Math 337 －Elementary Differential Equations Lecture Notes－Systems of Two First Order Equations： Part A

Joseph M．Mahaffy，
〈jmahaffy＠sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu

$$
\text { Spring } 2022
$$

Outline

(1) Introduction
(2) Greenhouse/Rockbed Example

- Two Dimensional Model
- Steady State Analysis
- Eigenvalue Analysis
- Model Solution
(3) Direction Fields and Phase Portraits
- Greenhouse Example Revisited
- MatLab and Maple Summary

Introduction

Introduction

- Many applications use more than one variable
- Use techniques from Linear Algebra
- Solve basic 2-dimensional linear ordinary differential equations
- Systems with constant coefficients
- Find eigenvalues and eigenvectors
- Graph phase portraits
- Qualitative Analysis
- Introduce nonlinear 2D systems

Introduction Greenhouse/Rockbed Example Direction Fields and Phase Portraits

Two Dimensional Model
Steady State Analysis
Eigenvalue Analysis
Model Solution

Greenhouse/Rockbed

Greenhouse/Rockbed

Greenhouse/Rockbed

Greenhouse/Rockbed System

- Greenhouse heats during the day and cools at night
- Insulated bed of rocks stores and releases heat
- Automated fan pumps air from greenhouse to bed of rocks
- Greenhouse air readily heated with the sun and lost at night
- Heat capacity of rocks absorbs heat during day from hot air, then releases during night
- System can maintain a more constant temperature

Greenhouse/Rockbed

Simplified Model: Lumped system thermal analysis using Newton's Law of Cooling

Define model parameters

- $m_{1}, m_{2} \quad$ Masses of Air and Rocks
- $C_{1}, C_{2} \quad$ Specific heat of Air and Rocks
- $A_{1}, A_{2} \quad$ Surface areas of Greenhouse and Rocks
- h_{1}, h_{2} Heat transfer coefficients across A_{1} and A_{2}
- T_{a} Temperature of air external to greenhouse

Greenhouse/Rockbed

Conservation of Energy gives

$$
\begin{aligned}
& m_{1} C_{1} \frac{d u_{1}}{d t}=-h_{1} A_{1}\left(u_{1}-T_{a}\right)-h_{2} A_{2}\left(u_{1}-u_{2}\right) \\
& m_{2} C_{2} \frac{d u_{2}}{d t}=-h_{2} A_{2}\left(u_{2}-u_{1}\right)
\end{aligned}
$$

Can write system

$$
\begin{aligned}
\frac{d u_{1}}{d t} & =-\left(k_{1}+k_{2}\right) u_{1}+k_{2} u_{2}+K_{1} T_{a} \\
\frac{d u_{2}}{d t} & =\varepsilon k_{2} u_{1}-\varepsilon k_{2} u_{2}
\end{aligned}
$$

with

$$
k_{1}=\frac{h_{1} A_{1}}{m_{1} C_{1}} \quad k_{2}=\frac{h_{2} A_{2}}{m_{1} C_{1}} \quad \varepsilon=\frac{m_{1} C_{1}}{m_{2} C_{2}}
$$

Greenhouse/Rockbed

Model Design

- Allows simulation to choose the size of rock bed and amount of airflow based on size of greenhouse
- Varying quantities and material changes coefficients
- Coefficients are known based on thermal properties of gases and building materials
- Given initial conditions

$$
u_{1}(0)=u_{10} \quad \text { and } \quad u_{2}(0)=u_{20}
$$

can easily simulate

- Analysis allows optimal design

Greenhouse/Rockbed

Model: Actual determining the values of the kinetic parameters for a particular greenhouse/rockbed configuration can be a very difficult problem

This is the most important problem in design
Suppose that we have

$$
k_{1}=\frac{7}{8} \quad k_{2}=\frac{3}{4} \quad \varepsilon=\frac{1}{3} \quad T_{a}=16^{\circ} \mathrm{C}
$$

Then

$$
\begin{aligned}
\frac{d u_{1}}{d t} & =-\frac{13}{8} u_{1}+\frac{3}{4} u_{2}+14 \\
\frac{d u_{2}}{d t} & =\frac{1}{4} u_{1}-\frac{1}{4} u_{2}
\end{aligned}
$$

Model Analysis - Matrix Form

Model in Matrix Form (Note: We define $\frac{d u_{1}(t)}{d t}=\dot{u}_{1}$.)

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{14}{0}
$$

which has the form

$$
\dot{\mathbf{u}}=\mathbf{K} \mathbf{u}+\mathbf{b}
$$

with initial condition

$$
\mathbf{u}(0)=\mathbf{u}_{0}=\binom{u_{10}}{u_{20}}
$$

Model Analysis - Expectations

Qualitative Model Expectations

- The only energy input into the system is the environment at $16^{\circ} \mathrm{C}$
- With this constant environmental temperature, expect

$$
\lim _{t \rightarrow \infty}\binom{u_{1}(t)}{u_{2}(t)}=\lim _{t \rightarrow \infty} \mathbf{u}(t)=\binom{16}{16}=\mathbf{u}_{e}
$$

- Model uses Newton's Law of Cooling, so expect an exponential decay toward \mathbf{u}_{e}

Model Analysis - Steady State

Model Analysis - Steady State: At steady state, $\dot{\mathbf{u}}=0$
Need to solve

$$
\mathbf{K u}+\mathbf{b}=\mathbf{0} \quad \text { or } \quad \mathbf{K u}=-\mathbf{b}
$$

This solves the linear system

$$
\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{u_{1 e}}{u_{2 e}}=\binom{-14}{0}
$$

This is readily solved by row reduction (row reduced echelon form)

Solve Linear System

Solve Linear System: Write [A:b], so

$$
\begin{gathered}
{\left[\begin{array}{rrcc}
-\frac{13}{8} & \frac{3}{4} & \vdots & -14 \\
\frac{1}{4} & -\frac{1}{4} & \vdots & 0
\end{array}\right]}
\end{gathered} \underset{4}{\xrightarrow{-\frac{8}{13} R_{1}}}\left[\begin{array}{cccc}
1 & -\frac{6}{13} & \vdots & \frac{112}{13} \\
1 & -1 & \vdots & 0
\end{array}\right]
$$

Solve Linear System

Solve Linear System: Linear systems are efficiently solved in MatLab and Maple

- MatLab - Solving equilibrium
- Enter matrix, A, and vector, b
- Use linsolve command or $\operatorname{inv}(A)^{*} b$
- Augment A with b and use rref
- Maple - Solving equilibrium
- Start with(LinearAlgebra) to invoke the Linear Algebra package
- Enter matrix, A, and vector, b
- Use LinearSolve (A, b) command or $\operatorname{Multiply}\left(A^{-1}, b\right)$ operation
- Detailed supplemental sheets are provided

Solving the System of DEs

Model System satisfies

$$
\dot{\mathbf{u}}=\mathbf{K} \mathbf{u}+\mathbf{b}
$$

and has a steady state solution $\mathbf{u}(t)=\mathbf{u}_{e}$, where $\mathbf{K} \mathbf{u}_{e}=-\mathbf{b}$
Make a change of variables $\mathbf{v}(t)=\mathbf{u}(t)-\mathbf{u}_{e}$, then $\dot{\mathbf{v}}=\dot{\mathbf{u}}$ and

$$
\dot{\mathbf{v}}=\mathbf{K}\left(\mathbf{v}+\mathbf{u}_{e}\right)+\mathbf{b}=\mathbf{K} \mathbf{v}
$$

This change of variables allows considering the simpler system

$$
\dot{\mathbf{v}}=\mathbf{K v}
$$

Solving the System of DEs

Model System has a Newton's Law of Cooling, so anticipate an exponential (decaying) solution
Try a solution of the form $\mathbf{v}(t)=\xi e^{\lambda t}$, where $\xi=\left[v_{1}, v_{2}\right]^{T}$ is a constant vector, so $\dot{\mathbf{v}}(t)=\lambda \xi e^{\lambda t}$

The translated Model System $\dot{\mathbf{v}}(t)=\mathbf{K v}(t)$ becomes

$$
\lambda \xi e^{\lambda t}=\mathbf{K} \xi e^{\lambda t} \quad \text { or } \quad \lambda \xi=\mathbf{K} \xi
$$

This is the classic eigenvalue problem

$$
(\mathbf{K}-\lambda \mathbf{I}) \xi=\mathbf{0}
$$

which has eigenvalues, λ, and associated eigenvectors, ξ
The solution of the eigenvalue problem gives the solution of the Model System, $\mathbf{v}(t)=\xi e^{\lambda t}$

Greenhouse Example

Example Model: satisfies the DE:

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{14}{0}
$$

which has the equilibrium solution

$$
\mathbf{u}_{e}=\binom{16}{16}
$$

Taking $\mathbf{v}(t)=\mathbf{u}(t)-\mathbf{u}_{e}$, we examine the translated model

$$
\binom{\dot{v}_{1}(t)}{\dot{v}_{2}(t)}=\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{v_{1}(t)}{v_{2}(t)}
$$

Greenhouse Example

Example Model: Try a solution $\mathbf{v}(t)=\xi e^{\lambda t}$ with $\xi=\left[\xi_{1}, \xi_{2}\right]^{T}$, so the DE can be written

$$
\lambda\binom{\xi_{1}}{\xi_{2}} e^{\lambda t}=\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}} e^{\lambda t}
$$

Dividing by $e^{\lambda t}$, we obtain the eigenvalue problem

$$
\left(\begin{array}{cc}
-\frac{13}{8}-\lambda & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}-\lambda
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

Greenhouse Example

Eigenvalue Problem: Eigenvalues for the problem $(\mathbf{A}-\lambda \mathbf{I}) \xi=\mathbf{0}$ solve $\operatorname{det}|\mathbf{A}-\lambda \mathbf{I}|=0$, so

$$
\operatorname{det}\left|\begin{array}{cc}
-\frac{13}{8}-\lambda & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}-\lambda
\end{array}\right|=0
$$

The characteristic equation is

$$
\lambda^{2}+\frac{15}{8} \lambda+\frac{7}{32}=0,
$$

which has solutions

$$
\lambda_{1}=-\frac{1}{8} \quad \text { and } \quad \lambda_{2}=-\frac{7}{4}
$$

Greenhouse Example

Eigenvalue Problem: For $\lambda_{1}=-\frac{1}{8}$, we solve

$$
\left(\begin{array}{rr}
-\frac{3}{2} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{8}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

which gives a corresponding eigenvector, $\xi^{(1)}=\binom{\frac{1}{2}}{1}$
For $\lambda_{2}=-\frac{7}{4}$, we solve

$$
\left(\begin{array}{rr}
\frac{1}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{3}{2}
\end{array}\right)\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0}
$$

which gives a corresponding eigenvector, $\xi^{(2)}=\binom{-6}{1}$

Greenhouse Example

Solution $\mathbf{v}(t)$: The eigenvalue problem shows that there are two solutions to the Greenhouse example, $\dot{\mathbf{v}}=\mathbf{K v}$

$$
\mathbf{v}_{1}(t)=\binom{\frac{1}{2}}{1} e^{-t / 8} \quad \text { and } \quad \mathbf{v}_{2}(t)=\binom{-6}{1} e^{-7 t / 4}
$$

along with any constant multiples of these solutions
We combine results above to obtain the general solution

$$
\mathbf{u}(t)=c_{1} \mathbf{v}_{1}(t)+c_{2} \mathbf{v}_{2}(t)+\mathbf{u}_{e}=c_{1}\binom{\frac{1}{2}}{1} e^{-t / 8}+c_{2}\binom{-6}{1} e^{-7 t / 4}+\binom{16}{16}
$$

The solution exhibits the property of exponentially decaying to the steady-state solution

Greenhouse Example

Unique Solution: Suppose that the rockbed stored heat during the day, so we start with an initial condition of $u_{20}(0)=25^{\circ} \mathrm{C}$, while the cool night air comes into the greenhouse with $u_{10}(0)=5^{\circ} \mathrm{C}$.
To solve the IVP, we solve:

$$
\mathbf{u}(0)=c_{1}\binom{\frac{1}{2}}{1}+c_{2}\binom{-6}{1}+\binom{16}{16}=\binom{5}{25}
$$

Equivalently, solve

$$
\left(\begin{array}{rr}
\frac{1}{2} & -6 \\
1 & 1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-11}{9} \quad \text { or } \quad c_{1}=\frac{86}{13}, \quad c_{2}=\frac{31}{13}
$$

Thus, the solution to the IVP is

$$
\mathbf{u}(t)=\frac{86}{13}\binom{\frac{1}{2}}{1} e^{-t / 8}+\frac{31}{13}\binom{-6}{1} e^{-7 t / 4}+\binom{16}{16}
$$

Greenhouse Example

Greenhouse/Rockbed Solution: Graph shows temperature in each compartment $u_{1}(t)$ (greenhouse) and $u_{2}(t)$ (rockbed)

Greenhouse/Rockbed

Greenhouse Example

Greenhouse/Rockbed Solution Observations

- Both solutions tend toward the equilibrium solution of $16^{\circ} \mathrm{C}$
- There is more heat capacitance in the rock (high mass), so solution changes more slowly in this compartment
- The air of the greenhouse responds more quickly (low heat capacitance)
- The air of the greenhouse heats above steady state before returning toward the equilibrium solution
- This simplified model assumes a constant external temperature of $16^{\circ} \mathrm{C}$ rather than the more interesting dynamics of solar power and nocturnal heat loss - significantly more complicated model

Direction Fields and Phase Portraits

Definition (Autonomous System of Differential Equations)

Let x_{1} and x_{2} be state variables, and assume that the functions, $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ are dependent only on the state variables. The two-dimensional autonomous system of differential equations is given by:

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right) \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Definition (Autonomous Linear System of Differential Equations)

Let x_{1} and x_{2} be state variables with $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$, and assume that \mathbf{A} is a constant matrix. The autonomous linear system of differential equations is given by:

$$
\dot{\mathbf{x}}=\mathbf{A x}
$$

Direction Fields and Phase Portraits

- The state variables, $u_{1}=u_{1}(t)$ and $u_{2}=u_{2}(t)$, are parametric equations depending on t
- Define the vector, $\mathbf{u}(t)=u_{1}(t) \mathbf{i}+u_{2}(t) \mathbf{j}$
- The $u_{1} u_{2}$-plane is called the state plane or phase plane
- As t varies, the vector $\mathbf{u}(t)$ traces a curve in the phase plane called a trajectory or orbit
- An autonomous system of differential equations describes the dynamics of the orbit
- The functions, $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$, describe the slope or direction field in the phase plane
- MatLab and Maple have special routines to create phase portraits, which trace the trajectories of the autonomous DE

Direction Fields and Phase Portraits

Definition

Consider the two-dimensional autonomous system of differential equations given by:

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right) \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Create the vector field $\mathbf{F}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}, x_{2}\right) \mathbf{i}+f_{2}\left(x_{1}, x_{2}\right) \mathbf{j}$. The graph of the vector field creates the direction field.

Definition

A plot of solution trajectories for the DE with the direction field creates a phase portrait.

Phase portraits are critical tools for the qualitative behavior of a system of autonomous differential equations.

Greenhouse Example Revisited

- The greenhouse example satisfied the DE

$$
\binom{\dot{u}_{1}}{\dot{u}_{2}}=\left(\begin{array}{rr}
-\frac{13}{8} & \frac{3}{4} \\
\frac{1}{4} & -\frac{1}{4}
\end{array}\right)\binom{u_{1}}{u_{2}}+\binom{14}{0},
$$

- First we found an equilibrium, which is a point where the direction field is zero
- Useful to find nullclines, where $\dot{u}_{1}=0$ or $\dot{u}_{2}=0$
- The line $-\frac{13}{8} u_{1}+\frac{3}{4} u_{2}=-14$ has $\dot{u}_{1}=0$, while the line $\frac{1}{4} u_{1}-\frac{1}{4} u_{2}=0$ has $\dot{u}_{2}=0$
- Intersection of these nullclines gives the equilibrium
- Next slide shows phase portrait produced by MatLab's pplane8 (created by John Polking at Rice University)

Greenhouse Example Revisited MatLab and Maple Summary

Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by pplanes in MatLab

Greenhouse Example Revisited MatLab and Maple Summary

Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by DEplot in Maple

MatLab Summary

- MatLab hyperlink provides detailed instructions for this section
- MatLab
- MatLab is well-designed to solve linear systems, linsolve, for Equilibria
- MatLab readily finds eigenvalues and eigenvectors, eig, for the eigenvalue problem needed to solve systems of linear DEs
- Numerical solutions use package like ode23
- Nonlinear equations can have equilibria found with fsolve
- Phase portraits and direction fields are graphed using pplane from Rice University

Maple Summary

- Maple hyperlink provide detailed instructions for this section
- Maple
- Maple has a LinearAlgebra package
- This package has commands LinearSolve, Eigenvectors, and many more for managing linear systems of DEs
- Exact solutions of linear systems are found with dsolve
- Phase portraits and direction fields are graphed with the package DEtools and the program DEplot

