \mathbf{u}_e = c_1 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{-t/8} + c_2 \begin{pmatrix} -6 \\ 1 \end{pmatrix} e^{-7t/4} + \begin{pmatrix} 16 \\ 16 \end{pmatrix}$$

The solution exhibits the property of exponentially decaying to the steady-state solution

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse Example

Unique Solution: Suppose that the **rockbed** stored heat during the day, so we start with an initial condition of $u_{20}(0) = 25^{\circ}$ C, while the cool night air comes into the greenhouse with $u_{10}(0) = 5^{\circ}$ C.

To solve the IVP, we solve:

$$\mathbf{u}(0) = c_1 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} -6 \\ 1 \end{pmatrix} + \begin{pmatrix} 16 \\ 16 \end{pmatrix} = \begin{pmatrix} 5 \\ 25 \end{pmatrix}$$

Equivalently, solve

$$\begin{pmatrix} \frac{1}{2} & -6\\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1\\ c_2 \end{pmatrix} = \begin{pmatrix} -11\\ 9 \end{pmatrix} \quad \text{or} \quad c_1 = \frac{86}{13}, \quad c_2 = \frac{31}{13}$$

Thus, the solution to the IVP is

$$\mathbf{u}(t) = \frac{86}{13} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{-t/8} + \frac{31}{13} \begin{pmatrix} -6 \\ 1 \end{pmatrix} e^{-7t/4} + \begin{pmatrix} 16 \\ 16 \end{pmatrix}$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (22/32)

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse Example

Greenhouse/Rockbed Solution: Graph shows temperature in each compartment $u_1(t)$ (greenhouse) and $u_2(t)$ (rockbed)

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

-(23/32)

Two Dimensional Model Steady State Analysis Eigenvalue Analysis Model Solution

Greenhouse Example

Greenhouse/Rockbed Solution Observations

- Both solutions tend toward the equilibrium solution of 16°C
- There is more heat capacitance in the rock (high mass), so solution changes more slowly in this compartment
- The air of the greenhouse responds more quickly (low heat capacitance)
- The air of the greenhouse heats above steady state before returning toward the equilibrium solution
- This simplified model assumes a constant external temperature of 16°C rather than the more interesting dynamics of solar power and nocturnal heat loss - significantly more complicated model

Greenhouse Example Revisited MatLab and Maple Summary

Direction Fields and Phase Portraits

Definition (Autonomous System of Differential Equations)

Let x_1 and x_2 be **state variables**, and assume that the functions, $f_1(x_1, x_2)$ and $f_2(x_1, x_2)$ are dependent only on the state variables. The **two-dimensional autonomous system of differential** equations is given by:

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

Definition (Autonomous Linear System of Differential Equations)

Let x_1 and x_2 be **state variables** with $\mathbf{x} = [x_1, x_2]^T$, and assume that **A** is a constant matrix. The **autonomous linear system of differential equations** is given by:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}.$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) - (25/32)

Greenhouse Example Revisited MatLab and Maple Summary

Direction Fields and Phase Portraits

- The state variables, $u_1 = u_1(t)$ and $u_2 = u_2(t)$, are parametric equations depending on t
- Define the vector, $\mathbf{u}(t) = u_1(t)\mathbf{i} + u_2(t)\mathbf{j}$
- The u_1u_2 -plane is called the state plane or phase plane
- As t varies, the vector $\mathbf{u}(t)$ traces a curve in the phase plane called a **trajectory** or **orbit**
- An autonomous system of differential equations describes the dynamics of the orbit
- The functions, $f_1(x_1, x_2)$ and $f_2(x_1, x_2)$, describe the slope or **direction field** in the **phase plane**
- MatLab and Maple have special routines to create phase portraits, which trace the trajectories of the autonomous DE

Greenhouse Example Revisited MatLab and Maple Summary

Direction Fields and Phase Portraits

Definition

Consider the **two-dimensional autonomous system of differential equations** given by:

$$\dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

Create the vector field $\mathbf{F}(x_1, x_2) = f_1(x_1, x_2)\mathbf{i} + f_2(x_1, x_2)\mathbf{j}$. The graph of the vector field creates the direction field.

Definition

A plot of solution trajectories for the DE with the direction field creates a phase portrait.

Phase portraits are critical tools for the qualitative behavior of a system of autonomous differential equations.

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) — (27/32)

Greenhouse Example Revisited MatLab and Maple Summary

Greenhouse Example Revisited

• The greenhouse example satisfied the DE

$$\left(\begin{array}{c} \dot{u}_1\\ \dot{u}_2 \end{array}\right) = \left(\begin{array}{cc} -\frac{13}{8} & \frac{3}{4}\\ \frac{1}{4} & -\frac{1}{4} \end{array}\right) \left(\begin{array}{c} u_1\\ u_2 \end{array}\right) + \left(\begin{array}{c} 14\\ 0 \end{array}\right),$$

- First we found an **equilibrium**, which is a point where the **direction field** is **zero**
- Useful to find **nullclines**, where $\dot{u}_1 = 0$ or $\dot{u}_2 = 0$
- The line $-\frac{13}{8}u_1 + \frac{3}{4}u_2 = -14$ has $\dot{u}_1 = 0$, while the line $\frac{1}{4}u_1 \frac{1}{4}u_2 = 0$ has $\dot{u}_2 = 0$
- Intersection of these **nullclines** gives the **equilibrium**
- Next slide shows **phase portrait** produced by **MatLab's** *pplane8* (created by John Polking at Rice University)

Greenhouse Example Revisited MatLab and Maple Summary

Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by *pplane8* in **MatLab**

Joseph M. Mahaffy, (jmahaffy@sdsu.edu)

Greenhouse Example Revisited MatLab and Maple Summary

Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by *DEplot* in **Maple**

Greenhouse Example Revisited MatLab and Maple Summary

MatLab Summary

- MatLab hyperlink provides detailed instructions for this section
- MatLab
 - MatLab is well-designed to **solve** linear systems, *linsolve*, for Equilibria
 - MatLab readily finds eigenvalues and eigenvectors, *eig*, for the eigenvalue problem needed to solve systems of linear DEs
 - Numerical solutions use package like ode23
 - Nonlinear equations can have equilibria found with *fsolve*
 - Phase portraits and direction fields are graphed using *pplane* from Rice University

Greenhouse Example Revisited MatLab and Maple Summary

Maple Summary

• Maple hyperlink provide detailed instructions for this section

• Maple

- Maple has a *LinearAlgebra* package
- This package has commands *LinearSolve*, *Eigenvectors*, and many more for managing linear systems of DEs
- Exact solutions of linear systems are found with *dsolve*
- Phase portraits and direction fields are graphed with the package *DEtools* and the program *DEplot*

