

Introduction

Introduction

- Linear Differential Equation Unique solution easily found
- Nonlinear Differential Equation Solutions difficult or impossible
 - When does a solution **exist**?
 - If there is a solution, then is it **unique**?
 - Proving there is a unique solution does not mean the solution can be found

Theorem

If the functions p and g are continuous on an open interval $I: \alpha < t < \beta$ containing a point $t = t_0$, then there exists a unique function $y = \phi(t)$ that satisfies the differential equation

$$y' + p(t)y = g(t)$$

for each t in I with the initial condition

 $y(t_0) = y_0,$

where y_0 is an arbitrary prescribed initial value.

SDSU

Linear Differential Equation

The Linear Differential Equation has a unique solution to

$$y' + p(t)y = g(t),$$
 with $y(t_0) = y_0$

- Assume p and g are continuous on an open interval $I : \alpha < t < \beta$
- It follows that p and g are integrable
- Obtain integrating factor

$$u(t) = e^{\int_{t_0}^t p(s)ds}$$

• General solution (previously found)

$$y(t) = \frac{1}{\mu(t)} \left(\int_{t_0}^t \mu(s)g(s)ds + C \right)$$

• With initial condition, $C = y_0$, so unique solution

$$y(t) = \frac{1}{\mu(t)} \left(\int_{t_0}^t \mu(s)g(s)ds + y_0 \right)$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (5/23)

Introduction Linear Differential Equation Nonlinear Differential Equation Existence and Uniqueness Picard Iteration Uniqueness

Existence and Uniqueness

A change of coordinates allows us to consider

$$y' = f(t, y),$$
 with $y(0) = 0$ (1)

Theorem

If f and $\partial f/\partial y$ are continuous in a rectangle $R: |t| \leq a, |y| \leq b$, then there is some interval $|t| \leq h \leq |a|$ in which there exists a unique solution $y = \phi(t)$ of the initial value problem (1).

Motivation: Suppose that there is a function $y = \phi(t)$ that satisfies (1). Integrating, $\phi(t)$ must satisfy

$$\phi(t) = \int_{t_0}^t f(s, \phi(s)) ds, \qquad (2)$$

which is an **integral equation**.

A solution to (1) is equivalent (2).

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (7/23)

Existence and Uniqueness Picard Iteration Uniqueness Examples

Nonlinear Differential Equation

The general 1^{st} Order Differential Equation with an initial condition is given by

$$y' = f(t, y),$$
 with $y(t_0) = y_0$

- Need special conditions on f(t, y) to find a solution
 - Can use **separable** technique if f(t, y) = M(t)N(y)
 - Many specialized methods, like **Exact** or **Bernoulli's** equation
- What conditions are needed on f(t, y) for existence of a unique solution?
- With no general solution we need an indirect approach
- Technique uses convergence of a sequence of functions with methods from advanced calculus

Picard Iteration

SDSU

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (6/23)

Introduction Linear Differential Equation Nonlinear Differential Equation

Picard Iteration

505

SDSU

Show a solution to the **integral equation** using the **Method of Successive Approximations or Picard's Iteration Method**

Start with an initial function, $\phi_0 = 0$ (satisfying initial condition)

$$\phi_1(t) = \int_0^t f\left(s, \phi_0(s)\right) ds$$

Successively obtain

$$\phi_2(t) = \int_0^t f(s, \phi_1(s)) ds$$

$$\vdots$$

$$\phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) ds$$

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (8/23)

5050

Picard Iteration

Picard Iteration

The **Picard's Iteration** generates a sequence, so to prove the theorem we must demonstrate

- **O** Do all members of the sequence exist?
- **2** Does the sequence converge?
- **3** What are the properties of the limit function? Does it satisfy the **integral equation**
- **4** Is this the only solution? (**Uniqueness**)

Picard Iteration

Picard Iteration - Example

Consider the initial value problem (IVP)

$$y' = 2t(1+y),$$
 with $y(0) = 0,$

and apply the Method of Successive Approximations Let $\phi_0 = 0$, then

$$\phi_1(t) = \int_0^t 2s(1+\phi_0(s))ds = t^2$$

Next

$$\phi_2(t) = \int_0^t 2s(1+\phi_1(s))ds = \int_0^t 2s(1+s^2)ds = t^2 + \frac{t^4}{2}$$

Next

$$\phi_3(t) = \int_0^t 2s(1+\phi_2(s))ds = t^2 + \frac{t^4}{2} + \frac{t^6}{2\cdot 3}$$

SDSU

2

The integrations above suggest

$$\phi_n(t) = t^2 + \frac{t^4}{2!} + \frac{t^6}{3!} + \ldots + \frac{t^{2n}}{n!},$$

By math induction, assume true for n = k

$$\begin{split} \phi_{k+1}(t) &= \int_0^t 2s(1+\phi_k(s))ds \\ &= \int_0^t 2s(1+s^2+\ldots+\frac{s^{2k}}{k!})ds \\ &= t^2+\frac{t^4}{2!}+\frac{t^6}{3!}+\ldots+\frac{t^{2k+2}}{(k+1)!} \end{split}$$

which is what we needed to show

The limit exists if the series converges or $\lim_{n\to\infty} \phi_n(t)$ exists

SDSU

Apply the **Ratio test**

$$\lim_{k \to \infty} \left| \frac{t^{2k+2}}{(k+1)!} \frac{k!}{t^{2k}} \right| = \frac{t^2}{k+1} \to 0$$

which shows this series converges for all t

Since this is a Taylor's series, it can be integrated and differentiated in its interval of convergence.

Thus, it is a solution of the **integral equation**

Note that this is the Taylor's series for $\phi(t) = e^{t^2} - 1$, which can be shown to satisfy the IVP

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (12/23) 5050

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$ (11/23)

Picard Iteration

Picard Iteration - Example

First 4 Picard Iterates

Example - Uniqueness

Let
$$U(t) = \int_0^t |\phi(s) - \psi(s)| ds$$
, then $U(0) = 0$ and $U(t) \ge 0$ for $t \ge 0$

$$U(t)$$
 is differentiable with $U'(t) = |\phi(t) - \psi(t)|$

We have the differential inequality

$$U'(t) - AU(t) \le 0, \qquad 0 \le t \le A/2$$

Multiplying by positive function e^{-At} , then integrating gives

$$\begin{aligned} \frac{d}{dt} \left(e^{-At} U(t) \right) &\leq 0, \qquad 0 \leq t \leq A/2, \\ e^{-At} U(t) &\leq 0, \qquad 0 \leq t \leq A/2 \end{aligned}$$

Hence, $U(t) \leq 0$ with A arbitrary.

It follows that $U(t) \equiv 0$ or $\phi(t) = \psi(t)$ for each t, so the functions are 5051 the same, giving **uniqueness**

Picard Iteration Uniqueness

Example - Uniqueness

Example - Uniqueness - Suppose there are two solutions, $\phi(t)$ and $\psi(t)$ satisfying the **integral equation**

$$\phi(t) - \psi(t) = \int_0^t 2s(\phi(s) - \psi(s))ds$$

Take absolute values and restrict $0 \le t \le A/2$ (A arbitrary). then

$$\begin{aligned} |\phi(t) - \psi(t)| &= \left| \int_0^t 2s(\phi(s) - \psi(s))ds \right| &\leq \int_0^t 2s|\phi(s) - \psi(s)|ds \\ &\leq A \int_0^t |\phi(s) - \psi(s)|ds \quad \text{for} \quad 0 \leq t \leq A/2 \end{aligned}$$

505

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (14/23)

Linear Differential Equation

Nonlinear Differential Equation

Introduction

We leave the details of the proof of the **Existence and Uniqueness**

Theorem to the interested reader, but give a sketch of the key steps

- **4** Restrict the time interval $|t| \le h \le a$
 - Since f is continuous in the the rectangle $R: |t| \le a, |y| \le b$, the function f is bounded on R, so there exists M such that

Picard Iteration

Uniqueness

$$|f(t,y)| \le M \qquad (t,y) \in R$$

- Let $h = \min\left(a, \frac{b}{M}\right)$
- Can show by induction that each Picard iterate $\phi_n(t)$ satisfies

 $|\phi_n(t)| \le Mt \qquad t \in [0,h]$

• This gives **existence** of the Picard iterates

5050

Existence and Uniqueness Picard Iteration Uniqueness Examples

Existence and Uniqueness Theorem

Sketch of Proof of Existence and Uniqueness Theorem

Regions containing Picard iterates, $\phi_n(t)$ for all n

Introduction Linear Differential Equation Nonlinear Differential Equation

Existence and Uniqueness Picard Iteration Uniqueness Examples

Existence and Uniqueness Theorem

Sketch of Proof of Existence and Uniqueness Theorem

- **2** Show the sequence converges
 - A key point in the theorem is the continuity of $\partial f/\partial y$
 - Let

$$L = \max_{t \in R} \left| \frac{\partial f(t, y)}{\partial y} \right|,$$

which is called a **Lipschitz** constant

• Create a **Cauchy sequence** and show

$$|\phi_n(t) - \phi_{n-1}(t)| \le \frac{ML^{n-1}t^n}{n!} \qquad t \in [0,h]$$

• This establishes **convergence** of the Picard iterates

Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$	(17/23)	Joseph M. Mahaffy, $\langle jmahaffy@sdsu.edu \rangle$	(18/23)
Introduction Linear Differential Equation Nonlinear Differential Equation	Existence and Uniqueness Picard Iteration Uniqueness Examples	Introduction Linear Differential Equation Nonlinear Differential Equation	Existence and Uniqueness Picard Iteration Uniqueness Examples
Existence and Uniqueness Theorem 4		Existence and Uniqueness Theorem	

5050

2

Sketch of Proof of Existence and Uniqueness Theorem

- Show the convergent sequence converges to the solution of the IVP
 - The iteration scheme is

$$\phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) ds$$

- Want to take the limit of both sides as $n \to \infty$
- We have

$$\lim_{n \to \infty} \phi_{n+1}(t) = \phi(t) = \lim_{n \to \infty} \int_0^t f(s, \phi_n(s)) ds$$

• Uniform convergence of the Picard iterates allows

$$\phi(t) = \int_0^t \lim_{n \to \infty} f(s, \phi_n(s)) ds$$

SDSU

Sketch of Proof of Existence and Uniqueness Theorem

- (cont) Show the convergent sequence converges to the solution of the IVP
 - Continuity of f(t, y) w.r.t. y allows

$$\phi(t) = \int_0^t f(s, \lim_{n \to \infty} \phi_n(s)) ds$$

(20/23)

- This gives convergence to the solution
- Proof Uniqueness by producing a contradiction assuming two solutions

This proves when solutions **exist** and are **unique** to an **Initial Value Problem**

SDSU

3

5050

Existence and Uniqueness Picard Iteration Uniqueness Examples

Examples

The general differential equation is

$$y' = f(t, y),$$
 with $y(t_0) = y_0$ (3)

Theorem

If f and $\partial f/\partial y$ are continuous in a rectangle $R: |t-t_0| \leq a, |y-y_0| \leq b$, then there is some interval $|t-t_0| \leq h \leq |a|$ in which there exists a unique solution $y = \phi(t)$ of the initial value problem (3).

- **()** Why do we need the restriction $|t t_0| \le h \le |a|$?
- ② What is the significance of the conditions f and $\partial f/\partial y$ being continuous in R?

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (21/23)

Introduction
Linear Differential Equation
Nonlinear Differential EquationExistence and Uniqueness
Picard Iteration
Uniqueness
ExamplesExamples3

Consider the differential equation

$$y' = y^{2/3}$$
, with $y(0) = 0$

Note that $f(y) = y^{2/3}$ is continuous in any rectangle centered at $(t_0, y_0) = (0, 0)$, while $\partial f / \partial y = \frac{2}{3}y^{-1/3}$, which is **NOT continuous** in any rectangle R near (0, 0)

This is a **separable** equation, so

$$\int y^{-2/3} dy = \int dt = t + C \quad \text{or} \quad 3y(t)^{1/3} = t + C$$

One solution to the IVP is

$$y(t) = \frac{t^3}{27},$$

which satisfies the IVP.

However, it is easy to see that $y(t) \equiv 0$ is a solution, so solutions are **SOS NOT unique**

Examples

SDSU

Consider the differential equation

$$y' = y^2$$
, with $y(0) = 1$

Note that $f(y) = y^2$ and $\partial f/\partial y = 2y$, which are continuous in any rectangle R

This is a **separable** equation, so

$$\int y^{-2} dy = \int dt = t + C \qquad \text{or} \qquad -\frac{1}{y(t)} = t + C$$

The solution to the IVP is

$$y(t) = \frac{1}{1-t},$$

which clearly becomes undefined at t = 1. The **interval of existence** does not match the interval of continuity for f(t, y)

Joseph M. Mahaffy, (jmahaffy@sdsu.edu) (22/23)