Outline

Math 337 －Elementary Differential Equations

Lecture Notes－Existence and Uniqueness

> Joseph M. Mahaffy, \langle jmahaffy@sdsu.edu

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Cente
San Diego State University
San Diego，CA 92182－7720
http：／／jmahaffy．sdsu．edu
Spring 2022
Introduction

Linear Differential Equation

Nonlinear Differential Equation
－Existence and Uniqueness
－Picard Iteration
－Uniqueness
－Examples

Introduction
Linear Differential Equation
Nonlinear Differential Equation

Introduction

Introduction

－Linear Differential Equation－Unique solution easily found
－Nonlinear Differential Equation－Solutions difficult or impossible
－When does a solution exist？
－If there is a solution，then is it unique？
－Proving there is a unique solution does not mean the solution can be found

Theorem

If the functions p and g are continuous on an open interval $I: \alpha<t<\beta$ containing a point $t=t_{0}$ ，then there exists a unique function $y=\phi(t)$ that satisfies the differential equation

$$
y^{\prime}+p(t) y=g(t)
$$

for each t in I with the initial condition

$$
y\left(t_{0}\right)=y_{0},
$$

where y_{0} is an arbitrary prescribed initial value．

Linear Differential Equation

The Linear Differential Equation has a unique solution to

$$
y^{\prime}+p(t) y=g(t), \quad \text { with } \quad y\left(t_{0}\right)=y_{0}
$$

－Assume p and g are continuous on an open interval $I: \alpha<t<\beta$
－It follows that p and g are integrable
－Obtain integrating factor

$$
\mu(t)=e^{\int_{t_{0}}^{t} p(s) d s}
$$

－General solution（previously found）

$$
y(t)=\frac{1}{\mu(t)}\left(\int_{t_{0}}^{t} \mu(s) g(s) d s+C\right)
$$

－With initial condition，$C=y_{0}$ ，so unique solution

$$
y(t)=\frac{1}{\mu(t)}\left(\int_{t_{0}}^{t} \mu(s) g(s) d s+y_{0}\right)
$$

Existence and Uniqueness

Picard Iteration
Uniqueness
Examples

Motivation：Suppose that there is a function $y=\phi(t)$ that satisfies （1）．Integrating，$\phi(t)$ must satisfy

$$
\begin{equation*}
\phi(t)=\int_{t_{0}}^{t} f(s, \phi(s)) d s \tag{2}
\end{equation*}
$$

which is an integral equation．
A solution to（1）is equivalent（2）．
SDSO

Nonlinear Differential Equation

The general $1^{\text {st }}$ Order Differential Equation with an initial condition is given by

$$
y^{\prime}=f(t, y), \quad \text { with } \quad y\left(t_{0}\right)=y_{0}
$$

－Need special conditions on $f(t, y)$ to find a solution
－Can use separable technique if $f(t, y)=M(t) N(y)$
－Many specialized methods，like Exact or Bernoulli＇s equation
－What conditions are needed on $f(t, y)$ for existence of a unique solution？
－With no general solution we need an indirect approach
－Technique uses convergence of a sequence of functions with methods from advanced calculus

| Linear Differential Equation |
| :---: | :--- |
| Nonlinear Differential Equation |\quad| Existence and Uniqueness |
| :--- |
| Picard Iteration
 Uniqueness
 Examples |
| Picard Iteration |

Show a solution to the integral equation using the Method of Successive Approximations or Picard＇s Iteration Method
Start with an initial function，$\phi_{0}=0$（satisfying initial condition）

$$
\phi_{1}(t)=\int_{0}^{t} f\left(s, \phi_{0}(s)\right) d s
$$

Successively obtain

$$
\begin{aligned}
\phi_{2}(t) & =\int_{0}^{t} f\left(s, \phi_{1}(s)\right) d s \\
& \vdots \\
\phi_{n+1}(t) & =\int_{0}^{t} f\left(s, \phi_{n}(s)\right) d s
\end{aligned}
$$

Picard Iteration

The Picard＇s Iteration generates a sequence，so to prove the theorem we must demonstrate
（1）Do all members of the sequence exist？
（2）Does the sequence converge？
（3）What are the properties of the limit function？ Does it satisfy the integral equation
（c）Is this the only solution？（Uniqueness）

$\left.\begin{array}{|l|l}\text { Linear Differential Equation } \\ \text { Nonlinear Differential Equation }\end{array}\right) \begin{aligned} & \text { Introduction } \begin{array}{l}\text { Existence and Uniqueness } \\ \text { Picard Iteration } \\ \text { Uniqueness } \\ \text { Examples }\end{array} \\ & \text { Picard Iteration－Example }\end{aligned}$

Apply the Ratio test

$$
\lim _{k \rightarrow \infty}\left|\frac{t^{2 k+2}}{(k+1)!} \frac{k!}{t^{2 k}}\right|=\frac{t^{2}}{k+1} \rightarrow 0
$$

which shows this series converges for all t
Since this is a Taylor＇s series，it can be integrated and differentiated in its interval of convergence．

Thus，it is a solution of the integral equation
Note that this is the Taylor＇s series for $\phi(t)=e^{t^{2}}-1$ ，which can be shown to satisfy the IVP
which is what we needed to show
The limit exists if the series converges or $\lim _{n \rightarrow \infty} \phi_{n}(t)$ exists

Picard Iteration－Example

Existence and Uniqueness

Picard Iteration
Uniqueness
Examples
Linear Differential Equation
Nonlinear Differential Equation
Examples

First 4 Picard Iterates

Joseph M．Mahaffy，〈jmahaffy＠sdsu．edu〉（13／23）

50

Example－Uniqueness

Example－Uniqueness－Suppose there are two solutions，$\phi(t)$ and $\psi(t)$ satisfying the integral equation

$$
\phi(t)-\psi(t)=\int_{0}^{t} 2 s(\phi(s)-\psi(s)) d s
$$

Take absolute values and restrict $0 \leq t \leq A / 2$（ A arbitrary）．then

$$
\begin{aligned}
|\phi(t)-\psi(t)| & =\left|\int_{0}^{t} 2 s(\phi(s)-\psi(s)) d s\right| \leq \int_{0}^{t} 2 s|\phi(s)-\psi(s)| d s \\
& \leq A \int_{0}^{t}|\phi(s)-\psi(s)| d s \quad \text { for } \quad 0 \leq t \leq A / 2
\end{aligned}
$$

Introduction Linear Differential Equation Nonlinear Differential Equation	Existence and Uniqueness Picard Iteration Uniqueness Examples
Existence and UniquenesS	Theorem

We leave the details of the proof of the Existence and Uniqueness Theorem to the interested reader，but give a sketch of the key steps
（1）Restrict the time interval $|t| \leq h \leq a$
－Since f is continuous in the the rectangle $R:|t| \leq a,|y| \leq b$ ， the function f is bounded on R ，so there exists M such that

$$
|f(t, y)| \leq M \quad(t, y) \in R
$$

－Let $h=\min \left(a, \frac{b}{M}\right)$
－Can show by induction that each Picard iterate $\phi_{n}(t)$ satisfies

$$
\left|\phi_{n}(t)\right| \leq M t \quad t \in[0, h]
$$

－This gives existence of the Picard iterates

Hence，$U(t) \leq 0$ with A arbitrary．
It follows that $U(t) \equiv 0$ or $\phi(t)=\psi(t)$ for each t ，so the functions are
the same，giving uniqueness

Existence and Uniqueness Theorem

Sketch of Proof of Existence and Uniqueness Theorem

Regions containing Picard iterates，$\phi_{n}(t)$ for all n

Sketch of Proof of Existence and Uniqueness Theorem
（2）Show the sequence converges
－A key point in the theorem is the continuity of $\partial f / \partial y$
－Let

$$
L=\max _{t \in R}\left|\frac{\partial f(t, y)}{\partial y}\right|
$$

which is called a Lipschitz constant
－Create a Cauchy sequence and show

$$
\left|\phi_{n}(t)-\phi_{n-1}(t)\right| \leq \frac{M L^{n-1} t^{n}}{n!} \quad t \in[0, h]
$$

－This establishes convergence of the Picard iterates

| $\begin{array}{c}\text { Lntroduction } \\ \text { Linear Differential Equation } \\ \text { Nonlinear Differential Equation }\end{array}$ |
| :--- | \(\begin{aligned} \& Existence and Uniqueness

\& $$
\begin{array}{l}\text { Picard Iteration } \\
\text { Uniqueness } \\
\text { Examples }\end{array}
$$

\& Existence and Uniqueness Theorem\end{aligned}\)
Sketch of Proof of Existence and Uniqueness Theorem
（3）（cont）Show the convergent sequence converges to the solution of the IVP
－Continuity of $f(t, y)$ w．r．t．y allows

$$
\phi(t)=\int_{0}^{t} f\left(s, \lim _{n \rightarrow \infty} \phi_{n}(s)\right) d s
$$

－This gives convergence to the solution
（4）Proof Uniqueness by producing a contradiction assuming two solutions

This proves when solutions exist and are unique to an Initial Value Problem

Examples

Consider the differential equation

$$
y^{\prime}=y^{2}, \quad \text { with } \quad y(0)=1
$$

Note that $f(y)=y^{2}$ and $\partial f / \partial y=2 y$, which are continuous in any rectangle R
This is a separable equation, so

$$
\int y^{-2} d y=\int d t=t+C \quad \text { or } \quad-\frac{1}{y(t)}=t+C
$$

The solution to the IVP is

$$
y(t)=\frac{1}{1-t}
$$

which clearly becomes undefined at $t=1$. The interval of existence does not match the interval of continuity for $f(t, y)$

