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Introduction

Introduction

Many applications use more than one variable

Use techniques from Linear Algebra

Solve basic 2-dimensional linear ordinary differential
equations

Systems with constant coefficients
Find eigenvalues and eigenvectors
Graph phase portraits
Qualitative Analysis

Introduce nonlinear 2D systems
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Greenhouse/Rockbed System

Greenhouse heats during the day and cools at night

Insulated bed of rocks stores and releases heat

Automated fan pumps air from greenhouse to bed of rocks

Greenhouse air readily heated with the sun and lost at night

Heat capacity of rocks absorbs heat during day from hot air,
then releases during night

System can maintain a more constant temperature

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Part A
— (5/32)



Introduction
Greenhouse/Rockbed Example

Direction Fields and Phase Portraits

Two Dimensional Model
Steady State Analysis
Eigenvalue Analysis
Model Solution

Greenhouse/Rockbed 3

Simplified Model: Lumped system thermal analysis using Newton’s
Law of Cooling

Define model parameters

m1, m2 Masses of Air and Rocks

C1, C2 Specific heat of Air and Rocks

A1, A2 Surface areas of Greenhouse and Rocks

h1, h2 Heat transfer coefficients across A1 and A2

Ta Temperature of air external to greenhouse
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Conservation of Energy gives

m1C1
du1
dt

= −h1A1(u1 − Ta)− h2A2(u1 − u2)

m2C2
du2
dt

= −h2A2(u2 − u1)

Can write system

du1
dt

= −(k1 + k2)u1 + k2u2 +K1Ta

du2
dt

= εk2u1 − εk2u2

with

k1 =
h1A1

m1C1
k2 =

h2A2

m1C1
ε =

m1C1

m2C2
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Model Design

Allows simulation to choose the size of rock bed and amount of
airflow based on size of greenhouse

Varying quantities and material changes coefficients

Coefficients are known based on thermal properties of gases and
building materials

Given initial conditions

u1(0) = u10 and u2(0) = u20

can easily simulate

Analysis allows optimal design
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Model: Actual determining the values of the kinetic parameters for a
particular greenhouse/rockbed configuration can be a very difficult
problem

This is the most important problem in design

Suppose that we have

k1 = 7
8 k2 = 3

4 ε = 1
3 Ta = 16◦C

Then

du1
dt

= − 13
8 u1 + 3

4u2 + 14

du2
dt

= 1
4u1 −

1
4u2
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Model Analysis - Matrix Form 1

Model in Matrix Form (Note: We define du1(t)
dt = u̇1.)(

u̇1
u̇2

)
=

(
− 13

8
3
4

1
4 − 1

4

)(
u1
u2

)
+

(
14
0

)
which has the form

u̇ = Ku + b

with initial condition

u(0) = u0 =

(
u10
u20

)
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Qualitative Model Expectations

The only energy input into the system is the environment at
16◦C

With this constant environmental temperature, expect

lim
t→∞

(
u1(t)
u2(t)

)
= lim
t→∞

u(t) =

(
16
16

)
= ue

Model uses Newton’s Law of Cooling, so expect an
exponential decay toward ue
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Model Analysis - Steady State: At steady state, u̇ = 0

Need to solve
Ku + b = 0 or Ku = −b

This solves the linear system(
− 13

8
3
4

1
4 − 1

4

)(
u1e
u2e

)
=

(
−14

0

)

This is readily solved by row reduction (row reduced echelon
form)
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Solve Linear System: Write [A : b], so

 − 13
8

3
4

... −14

1
4 − 1

4

... 0

 − 8
13R1

−→
4R2

 1 − 6
13

... 112
13

1 −1
... 0


R2 −R1

−→

 1 − 6
13

... 112
13

0 − 7
13

... − 112
13

 − 13
7 R2

−→

 1 − 6
13

... 112
13

0 1
... 16


R1 + 6

13R2

−→

 1 0
... 16

0 1
... 16

 or ue =

[
16
16

]
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Solve Linear System: Linear systems are efficiently solved in
MatLab and Maple

MatLab - Solving equilibrium

Enter matrix, A, and vector, b
Use linsolve command or inv(A)*b
Augment A with b and use rref

Maple - Solving equilibrium

Start with(LinearAlgebra) to invoke the Linear Algebra
package
Enter matrix, A, and vector, b
Use LinearSolve(A,b) command or Multiply(A−1,b)
operation

Detailed supplemental sheets are provided
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Solving the System of DEs 1

Model System satisfies

u̇ = Ku + b

and has a steady state solution u(t) = ue, where Kue = −b

Make a change of variables v(t) = u(t)− ue, then v̇ = u̇ and

v̇ = K(v + ue) + b = Kv

This change of variables allows considering the simpler system

v̇ = Kv
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Solving the System of DEs 2

Model System has a Newton’s Law of Cooling, so anticipate an
exponential (decaying) solution

Try a solution of the form v(t) = ξeλt, where ξ = [v1, v2]T is a
constant vector, so v̇(t) = λξeλt

The translated Model System v̇(t) = Kv(t) becomes

λξeλt = Kξeλt or λξ = Kξ

This is the classic eigenvalue problem

(K− λI)ξ = 0,

which has eigenvalues, λ, and associated eigenvectors, ξ

The solution of the eigenvalue problem gives the solution of the
Model System, v(t) = ξeλt
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Example Model: satisfies the DE:(
u̇1
u̇2

)
=

(
− 13

8
3
4

1
4 − 1

4

)(
u1
u2

)
+

(
14
0

)
,

which has the equilibrium solution

ue =

(
16
16

)
Taking v(t) = u(t)− ue, we examine the translated model(

v̇1(t)
v̇2(t)

)
=

(
− 13

8
3
4

1
4 − 1

4

)(
v1(t)
v2(t)

)
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Example Model: Try a solution v(t) = ξeλt with ξ = [ξ1, ξ2]T , so
the DE can be written

λ

(
ξ1
ξ2

)
eλt =

(
− 13

8
3
4

1
4 − 1

4

)(
ξ1
ξ2

)
eλt

Dividing by eλt, we obtain the eigenvalue problem

(
− 13

8 − λ
3
4

1
4 − 1

4 − λ

)(
ξ1
ξ2

)
=

(
0
0

)
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Eigenvalue Problem: Eigenvalues for the problem (A− λI)ξ = 0
solve det |A− λI| = 0, so

det

∣∣∣∣∣ − 13
8 − λ

3
4

1
4 − 1

4 − λ

∣∣∣∣∣ = 0

The characteristic equation is

λ2 + 15
8 λ+ 7

32 = 0,

which has solutions

λ1 = − 1
8 and λ2 = − 7

4
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Eigenvalue Problem: For λ1 = − 1
8 , we solve(

− 3
2

3
4

1
4 − 1

8

)(
ξ1
ξ2

)
=

(
0
0

)
,

which gives a corresponding eigenvector, ξ(1) =

(
1
2
1

)
For λ2 = − 7

4 , we solve(
1
8

3
4

1
4 − 3

2

)(
ξ1
ξ2

)
=

(
0
0

)
,

which gives a corresponding eigenvector, ξ(2) =

(
−6

1

)
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Solution v(t): The eigenvalue problem shows that there are two
solutions to the Greenhouse example, v̇ = Kv

v1(t) =

(
1
2
1

)
e−t/8 and v2(t) =

(
−6

1

)
e−7t/4

along with any constant multiples of these solutions

We combine results above to obtain the general solution

u(t) = c1v1(t)+c2v2(t)+ue = c1

(
1
2
1

)
e−t/8+c2

(
−6

1

)
e−7t/4+

(
16
16

)
The solution exhibits the property of exponentially decaying to the
steady-state solution
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Unique Solution: Suppose that the rockbed stored heat during the
day, so we start with an initial condition of u20(0) = 25◦C, while the
cool night air comes into the greenhouse with u10(0) = 5◦C.

To solve the IVP, we solve:

u(0) = c1

(
1
2
1

)
+ c2

(
−6

1

)
+

(
16
16

)
=

(
5
25

)
Equivalently, solve(

1
2 −6
1 1

)(
c1
c2

)
=

(
−11

9

)
or c1 = 86

13 , c2 = 31
13

Thus, the solution to the IVP is

u(t) = 86
13

(
1
2
1

)
e−t/8 + 31

13

(
−6

1

)
e−7t/4 +

(
16
16

)
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Greenhouse/Rockbed Solution: Graph shows temperature in
each compartment u1(t) (greenhouse) and u2(t) (rockbed)
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Greenhouse/Rockbed Solution Observations

Both solutions tend toward the equilibrium solution of 16◦C

There is more heat capacitance in the rock (high mass), so
solution changes more slowly in this compartment

The air of the greenhouse responds more quickly (low heat
capacitance)

The air of the greenhouse heats above steady state before
returning toward the equilibrium solution

This simplified model assumes a constant external temperature
of 16◦C rather than the more interesting dynamics of solar power
and nocturnal heat loss - significantly more complicated model
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Direction Fields and Phase Portraits

Definition (Autonomous System of Differential Equations)

Let x1 and x2 be state variables, and assume that the functions,
f1(x1, x2) and f2(x1, x2) are dependent only on the state variables.
The two-dimensional autonomous system of differential
equations is given by:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Definition (Autonomous Linear System of Differential Equations)

Let x1 and x2 be state variables with x = [x1, x2]T , and assume
that A is a constant matrix. The autonomous linear system of
differential equations is given by:

ẋ = Ax.
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Direction Fields and Phase Portraits

The state variables, u1 = u1(t) and u2 = u2(t), are
parametric equations depending on t

Define the vector, u(t) = u1(t)i + u2(t)j

The u1u2-plane is called the state plane or phase plane

As t varies, the vector u(t) traces a curve in the phase plane
called a trajectory or orbit

An autonomous system of differential equations describes
the dynamics of the orbit

The functions, f1(x1, x2) and f2(x1, x2), describe the slope or
direction field in the phase plane

MatLab and Maple have special routines to create phase
portraits, which trace the trajectories of the autonomous
DE
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Definition

Consider the two-dimensional autonomous system of
differential equations given by:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

Create the vector field F(x1, x2) = f1(x1, x2)i + f2(x1, x2)j. The
graph of the vector field creates the direction field.

Definition

A plot of solution trajectories for the DE with the direction field
creates a phase portrait.

Phase portraits are critical tools for the qualitative behavior of a
system of autonomous differential equations.
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Greenhouse Example Revisited

The greenhouse example satisfied the DE(
u̇1
u̇2

)
=

(
− 13

8
3
4

1
4 − 1

4

)(
u1
u2

)
+

(
14
0

)
,

First we found an equilibrium, which is a point where the
direction field is zero

Useful to find nullclines, where u̇1 = 0 or u̇2 = 0

The line − 13
8 u1 + 3

4u2 = −14 has u̇1 = 0, while the line
1
4u1 −

1
4u2 = 0 has u̇2 = 0

Intersection of these nullclines gives the equilibrium

Next slide shows phase portrait produced by MatLab’s
pplane8 (created by John Polking at Rice University)
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Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by
pplane8 in MatLab
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Greenhouse Example Revisited

Greenhouse/Rockbed Phase Portrait: Graph produced by
DEplot in Maple
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MatLab Summary

MatLab hyperlink provides detailed instructions for this
section

MatLab

MatLab is well-designed to solve linear systems, linsolve,
for Equilibria
MatLab readily finds eigenvalues and eigenvectors, eig, for
the eigenvalue problem needed to solve systems of linear
DEs
Numerical solutions use package like ode23
Nonlinear equations can have equilibria found with fsolve
Phase portraits and direction fields are graphed using
pplane from Rice University
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Maple Summary

Maple hyperlink provide detailed instructions for this section

Maple

Maple has a LinearAlgebra package
This package has commands LinearSolve, Eigenvectors, and
many more for managing linear systems of DEs
Exact solutions of linear systems are found with dsolve
Phase portraits and direction fields are graphed with the
package DEtools and the program DEplot

Joseph M. Mahaffy, 〈jmahaffy@sdsu.edu〉
Lecture Notes – Systems of Two First Order Equations: Part A
— (32/32)

http://www-rohan.sdsu.edu/~jmahaffy/courses/f15/math337/beamer/maple/maple_sys.pdf

	
	Introduction
	Greenhouse/Rockbed Example
	Two Dimensional Model
	Steady State Analysis
	Eigenvalue Analysis
	Model Solution

	Direction Fields and Phase Portraits
	Greenhouse Example Revisited
	MatLab and Maple Summary


